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Automating Bayesian inference and design to quantify
acoustic particle levitation

Kiran Dhatt-Gauthier, Dimitri Livitz, and Kyle J. M. Bishop∗

Self-propulsion of micro- and nanoparticles powered by ultrasound provides an attractive strategy for
the remote manipulation of colloidal matter using biocompatible energy inputs. Quantitative under-
standing of particle motion and its dependence on size, shape, and composition requires accurate
characterization of the acoustic field, which depends sensitively on the experimental setup. Here, we
show how automated experiments based on Bayesian inference and design can accurately and effi-
ciently characterize the acoustic field within resonant chambers used to propel acoustic nanomotors.
Repeated cycles of observation, inference, and design (OID) are guided by a physical model that
describes the rate at which levitating particles approach the nodal plane. Using video microscopy,
we observe the relaxation of tracer particles to this plane following the application of the acoustic
field. We use sequential Monte Carlo methods to infer model parameters such as the amplitude
and frequency of the resonant chamber while accounting for particle-level measurement noise and
population-level heterogeneity in the field. Guided by simulated outcomes, we select the optimal
design for the next experiment as to maximize the information gain in the relevant parameters. We
show how this iterative process serves to discriminate between competing hypotheses and efficiently
converges to accurate parameter estimates using only few automated experiments. We discuss the
need for model criticism to ensure the validity of the guiding model throughout automated cycles
of observation, inference, and design. This work demonstrates how Bayesian methods can learn
the parameters of nonlinear, hierarchical models used to describe video microscopy data of active
colloids.

1 Introduction
Direct video imaging1,2 of colloidal objects—from enzymes3

and nanoparticles4–6 to living cells7 and rheological probes8,9—
provides useful data with which to understand their proper-
ties,6 dynamics,3 interactions,4,10 assemblies,11 and microenvi-
ronments.8 More than a century after Perrin’s pioneering exper-
iments,12 the tracking of Brownian particles is now commonly
used to quantify their diffusive motions, from which properties of
the particle (e.g., size) and its local environment (e.g., fluid veloc-
ity, viscosity) are readily inferred. These methods are also useful
in quantifying the propulsion mechanisms for a growing variety
of active particles13–16 powered by chemical fuels17 and/or ex-
ternal fields.18

Whether active or passive, the analysis of particle motion relies
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optimal experiments. See DOI: 10.1039/cXsm00000x.

on models that predict the observed data in terms of uncertain
model parameters and user-specified design variables (Fig. 1a).
To account for variability in experimental observations, these
models are inherently probabilistic. They describe the odds of ob-
serving a particular outcome given certain assumptions about the
validity of the model and the values of it parameters. Such prob-
abilistic models may contain multiple sources of stochastic vari-
ation (i.e., “noise”) due to thermal fluctuations, particle disper-
sity, heterogeneous environments, and measurement error among
others. Faced with these many uncertainties, scientists conduct
experiments in order to infer or “learn” model parameters from
the observed data and also to evaluate model performance. Prior
to each experiment, they tune the available design variables or
“knobs” (e.g., the frequency of an applied signal) as to influence
the measurement outcome. By carefully selecting these design
variables, “good” scientists hope to learn model parameters effi-
ciently using as few experiments as possible. The present work
seeks to automate where possible these important processes of
parameter estimation and experimental design.

The broader challenges of experimental design outlined above
will be investigated here within the specific context of pro-
pelling micro- and nanoparticles using ultrasound.20–24 The self-
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Fig. 1 Bayesian experimental design. (a) The relationship between an
experimental design d and a measurement outcome y can be described
by the conditional probability distribution q(y|d), which is unknown to
the experimenter. The user-specified model M provides a parametric ap-
proximation to this relationship q(y|d) ≈

∫
p(y|θθθ ,d,M)p(θθθ |M)dθθθ , where

the distribution p(θθθ |M) describes our uncertain knowledge of the model
parameters θθθ , and the distribution p(y|θθθ ,d,M) describes the likelihood
of the measurement outcome under model M with parameters θθθ . (b)
Model parameters can be learned through iteration of a three-step cy-
cle of observation, inference, and design (OID).19 Upon conducting an
experiment (observation), our knowledge of the model parameters is up-
dated (inference) and used to design future experiments to maximize
their expected utility (design).

propelled motions of solid particles levitating at the nodal plane
of a standing acoustic wave are thought to derive from steady
streaming flows22,25 that depend on particle size,22 shape,21,22

and composition.21 The propulsion speed further depends on the
local acoustic field, which is often spatially heterogeneous due to
imperfections in the resonant acoustic chamber. In order to un-
derstand the relationships between particle properties and their
self-propelled motions, we first require quantitative knowledge
of the acoustic field in which particles move. Resonant fields
are often sensitive to small perturbations in experimental con-
ditions, which can be difficult to control from one experiment to
the next. It is therefore desirable to characterize the acoustic field
efficiently and perhaps repeatedly during investigations aimed at
quantifying the mechanisms of acoustic propulsion.

In this context, Bayesian data analysis26,27 provides a prin-
cipled approach for inferring model parameters and designing
maximally informative experiments (Fig. 1b). Given a proba-
bilistic model for the observed data, Bayes’ rule describes how
prior distributions for model parameters should be updated to in-
fer their likely values conditioned on experiment outcomes. The
trained model can then be used in designing future experiments
as to maximize user-specified objectives. Commonly, one seeks
designs that maximize the expected information gain about the
model parameters of interest.28 This cycle of observation, infer-
ence, and design (OID) can be repeated automatically to learn
model parameters to a specified precision using the fewest num-
ber of experiments.19 In practice, however, parameter estima-
tion is complicated by intractable nonlinear models containing
many unobserved variables. Even modern numerical techniques
based on Hamiltonian Monte Carlo (HMC)29or variational in-
ference (VI)30 have difficulty in capturing multimodal distribu-
tions that can arise in nonlinear models of physicochemical sys-

tems. Bayesian design is even more computationally expensive to
implement than inference, requiring expectations over all possi-
ble experiment outcomes.31 Despite these challenges, thoughtful
modeling choices combined with probabilistic programming tools
(e.g., Stan,32 PyMC333) can enable the wide-spread application
of automated experiments for parameter estimation using modest
computational resources.

Here, we demonstrate an automated platform for quantifying
the acoustic field within resonant chambers used in the study of
micro- and nanomotors powered by ultrasound. A physical model
of these chambers is characterized by four parameters that de-
scribe the amplitude, natural frequency, quality factor, and spa-
tial heterogeneity of the resonant acoustic field. To infer these
parameters, we observe the motion of colloidal tracer particles as
they move to the nodal plane upon application of the field at a
prescribed driving frequency. The data from video microscopy is
analyzed using a full probability model that describes the noisy
measurement of each particle within the spatially heterogeneous
field. We use sequential Monte Carlo (SMC) methods34 to sam-
ple parameters from the posterior distribution and simulate out-
comes of future experiments. For the next experiment, we select
the design––namely, the driving frequency and the video frame
rate––that maximizes the expected information gain. The cycle
of observation, inference, and design is implemented in an auto-
mated closed loop with computer-controlled actuation and data
collection. We show that accurate parameter estimates can be
achieved using a small number of carefully selected experiments.
The methods developed here are immediately applicable to re-
lated problems in characterizing and controlling field-driven col-
loids.35–39

2 Observation-Inference-Design

2.1 Observation

Our experiments are performed in a cylindrical acoustic cell
(height, H = 220 µm; diameter, 4 mm) containing an aqueous dis-
persion of polystyrene (PS) spheres (radius, R = 7.5 µm; Fig. 2a).
The cell is actuated from below by a piezoelectric transducer sub-
ject to a sinusoidal voltage of magnitude V and angular frequency
ω (see Appendix A for experimental details). Near the natural fre-
quency, ω/2π ≈ c/2H = 3.41 MHz, a standing wave is created with
wavelength equal to twice the cell height. Upon application of the
acoustic field, the PS particles levitate from the chamber floor to
the midplane of the cell due to acoustic radiation forces40.

We quantify the magnitude of the radiation force by tracking
the motion of particles as they come into focus at the nodal plane
(Fig. 2b).41 During each experiment, we first focus on a collec-
tion of particles levitating at the midplane of the cell (Fig. 2b,
region i). The applied voltage is then switched off for a period of
time τ ≈ 7 s, during which the particles sediment out of focus due
to gravity (Fig. 2b, region ii). Reapplication of the acoustic field
causes the particles to return to the nodal plane at a rate propor-
tional to the magnitude of the radiation force (Fig. 2b, region iii).
Using video microscopy, we quantify the apparent size y of each
particle as it slowly increases during sedimentation and quickly
recovers upon reapplication of the field (Fig. 2c; see Appendix
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Fig. 2 Observation. (a) Schematic illustration of the acoustic cell con-
taining polystyrene (PS) tracer spheres. (b) During each experiment,
the voltage signal is switched off for a time τ and then reapplied (purple
curve, right axis). The apparent size y of each particle increases steadily
as it falls out of focus and then recovers rapidly up reapplication of the
acoustic field (aqua curve, left axis). (c) Image sequence showing a sin-
gle particle as it moves into focus at the nodal plane. The corresponding
particle size in each image is plotted in (b) (open circles). The scale bar
is 15 µm.

A).

For each experiment, the design variable d specifies the mag-
nitude V and frequency ω of the applied signal, the sedimenta-
tion time τ, as well as the number Nt and frame rate f of im-
ages captured upon reapplication of the field. These features
of the experiment––unlike the number of PS tracer particles, for
example––are easily controlled by a computer and therefore use-
ful in guiding sequences of automated experiments. For a given
design, we use the captured images to generate the data y repre-
senting the size of the Np tracked particles at the Nt time points.
From the observed relationship between design d and data y, we
infer the resonant acoustic field within the cell using a minimal
number of automated experiments. To reduce the dimensionality
of the design space, we fix the applied voltage to V = 10 V, the
sedimentation time to τ = 7 s, and the number of time points to
Nt = 100. The driving frequency ω and frame rate f are selected
for each experiment so as to maximize the expected information
gain with respect to the model parameters as detailed below.

2.2 Inference

Generative Model

Bayesian inference and design requires a probabilistic model for
the observed data y conditioned on the experimental design d.
Here, the physical model describes the physics of acoustic parti-
cle levitation and its dependence on the resonant acoustic field
within the cell. The motion of the PS spheres through the viscous
fluid is approximated by the overdamped dynamics

6πηR
dh
dt

= Fg +Fa (1)

where h is the height of the particle from the floor, η is the fluid
viscosity, Fg is the gravitational force, and Fa is the acoustic ra-
diation force on the sphere. In the absence of the acoustic field
(Fig. 2b, region ii), the particle sediments at a constant velocity
(here, ca. 6 µm/s) determined by the balance of the viscous drag
and the gravitational force. In the acoustic field (Fig. 2b, region
iii), the particle experiences an additional radiation force of the
form

Fa =
π2ΦR3 p2

a
ρc2H

sin
(

2πh
H

)
(2)

where pa is the amplitude of the acoustic pressure wave, ρ = 998
kg/m3 and c = 1480 m/s are, respectively, the density and speed
of sound in water, and Φ = 0.11 is the acoustophoretic contrast
factor for PS in water.40 Near the midplane, equation (2) is well
approximated by a linear force-displacement relationship like that
of an elastic spring. The linearized dynamics can be integrated to
obtain the following approximation for the transient height of the
particle following the application of the acoustic field

h(t) = h∞ +(h0−h∞)e−λ t (3)

where h0 is the initial height at time zero, and λ =

π2ΦR2 p2
a/3ηρc2H2 is the rate at which the particle approaches

its asymptotic height h∞. In our experiments, the magnitude of
the acoustic force is typically much larger than the gravitational
force, and the asymptotic height of the particle is indistinguish-
able from that of the nodal plane, h∞ ≈ H/2.

To describe the experimental data, we must further specify how
the observed size y depends on the height of the particle h. For
small particle displacements (i.e., ∆h ≈ R), the size y can be ap-
proximated by a linear function of the height h as confirmed by
control experiments on sedimenting particles (see Supplementary
Figure S2†). With these assumptions, the model predicts that the
size evolves in time as

y(t) = a+be−λ t (4)

where the parameters a and b depend on the initial and asymp-
totic height of the particle and on the approximate linear relation-
ship between height and size. These quantities do not depend on
the characteristics of the acoustic field––namely, the pressure pa–
–and their values are of little interest. We therefore treat them
as nuisance parameters which are later discarded by marginaliza-
tion.26

The rate of particle motion λ depends on the frequency ω of
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the driving signal by way of the acoustic pressure pa, which de-
termines the magnitude of the radiation force. Near the natural
frequency, we approximate this relationship as

λ (ω) =
αω2

β 2 +(ω−β )2/γ2 (5)

where the parameters α, β , and γ characterize the magnitude,
peak location, and width of the frequency response, respec-
tively.42 This expression is appropriate when the quality factor of
the resonance is high (i.e., Q = 1/2γ � 1) and when the applied
frequency ω is close to the resonant value β . Together, equa-
tions (4) and (5) describe how the observed size evolves in time
as specified by particle-level parameters a, b and by cell-level pa-
rameters α, β , γ.

To describe the deviations between our experimental observa-
tions and the deterministic model outlined above, we consider
two sources of stochastic variation or “noise”. First, at the level of
the individual particles, we assume that our measurements of the
size are subject to additive white Gaussian noise with standard
deviation s ≈ 0.1 pixels. Second, at the level of the acoustic cell,
we note that the acoustic field exhibits spatial variations within
the nodal plane––so-called nodal structure––due to excitation of
acoustic modes directed normal to the chamber thickness. As a
result, the rate of particle motion λ can differ between particles at
different locations in the nodal plane. As this rate is strictly posi-
tive, we assume that logarithm of λ is subject to additive Gaussian
noise with standard deviation σ . For simplicity, the noise param-
eters s and σ are assumed to be constant and independent of
design variables such as the applied frequency.

With these preliminaries, we can now write the full probabil-
ity model to describe the observed data y = {yi jk} for Ne experi-
ments containing Np particles at Nt time points (see Appendix B
for details). Figure 3a shows a graphical representation of the
model and the relationships among the different parameters and
the design variables. We are primarily interested in the cell-level
parameters––denoted θ = {α,β ,γ,σ}––that describe the magni-
tude, peak location, and width of the frequency response as
well as the magnitude of any nodal structure. Knowledge of
these parameters along with the design variables di for experi-
ment i determine the probability distribution for the rate param-
eter λi j for particle j. Other particle-level parameters––denoted
φ i j = {ai j,bi j}––influence the distribution of the observed data
yi jk at time point k; however, their values are not of immediate
interest.

Parameter Estimation

Given the observed data y, we use Bayesian inference to estimate
the posterior probability distribution for the cell-level parameters
θ—namely, the magnitude α, peak location β , width γ, and het-
erogeneity σ of the acoustic resonance. Following each experi-
ment, we use sequential Monte Carlo (SMC) methods34 to sam-
ple parameter values from the posterior distribution, p(θ | y,d)
(see Appendix B). The required likelihood function p(y | θ ,d) is
obtained by analytical marginalization of the latent rate param-
eters λi j and the nuisance parameters φ i j for each experiment i
and particle j (see ESI†).

Figures 3b-d show the analysis of particle tracking data from
two experiments collected at two different driving frequencies ω.
For each frequency, the analysis of the Np = {18,15} particles pro-
vides as many estimates of the rate parameter λ (Fig. 3b); varia-
tions in this parameter from particle to particle reflect the spatial
heterogeneity in the acoustic field. Conditioned on the data from
these experiments, the posterior distribution for the cell param-
eters is bimodal suggesting two qualitatively different interpre-
tations: one in which the natural frequency β lies between the
two driving frequencies, and another in which it lies above them.
These two modes are clearly visible in the marginal distribution
for the resonance amplitude α and natural frequency β (Fig. 3c).
We emphasize that the posterior is not analytically tractable ow-
ing to the nonlinear dependence of the rate λ on the cell-level
parameters. Figure 3d shows the predicted resonant response
λ (ω) of equation (5) using parameters sampled from the poste-
rior (purple curves). These curves illustrate the two competing
hypotheses for the natural frequency, both of which are compati-
ble with data from the two experiments (markers). In designing
the next experiment, we seek to discriminate between these com-
peting scenarios as to eliminate one possibility or the other with
high confidence.

To quantify the intuitive notion that some experiments are bet-
ter than others, we define a utility function u(y,d) that depends on
the observed data y collected under design d. The distinction be-
tween “better” and “worse” experiments is necessarily subjective
and reflects the objectives of the experimenter (e.g., to maximize
knowledge, minimize cost, etc.). Here, we equate the utility of
the data to the information gained with respect to the cell-level
parameters θ

u(y,d) =
∫

p(θ | y,d) ln
[

p(θ | y,d)
p(θ)

]
dθ (6)

This utility function is equal to the Kullback–Leibler divergence
between the posterior and prior distributions for the model pa-
rameters and measures the amount of information provided by
the data in reducing our uncertainty in these quantities.28 Better
experiments provide more information (here, measured in nats)
about the cell-level parameters of interest. In practice, we esti-
mate the utility using Monte Carlo integration with respect to the
sampled posterior distribution (see Appendix B).43 For example,
the two experiments shown in Figure 3d provide 6.58 nats (9.49
bits) of information about the cell parameters. To interpret this
information theoretic result, we can imagine dividing the space
of possible parameter values into e6.58 ≈ 720 regions with equal
prior probabilities for enclosing the “true” value. The informa-
tion provided by these two experiments is analogous to that of
discovering which one of the 720 regions contains the true value.

2.3 Design

Given data y from previous experiments collected under designs
d, the design d̃ for the next experiment is selected so as to max-
imize the expected utility of future outcomes ỹ. The expected
utility U(d̃) is obtained by integrating over possible outcomes ỹ
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predictions using the maximum likelihood parameter estimates for λi j and φi j (see Appendix B). (c) Posterior distribution for the resonance amplitude
α and the natural frequency β conditioned on data from two experiments. (d) Predicted rate parameter λ (ω) as a function of frequency ω based on
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(c). Markers show estimates of the rate parameter λi j for each experiment i and particle j. The solid black curve represents the expected utility U of
a subsequent experiment as function of the driving frequency; here, the optimal design maximizing U occurs at the right boundary of the frequency
window.

weighted by the predictive distribution p(ỹ | d̃,y,d) conditioned
on the previous data

U(d̃) =
∫

u(ỹ, d̃)p(ỹ | d̃,y,d)dỹ (7)

In other words, U(d̃) describes the average utility of simulated
outcomes conditioned on actual outcomes of past experiments.
The optimal experimental design d? is that which maximizes this
quantity: d? = argmaxU(d̃). Using the utility of equation (6), the
expected utility is equal to the mutual information between the
cell-level parameters θ and the experimental outcome ỹ. With
this choice, optimal experimental designs serve to maximize the
amount of information shared between the parameters and the
data. As a result, knowledge of the experimental outcome ỹ acts
reduce our uncertainty in the model parameters θ .

Computing the expected utility is arguably the biggest chal-
lenge in the practical implementation of Bayesian designs based
on analytically intractable models. In addition to the integral over
possible outcomes ỹ, equation (7) requires the evaluation of addi-
tional integrals over the parameters θ to compute both the utility
and the posterior predictive distribution. As detailed in Appendix

C, we use simulated experiments along with Monte Carlo impor-
tance sampling to estimate the expected utility of each candidate
design d̃.31,44 To mitigate additional challenges due the hierar-
chical model, we decompose the optimization problem into two
steps. We first identify the optimal frequency ω? neglecting the
uncertainty in the particle rates λ̃i j; we then optimize the frame
rate f ? as to minimize that uncertainty. Details of this multistage
approximation and its accuracy are discussed in Appendix C.

Continuing the example above, Figure 3d shows the expected
information gain U as a function of the driving frequency ω condi-
tioned on data from two experiments. The expected information
gain is smallest at the two driving frequencies investigated previ-
ously and larger at unexplored frequencies reaching a maximum
value at the upper bound of the frequency window. This optimal
design maximizing U corresponds to the frequency at which the
model predictions are most uncertain.19 In light of the two hy-
potheses implicit in the bimodal posterior (Fig. 3c), the design al-
gorithm selects the frequency at which the respective hypotheses
make the most divergent predictions. Upon conducting the rec-
ommended experiment, the processes of observation, inference,
and design can be repeated in an iterative fashion to efficiently
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learn model parameters as we now show.

3 Results & Discussion

3.1 Validation of the Physical Model

The Bayesian approach to experimental design outlined in the
previous section assumes that the experimental data is in fact
generated by the proposed model. While it accounts for uncer-
tainty in the model parameters, the algorithm does not question
the validity of the model itself (unless, of course, alternatives are
explicitly provided). It is therefore imperative that the physical
model provide a reasonably effective approximation to the real
data generating process (i.e., the experiments) if we are to trust
in and benefit from the recommended designs. To evaluate the
ability of the proposed model to describe the experimental data,
we performed a series of experiments on a set of Np ≈ 10 particles
at 14 frequencies equally spaced from 3.74 to 4.00 MHz using the
maximum frame rate of 1000 fps (Fig. 4). From these data, we in-
ferred the model parameters and compared the model predictions
with the experimental observations.
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Fig. 4 Model Validation. (a) Experimental estimates of the rate param-
eter λ (markers) for a set of Np ≈ 10 particles at different frequencies
ω agree with the posterior predictive distribution p(λ | y,d) conditioned
on the experimental data y (curves). Solid curves denote the noise-free
resonant response λ (ω) sampled from the posterior; the dashed curves
denote 95% credible intervals for the rate λ . The Ne = 14 experiments
were conducted at regular intervals of 20 kHz using a constant frame rate
of 1000 fps. Agreement between the experimental data and the model
predictions is strong at low frequencies (conducted earlier) but diminishes
at high frequencies (conducted later) due to particle aggregation and cell
aging. (b) Marginal distributions for the four cell-level parameters––the
resonance amplitude α, natural frequency β , width γ, and heterogeneity
σ––conditioned on the experimental data in (a).

Figure 4a shows the posterior predictive distribution for the
rate parameter λ (curves) and the values inferred from the exper-
imental data (markers) as a function of the driving frequency ω.
The fact that the experimental data fall within the high probabil-
ity regions of the fitted model indicates that the latter provides an
effective and concise description of the former. Consistent with
the inferred value for σ , the rate parameters λ show variation
spanning from ca. three times less to three times more than the
median value predicted by equation (5). Notably, data collected
at latter times after sustained activation of the cell showed higher
than expected variation in the inferred rate parameter λ (see the
high frequency region of Fig. 4a). With repeated activation of
the cell, the levitated particles accumulate within secondary pres-
sure nodes within the nodal plane thereby reducing the number
of free particles available for analysis. Other forms of cell aging––
for example, solvent evaporation or mechanical relaxation of cell
components––may also contribute to a decrease in data quality
with sustained use. Below, we discuss how anomalous experimen-
tal results inconsistent with model expectations (i.e., “outliers”)
can be detected using posterior predictive checks (PPCs), thereby
alerting the experimenter to possible failures of the model.

Figure 4b shows the marginal distributions for the cell-level
parameters conditioned on the experimental data. The parame-
ters are all estimated to within 15% of their mean values; how-
ever, some are inferred with considerably greater precision. In
particular, the natural frequency β of the acoustic cell is esti-
mated to be 3.8802± 0.0026 MHz; the width of the resonance
is γ = (7.71±0.74)×10−3, confirming the assumption γ � 1 that
underlies equation (5). By contrast, the amplitude α = 10.3±1.5
s−1 of the resonant response is considerably less certain, owing
to spatial heterogeneity in the pressure field characterized by the
noise parameter σ = 0.639± 0.046. Overall, this set of 14 exper-
iments provides a total information gain of 10.8 nats (15.6 bits)
in the cell-level parameters with respect to the weakly informa-
tive priors detailed in Appendix B. Further experiments provide
little additional information about the parameters owing to the
heterogeneity in the acoustic field.

We emphasize that the experimental data used to characterize
the acoustic field and validate our probabilistic model are unique
to the particular cell on which they are collected. Despite ef-
forts to fabricate cells with reproducible characteristics, uncon-
trolled variations––for example, in the position of the glass reflec-
tor slide––lead to differences in the cell parameters and thereby
differences in the acoustic field for a common driving voltage
and frequency. This variability motivates the need for automated
experiments with which to quickly learn model parameters and
characterize acoustic cells.

3.2 Automated Cycles of Observation-Inference-Design

Starting from a state of uncertainty, the cycle of observation-
inference-design can be automated to accurately infer model pa-
rameters using a relatively small number of experiments selected
algorithmically. Here, our initial state of knowledge––as quanti-
fied by our choice of priors for the model parameters––is one of
significant uncertainty but not complete ignorance. The charac-
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teristic magnitudes of the parameters are known (e.g., β/2π ≈
c/2H = 3.4 MHz for the natural frequency); however, their pre-
cise values may be ca. three times smaller or larger depending on
the particular acoustic cell in question (see Appendix B).

We consider the design space d specified by the driving fre-
quency ω and the video frame rate f , holding all other variables
constant. The driving frequency is constrained to lie on a finite
range ωmin < ω < ωmax with ωmin = 3.4 MHz and ωmax = 4.0 MHz
for the present experiments. Outside of this range, acoustic radi-
ation forces are too weak to levitate particles to the nodal plane
during the observation time. The frame rate f is discretized into
five possible values spaced evenly on a logarithmic scale from 100
to 1000 fps. This small set of discrete options helps to accelerate
the design process while capturing the range of rate parameters λ

encountered in the experiments. During each iteration of the cy-
cle, we select the design d that maximizes the expected informa-
tion gain U as estimated by the model conditioned on previously
collected data.

Figure 5 illustrates the first three iterations of the automated
OID cycle. Following the first experiment, analysis of the ob-
served data serves to reduce our uncertainty in the resonant re-
sponse λ (ω) at the prescribed frequency but less so at higher or
lower frequencies (Fig. 5a, purple curves). The expected informa-
tion gain U for the next experiment is greatest at these previously
unexplored frequencies (Fig. 5a, black curve). We note that the
optimal frequency identified will differ somewhat from the true
value due to noise inherent in the Monte Carlo estimates for the
expected information gain. Such errors can be reduced as nec-
essary by increasing the number of simulated experiments at the
expense of added computation. After accepting the recommended
frequency (Fig. 5a, vertical line), we select the optimal frame rate
with which to capture the anticipated particle motion in the next
experiment (see Appendix C).

Following the second experiment, the posterior predictions of
the resonant response λ (ω) exhibit the same bimodality encoun-
tered above in our discussion of inference (cf. Figs. 5b & 3d). The
optimal frequency for the subsequent experiment is selected at
the lower frequency limit ωmin to best discriminate between the
two competing hypotheses implicit in the bimodal posterior. Af-
ter performing this third experiment, the posterior distribution
for the cell-level parameters converges on a single mode; how-
ever, the precise values of the magnitude, natural frequency, and
quality of the resonance remain uncertain (Fig. 5c). The designs
for subsequent experiments are selected as to systematically re-
duce the remaining uncertainty in the model parameters despite
significant noise in the observed particle dynamics.

Figure 6a shows the posterior prediction for the resonant re-
sponse λ (ω) conditioned on data from an automated sequence of
ten optimal experiments (purple curves; see also Fig. S8). The es-
timated decay rates for the observed particles (colored markers)
are scattered above and below the median response due to het-
erogeneities in the acoustic field (dashed curves). The expected
information gain for further experiments is small and approxi-
mately independent of the applied frequency frequency (black
curve). Figure 6b shows how the cumulative information gain
relative to the prior increases with successive experiments (pur-
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Fig. 5 Three automated experiments illustrating the observation-
inference-design cycle. In each plot, the circular markers denote the
experimental estimates for the rate parameters λi j for each particle j
in experiment i; colored markers denote the results of the current ex-
periment (Observation). The purple curves are posterior samples of the
noise-free resonant response λ (ω) conditioned on the experimental data
(Inference). The black curves show the expected information gain U of
a subsequent experiment as a function of the driving frequency ω; the
vertical line shows the optimal frequency ω? that maximizes U (Design).
See Supplementary Figures S7 and S8 for the full data set.†

ple markers). Here, the information gain u(y,d) of equation (6)
is computed using posterior parameter samples conditioned on
all data y collected prior to and including the nth experiment.43

Notably, the information gain computed after each experiment
agrees favorably with the predictions of simulated experiments
used to guide experimental design (grey distributions).

Together, these results demonstrate that the cell-level param-
eters can be learned using only five optimal experiments within
the automated OID cycle. Here, these few experiments provide
ca. 10 nats of information about the parameters, which is compa-
rable to that provided by the more comprehensive data set illus-
trated in Figure 4. Following these initial experiments, the poste-
rior distribution becomes unimodal and can be approximated by
a multivariate normal distribution. Further experiments aimed at
reducing parameter uncertainty can then make use of simplifying
approximations based on linearized models to accelerate infer-
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Fig. 6 Results of ten optimal experiments. (a) Rate parameter λ as func-
tion of the driving frequency ω (left axis). Markers represent maximum
likelihood estimates of λi j for each particle j and experiment i; purple
curves denote the noise-free resonance λ (ω) sampled from the posterior
distribution; the dashed curves show the 95% credible interval for λ (ω).
The black curve shows the expected information gain U for a subsequent
experiment (right axis). (b) Cumulative information gain as a function of
the experiment number n. Purple markers denote the information u(y,d)
in the cell parameters provided by the observed data y relative to the prior
distribution. The grey distributions denote 99% credible intervals for the
information gain predicted prior to the nth experiment using simulated
experiments; the expected value of this distribution U is use in designing
the nth experiment.

ence (e.g., Laplace approximation45) and design (e.g., D-optimal
design46).

Throughout the automated cycle, we repeatedly assess the abil-
ity of the fitted model to describe the observed data and provide
warnings of possible failures in data collection or analysis. We
perform posterior predictive checks (PPCs) at both the particle
and cell levels comparing experimental observations to stimu-
lated data from the fitted model. At the particle level, we assess
the exponential decay in the particle size (see Fig. 3b) using a
chi-squared test for the sum-squared-error between the observed
data and the predictions of the fitted model. Particles that fail
this test (p-value < 5%) are excluded from our analysis. At the
cell level, we compare the estimated decay rate for each particle
to posterior predictions of the fitted model and generate warn-
ings of potentially anomalous behaviors (p-value < 1%). When
significant deviations between the observed data and the model
predictions arise, the fitted model may lead to false conclusions,
and it cannot be relied upon to design effective experiments. For
this reason, some form of model criticism47 is essential to the
reliable automation and execution of the observation-inference-
design cycle.

4 Conclusions

We demonstrate how automated experiments guided by physical
models and Bayesian algorithms can accurately characterize res-
onant acoustic chambers using only few measurements. The hi-
erarchical model developed here accounts for uncertainties at the
particle level due to measurement noise and at the population
level due to heterogeneities in the resonant field. Such models
arise naturally in the study of active colloids by video imaging,
where noisy measurements of multiple particles must be incorpo-
rated to draw quantitative conclusions about system-level proper-
ties or dynamics. We show how Bayesian inference using sequen-
tial Monte Carlo sampling can be used to describe multimodal
distributions for unknown parameters that arise from nonlinear
models applied to limited data. In general, the different modes of
the posterior distribution describe the different qualitatively dis-
tinct hypotheses by which to explain the current data. We show
how Bayesian designs aimed at maximizing the information gain
can identify experimental conditions that best discriminate be-
tween such competing hypotheses.

While the present example is comparatively simple, the ability
to entertain multiple hypotheses and to systematically evaluate
them through an iterative process of experimentation is an essen-
tial component of the scientific method. Given a strong model
for the relevant phenomena, computational methods of Bayesian
inference and design can be applied algorithmically and automat-
ically to learn model parameters using a minimal number of care-
fully selected experiments. Throughout this process, one must be
careful to ensure that experimental observations are consistent
with the limited “imagination” of the prescribed model. To this
end, posterior predictive checks (PPCs) comparing experimental
and simulated data can help to maintain confidence in model pre-
dictions and the resulting designs.

In the context of acoustic nanomotors, the methods developed
here for learning model parameters can be extended to engineer-
ing particle propulsion directed by shape.22 Consider the prob-
lem of identifying which particle shape satisfies—or perhaps even
optimizes—a given functional objective (e.g., swim fast in cir-
cles). One approach to solve this problem relies on predictive
models to first simulate particle motions for different candidate
shapes and then select the best one. Unfortunately, existing mod-
els of acoustic propulsion22,25,48 are inaccurate and/or compu-
tationally demanding thereby limiting their utility for engineer-
ing particle motions. Alternatively, one can use the observation-
inference-design cycle to conduct experiments on different parti-
cle shapes in order to learn and validate simpler parametric mod-
els of shape-directed propulsion. The primary purpose of such
models is to engineer particle performance rather than to under-
stand acoustic propulsion. This difference in motivation should
be reflected in the utility function used in the OID cycle as to bal-
ance the competing demands of “exploring” new designs and “ex-
ploiting” promising candidates. Bayesian optimization49 based
on surrogate models such as Gaussian processes50 combined with
acquisition functions such as expected improvement51 provides
one popular implementation of this general framework of obser-
vation, inference, and design.19
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Looking forward, there remain significant opportunities for ac-
celerating inference and design involving multimodal distribu-
tions.52 In the present implementation, each OID cycle requires
an average time of 1, 2, and 1 minutes, respectively, on an Intel
i5-8400 processor; the code used to collect the present results is
available on Github.53 The extension of these methods to models
containing more unknown parameters and/or design variables is
likely to require more computational resources, additional simpli-
fying approximations, and/or new methods for inference and de-
sign. In closing, we note that the methods described here rely on a
strong guiding model, which incorporates knowledge of the rele-
vant physics to create an efficient approximation of the data gen-
erating process (i.e., one with few parameters). Alternative ap-
proaches based on black-box models (e.g., neural networks) are
unlikely to be competitive in the “small data” regime described
here. Future applications of Bayesian inference and design are
likely to benefit from hybrid methods54 that incorporate physical
knowledge where available while retaining the flexibility to de-
scribe nonlinear relationships between experimental designs and
outcomes.
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Appendix A: Experimental Details
Acoustic Cell
The acoustic cell was constructed from a silicon wafer cov-
ered with several layers of Kapton tape (CS Hyde Co. 18-1S-
W) containing a cylindrical hole of height 220 µm and diam-
eter 4.0 mm. A piezoelectric transducer (Steiner & Martins,
Inc. SMD12T06R412WL) with a natural frequency of 3.4 MHz±
5% was was attached to the opposite side of the wafer with epoxy.
Prior to the experiments, the chamber was filled with a dilute dis-
persion of 15 µm fluorescent polystyrene (PS) spheres (Thermo-
Scientific, FluoSpheres F8844) in deionized water. The chamber
was capped by a glass coverslip and pressed firmly to remove ex-
cess liquid.

Automated Experiments
A sinusoidal voltage V (t) with an amplitude of 10 V and a pre-
scribed frequency ω was applied to the piezoelectric transducer
using a function generator (Keithley 3390). Near the natural fre-
quency, the applied signal caused the particles to levitate near
the mid-plane of the chamber as observed by fluorescence mi-
croscopy (Nikon Plan Fluor 10× objective). The focal plane was
positioned 15 µm above the nodal plane to achieve the desired
linear relationship between particle size and height (Fig. S2).
During each experiment, the signal was switched off for τ = 7
s and then reapplied. Particle motions following the reapplica-
tion of the acoustic field were captured by a high speed camera

(Phantom v710) at a frame rate of 1000 fps, which was later
downsampled to the selected frame rate f prior to particle track-
ing. The number of frames analyzed during tracking was held
constant at Nt = 100. Computer automation of the function gen-
erator and the high speed camera was achieved using an Arduino
UNO microcontroller, which synchronized the function generator
and high speed camera at the desired frequency ω and frame rate
f for each experiment.

Particle Tracking
The microscopy videos were analyzed using TrackPy55 to deter-
mine the (x,y) position of each particle as a function of time t.
TrackPy uses an implementation of the Crocker-Grier centroid-
finding algorithm1 to locate the positions of Gaussian-like blobs
of specified size within each frame. The algorithm uses a spatial
bandpass filter to smooth the image and subtract off the back-
ground thereby transforming the imaged particles into Gaussian
blobs on a black background. The quantity y used throughout
the main text is the size parameter returned by the tracking al-
gorithm, which measures the radius of gyration of these Gaus-
sian blobs. To avoid complications due to particle interactions,
particles separated by less than two diameters (30 µm) were ex-
cluded from the analysis. Any particle aggregates with eccentric-
ity greater than 0.15 were also excluded.

Appendix B: Bayesian Inference
Full Probability Model
Figure 3a shows the generative model used to infer the unknown
parameters from the observed data, y= {yi jk}, for all experiments
i, particles j, and time points k. The joint probability distribution
can be written as

p(θ ,λ ,φ ,y |d)= p(θ)
Ne

∏
i=1

Np

∏
j=1

p(λi j | θ ,di)p(φ i j)
Nt

∏
k=1

p(yi jk | λi j,φ i j,di)

(8)
Here, the cell-level parameters, θ = {α,β ,γ,σ}, include the am-
plitude, location, width, and heterogeneity of the resonance; the
particle-level parameters include the relaxation rate λi j and the
nuisance parameters, φ i j = {ai j,bi j}, that describe the initial and
asymptotic values of the measured size.

Prior Distributions
We assume independent lognormal priors for the four global pa-
rameters

p(θ) = p(α)p(β )p(γ)p(σ) (9)

where α ∼ Lognormal(µα ,σ
2
α ), β ∼ Lognormal(µβ ,σ

2
β
), γ ∼

Lognormal(µγ ,σ
2
γ ), and σ ∼ Lognormal(µσ ,σ

2
σ ). The choice of

lognormal priors reflects the fact that each parameter is positive
and that its logarithm lies within a known range. Similarly, we
use independent normal priors with zero mean for the parame-
ters φ i j

p(φ i j) = p(ai j)p(bi j) (10)

where ai j ∼N(0,σ2
a ) and bi j ∼N(0,σ2

b ) for all particles j and ex-
periments i. The hyperparameters µα , σα , etc. are summarized in
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Table 1.

Parameter Units µ σ

α s−1 0 0.5
β / 2π MHz 0 0.5

γ – ln0.1 0.5
σ – ln0.1 0.5
a pixels 0 2
b pixels 0 2

Table 1 Hyperparameters for prior distributions

Likelihood Functions
As described in the main text, the distributions for the relax-
ation rate p(λi j | θ ,di) and the measured size p(yi jk | λi j,φ i j,di)

are given by

p(λi j | θ ,di) = Lognormal
(

λi j | µi,σ
2
)

(11)

p(yi jk | λi j,φ i j,di) =N
(

yi jk | ai j +bi je−λi jtik ,s2
)

(12)

Here, the parameter µi represents the logarithm of the median
relaxation rate for experiment i

µi = ln
αω2

i
β 2 +(ωi−β )2/γ2 (13)

The measurement error is specified as s = 0.1 pixel, and tik = (k−
1)/ fi is the time of the kth frame of the ith experiment following
the reapplication of the field at k = 1. Together, the equations
(8)–(12) specify the full probability model used in analyzing the
experimental data and designing future experiments.

Marginal Likelihood
Given data y collected under design d, we infer the probability
distribution for the cell-level parameters θ by first marginalizing
over the nuisance parameters φ and the latent parameters λ and
then sampling the posterior p(θ | y,d) a sequential Monte Carlo
(SMC) inference engine. Exact marginalization over the parti-
cle parameters φ can be conducted analytically as detailed in the
ESI†. By contrast, exact marginalization over the particle rates λ

is not analytically tractable owing to the nonlinear dependence
of the size on the rate in equation (4). However, for reasonably
effective designs, the size data yi j for particle j in experiment i
provides an accurate estimate of the rate λi j such that the likeli-
hood p(yi j | λi j) is well approximated by a lognormal distribution
for λi j. Using this approximate likelihood, we marginalize over
each λi j analytically to obtain the marginal likelihood p(y | θ ,d)
for the cell-level parameters (see ESI†).

Posterior Sampling
Using this marginal likelihood, we use a sequential Monte Carlo
(SMC) sampler implemented in PyMC3 (version 3.8) to sam-
ple cell-level parameters from the posterior p(θ | y,d).33,34 The
PyMC3 implementation captures multimodal posteriors by using
a population of Markov chains to sample from a sequence of prob-

ability distributions that gradually approach the desired posterior.
We use 5000 independent chains with 5000 samples drawn from
the posterior; other algorithm parameters are set to their default
values.

Information Gain
To estimate the utility u(y,d) from the posterior parameter sam-
ples, we first apply Bayes’ theorem to write equation (6) as

u(y,d) =
∫

p(θ | y,d) ln p(y | θ ,d)dθ − ln p(y) (14)

We use Monte Carlo integration based on Nθ posterior samples in
{θ m} to estimate the first term. We estimate the second term—
the negative log-evidence—using the Monte Carlo algorithm of
Heavens et al.43

u(y,d)≈ 1
Nθ

∑
m

ln p(y | θ m,d)− lnEo (15)

where Eo is the MAP estimate of the evidence p(y) (see ESI†).

Appendix C: Bayesian Design
Two-step Design
The design d̃ = {ω̃, f̃} of the next experiment is selected using a
two-step optimization procedure, in which we first identify the
applied frequency ω̃ and then the frame rate f̃ that maximize
the expected utility U(d̃). Here, the expected utility of equation
(7) is precisely the mutual information I(ỹ;θ) between the data
ỹ of the next experiment and the cell-level parameters θ . From
the properties of the mutual information, this quantity can be
expressed in terms of the latent rate parameter λ̃ as

U(d̃) = I(λ̃ ;θ)− I(λ̃ ;θ | ỹ)+����
I(θ ; ỹ | λ̃ ) (16)

The last term represents the mutual information between the cell
parameters θ and the data ỹ conditioned on knowledge of the
rate parameters λ̃ ; the structure of the graphical model implies
that this quantity is identically zero (Fig. 3a). As the mutual infor-
mation is non-negative, the remaining terms satisfy the inequali-
ties, I(λ̃ ;θ)≥ I(λ̃ ;θ | ỹ)≥ 0. For the designs of interest, we make
the simplifying assumption that the rate parameters λ̃ are accu-
rately estimated from the data ỹ such that I(λ̃ ;θ)� I(λ̃ ;θ | ỹ).
The expected utility is then approximately equal to I(λ̃ ;θ), which
depends on the frequency ω̃ but not on the frame rate f̃ . To max-
imize the expected utility, we first select the frequency ω? that
maximizes I(λ̃ ;θ) and then select the frame rate f ? that max-
imizes I(ỹ; λ̃ ) which approximates the exact procedure of mini-
mizing I(λ̃ ;θ | ỹ). For further information on this approximation,
see the ESI†.

Optimal Frequency ω?

We use nested Monte Carlo integration31,44,56 to estimate the
mutual information I(λ̃ ;θ) and particle swarm optimization57 to
identify the frequency ω? that maximizes this estimate. Briefly,
we use Nout × Nin samples of the cell-level parameters {θ nm}
drawn from the posterior distribution p(θ | y,d) conditioned on
data y from past experiments collected under design d. We then
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generate Nout samples of the rate parameters {λ̃ n} from the dis-
tribution p(λ̃ | θ n0, ω̃), which is specified by equation (11) of the
model. From these samples, the mutual information I(λ̃ ;θ) is
estimated as

Î(ω̃) =
1

Nout
∑
n

[
ln p(λ̃ n | θ n0)− ln

(
1

Nin
∑
m

p(λ̃ n | θ nm)

)]
(17)

This Monte Carlo estimate is both noisy and biased: the vari-
ance scales as O(N−1

out ), the positive bias as O(N−1
in ), and the total

mean squared error as O(N−1
out +N−2

in ).44 It is asymptotically op-
timal to set Nout ∝ N2

in to achieve to the overall convergence rate
O(T−1/3) in the total number of samples T = NoutNin.56 We set
Nin =Nout = 103 which serves as a balance between computational
speed and accuracy.31 We use particle swarm optimization57 with
100 iterations of 100 particles to identify the frequency ω? that
maximizes the estimate Î(ω̃).

Optimal Frame Rate f ?

Rather than minimize directly the second component of equation
(16) for the expected utility with respect to the frame rate f̃ ,
we instead maximize the mutual information I(ỹ;λ ) between the
data ỹ and the rate parameters λ . The approximate equivalence
of these two procedures is explained in the ESI†. The objective
function I(ỹ;λ ) to be maximized is estimated as

Î(ω?, f̃ ) =
1

Nout
∑
n

[
ln p(ỹn | λ̃ n0)− ln

(
1

Nin
∑
m

p(ỹn | λ̃ nm)

)]
(18)

Here, the sampled rate parameters {λ̃ nm} are drawn from the dis-
tribution p(λ̃ | θ nm) using the optimal frequency ω?; the sampled
particle sizes {ỹn} are drawn from the distribution p(ỹ | λ̃ n0). As
each of the Np particles is assumed the be independent, we sam-
ple measurement outcomes ỹ for a single particle with Nt time
points.
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