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Boundary Layer Description of Directional Polymer Crys-
tallisation

Sabin Adhikari,a Alejandro A. Krauskopf,a Sanat K. Kumar,∗a Sumesh P. Thampi,∗b Christo-
pher J. Durninga

Nearly fifty years ago Lovinger and Gryte suggested that the directional crystallization of a polymer
was analogous to the quiescent isothermal crystallization experiment but at a supercooling where
the crystal growth velocity was equal to the velocity of the moving front. Our experiments showed
that this equivalence holds in a detailed manner at low directional velocities. To understand the
underlying physics of these situations, we modeled the motion of a crystallization front in a liquid
where the left side boundary is suddenly lowered below the melting point (Stefan’s problem) but
with the modification that the crystallization kinetics follow a version of the Avrami model. Our
numerical results surprisingly showed that the results of the polymer analog track with the Stefan
results which were derived for a simple liquid that crystallizes completely at its melting point; in
particular, the position of the crystal growth-front evolved with time exactly as in the Stefan problem.
The numerical solution also showed that the temperature in the immediate vicinity of the growth-
front decreased with increasing front velocity, which is in line with Lovinger and Gryte’s ansatz.
To provide a clear theoretical understanding of these numerical results we derive a boundary layer
solution to the governing coupled differential equations of the polymer problem. The analytical
results are in agreement with our observations from experiments and numerical computations but
show that this equivalence between the small molecule and polymer analog only holds in the limit
where the crystallization enthalpy is much larger than the rate at which heat is conducted away in
the polymer. In particular, in the context of the temperature profile, the enthalpy generated by the
crystallisation process which is spread out over a narrow spatial region can be approximated as a
point source whose location and temperature correspond to the Lovinger-Gryte ansatz.

1 Introduction
Zone annealing (ZA) is a material processing technique heav-
ily used in the purification of semiconductors1,2. The potential
use of ZA in polymer processing was explored by Lovinger and
Gryte3–5 in seventies, and has been extended more recently by
us6. Lovinger and Gryte conjectured that at a steady-state, the
velocity at which a crystallising sample is moved through the heat
source sets the crystal growth velocity; they further suggested
that each ZA experiment, therefore, corresponds to an isother-
mal crystallisation experiment at a temperature where the crystal
growth velocity matches the ZA velocity.

In a recent paper7, we developed a theoretical framework for
modeling ZA for polymer-like materials whose crystal growth ki-
netics are dependent on temperature. As a first step towards
modeling ZA for such materials, we considered the classic Ste-
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fan problem with two modifications: unlike in the Stefan prob-
lem where the melting occurs at the melting point only, we al-
lowed the material to crystallise at any temperature below the
melting temperature by assuming a linear temperature depen-
dence, and we adopted a simple version of the Avrami model for
the growth kinetics. The resulting coupled differential equations
were solved numerically to find the temperature and the associ-
ated crystallinity profiles. The numerical results showed an iden-
tical time evolution for the position of the solid-liquid interface
to the progress of the solid-liquid interface in the corresponding
Stefan problem. In addition, the scale of the steady-state tem-
perature field near the interface was found to relate inversely
with the growth-front velocity. While this velocity dependence
of the interface temperature is consistent with Lovinger’s ansatz
that there exists an equivalent isothermal crystallisation temper-
ature for each growth-front speed at steady state, theoretical un-
derstanding of above observations, that is, the identical evolution
of interface position with Stefan’s problem, and the growth-front
velocity dependence of interface temperature field is somewhat
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Fig. 1 A schematic of the problem considered in this work. Polymer melt
at a temperature of T = Tm is cooled by imposing a lower temperature Tl
at z= 0. As a consequence melt crystallises and the crystal-melt boundary
advances to the right. The color shows the extent of crystallisation,
quantified by the volume fraction of the crystals.

limited.
In this study, we consider the same modified Stefan problem

and provide an approximate boundary layer solution to the gov-
erning differential equations. For a large latent heat and in the
limit of long time our analytical results show that the position of
the solid-liquid interface tracks the interface position in the Ste-
fan problem. Also, the effective super-cooling for crystallization
within the boundary layer varies inversely with the front speed.

The rest of this paper is organized as follows. In section 2, we
present a mathematical model for polymer melt crystallisation ini-
tially just above its melting point in the one-dimensional thermal
field created by a sudden stationary sink at one boundary. After
scaling, section 3 delivers an approximate solution by asymptotic
methods for the temperature and crystallinity fields for the case
of (relatively) large latent heats, appropriate for polymer systems.
Comparisons with the Stefan model, and key results supporting
the Lovinger-Gryte ansatz are presented. Section 4 compares the
analytics with numerical solutions of the governing equations.

2 Modelling polymer melt crystallisation
In this section, we describe the system investigated in this work
and formulate the mathematical description of the crystallisation
process. As shown in Fig. 1, we consider a one-dimensional do-
main (z-direction) of a polymer melt, initially maintained at a
uniform temperature of T = Tm. If the left-hand boundary of the
polymer melt is changed to a temperature Tl such that Tl < Tm, the
polymer melt cools and undergoes crystallisation, a phase change
from the melt to a solid phase. The spatial homogeneity of crys-
tallisation process depends upon the particular material under
consideration, but the extent of crystallisation increases with time
as long as the temperature of the left boundary is maintained at
a lower temperature relative to the equilibrium melting tempera-
ture. The objective of the present work is to investigate the heat
transfer processes in the material during the phase change, and
thus to analytically determine the temperature and crystallinity
profiles in the material.

2.1 Mathematical formulation
The evolution of temperature is one directional in the material
undergoing crystallisation, T (z, t) and is given by the solution of
the unsteady heat equation,

∂T
∂ t

=
k

ρC
∂ 2T
∂ z2 +

L
C

∂φ

∂ t
+Q, (1)

where k is the thermal conductivity, ρ is the density and C is the
specific heat capacity of the material. The latent heat of crystalli-
sation is denoted by L, the rate of crystallisation by ∂φ

∂ t and the
direct heat exchange of the material with the surroundings is ac-
counted by Q. Here, the local volume fraction of the crystal phase,
which is a function of space and time, is denoted by φ(z, t). Hence,
eqn. 1 describes that the temperature T (z, t) is determined by the
conductive heat flux, the latent heat released during the crystalli-
sation process and any other loss/gain from the surroundings. In
our analysis, without loss of generality, we consider (i) Q = 0 and
(ii) the melt and the solid phases have the same physical (ther-
mal) properties, namely thermal diffusivity, k/(ρC) and specific
heat capacity, C.

As the polymer melt cools down crystals nucleate and grow lo-
cally in the thermal field. The specific mechanism of nucleation
and growth may depend upon several aspects of the system, such
as the presence of nucleating agents, characteristics of the ther-
mal field imposed, etc. In our modeling we adopt the simplest
possible scenario relevant to real systems. To make clear the sim-
plifications adopted in specifying a kinetic equation for the local
crystallization kinetics, a brief recap of Avrami’s law is presented
in appendix A.1.

In one dimension, assuming instantaneous nucleation, the
Avrami crystallization kinetics may be written as (see eqns. 55
and 58 in appendix A.1)

dφ

dt
=

{
R(1−φ)

(
1− T

Tm

)
, T ≤ Tm

0, T > Tm,
(2)

where R is a constant of proportionality that describes the rate of
crystallisation and Tm is a well-defined melting point for the mate-
rial. Therefore, crystallisation occurs at any temperature T < Tm,
allowing the material to undercool. Also the form of the above ex-
pression indicates that the material is allowed to have a maximum
crystallinity of 1 consistent with the definition of φ . Eqn. 2 incor-
porates the important features of crystallisation kinetics, i.e, the
rate of crystallisation increases with an increase in undercooling
(the difference in temperature with respect to Tm) and decreases
with an increase in the degree of crystallinity. Both these driving
forces appear as linear dependences in eqn. 2.

Hence, the temperature profile dictates the crystallisation ki-
netics in the material while the latent heat released during the
crystallisation and the imposed boundary conditions dictate the
temperature profile in the material. In other words, in the prob-
lem discussed in Fig. 1, a continuous heat flux from the crystallis-
ing front to the left hand boundary of the domain prevails. As a
result, the crystallising front advances to the right, thus making
the whole process unsteady. The coupled evolution of tempera-
ture and crystallinity in the material is given by a simultaneous
solution of the governing equations: eqn. 1 and eqn. 2.

We define δ (t) to be the boundary position where T departs
from Tm and crystallinity begins to develop. Thus, the phase
boundary δ (t) to be determined as part of the solution using the
condition

T (z = δ (t), t) = Tm. (3)
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If the melt is made up of small molecules which exhibit a sharp
melting point, the problem described above reduces to the clas-
sical Stefan problem8. In this case, an analytical solution is well
known: the temperature exhibits a self similar profile while the
crystallinity profile has a step change at the crystal-melt boundary.
On the other hand, the problem of a crystallising polymer melt is
less well-explored. In our earlier study, we solved eqn. 1 and
eqn. 2 numerically. Our simulations established that the polymer
crystallisation problem closely follows the Stefan solution if the
imposed driving force, namely the temperature difference Tm−Tl

is relatively small. Hence we investigate the polymer crystallisa-
tion problem further and seek an analytical solution in the limit
of small driving force, Tm − Tl . As illustrated below, this prob-
lem exhibits rich phenomenology with a boundary layer structure
that allows us to determine an analytical solution to the ‘Polymer
Stefan problem’ in a perturbative fashion. We obtain analytical
expressions for the spatio-temporal dependence of both temper-
ature and crystallinity as well as the rate of advancement of the
crystallising front. Analysis of the latter quantity also validates
the Lovinger–Gryte conjecture that the crystal growth velocity is
directly proportional to the extent of undercooling.

2.2 Non-dimensionalisation

To make the problem analytically tractable we introduce the fol-
lowing non-dimensional variables: T̃ = Tm−T

Tm−Tl
and φ̃ = φ . Thus,

the rescaled temperature, T̃ = 0 in the melt phase and T̃ = 1 at
the left boundary. The characteristic time scale is based on the
rate of crystallisation: t̃ = (Rt) Tm−Tl

Tm
. Similarly, all lengths can

be non-dimensionalised as z̃ = z
d where d =

√
k

RρC Tm−Tl
Tm

, a char-

acteristic length set by the thermal diffusivity, k/(ρC) based on
the characteristic time scale of crystallisation. Using these non-
dimensionalisations, eqns. 1 and 2 reduce to

∂ T̃
∂ t̃

=
∂ 2T̃
∂ z̃2 −

1
ε

∂ φ̃

∂ t̃
, (4)

and
dφ̃

dt̃
=

{
(1− φ̃)T̃ , T̃ ≥ 0
0, T̃ < 0,

(5)

respectively. A single non-dimensional number, ε =
(Tm−Tl)
(L/C)

, the
ratio of the imposed driving force for crystallisation, Tm− Tl , to
the temperature scale set by the latent and specific heat capacity
of the material, L/C, arises in the formulation and hence this pa-
rameter alone controls the dynamic evolution of temperature and
crystallisation in the melt.

If ε were large then eqn. 4 becomes the simple heat conduction
equation, which can be solved independent of the crystallization
profile; the evolution of crystal fraction then can be obtained from
the resulting z and t dependent temperature profile. For typical
values of Tm−Tl ≈ 10K, and L and C values for polymers yields
a ε ≈ 0.1-0.2. Of course large ε values can be obtained for large
Tm− Tl but in these regimes, far below the melting point, other
phenomena such as the role of the glass transition on crystalliza-
tion kinetics takes over. This is not of our interest and thus we
focus on situations where ε →0. In the rest of the text, we drop

the tilde sign ˜ of non-dimensional variables for the simplicity in
notation.

3 Boundary layer crystallisation model

3.1 Asymptotic solution

Having recognized that ε is the only non-dimensional parameter
that controls the crystallisation process, we seek an approximate
analytical solution of eqns. 4-5 in the limit of ε << 1. This limit
corresponds to a weak driving force for heat transfer. Assuming a
regular perturbation expansion for temperature and crystallinity
in the crystallising region of the polymer (z < δ (t)), we assume

T (z, t)∼T0(z, t)+ εT1(z, t)+O(ε2), (6)

φ(z, t)∼Φ0(z, t)+ εΦ1(z, t)+O(ε2). (7)

Substituting in eqns. 4-5 and collecting terms in the order of hi-
erarchy, at O(ε0),

0 =
∂

∂ t
Φ0, (8)

∂

∂ t
Φ0 =(1−Φ0)T0, (9)

which suggests Φ0(z, t) = 1 as a possible solution but that cannot
satisfy the auxiliary condition on Φ, namely Φ→ 0 at z = δ (t). It
also leaves the temperature profile T0 undetermined. Similarly,
it could also yields T0=0 at which point Φ0(z, t) = 0 (i.e., since
the crystallisation with take an infinite amount of time). So, this
solution captures the two bulk phases without proper modeling
the regions where the temperature and crystallanity vary.

3.2 Boundary layer approximation

The solution (Φ0,T0) discussed above arises because the naive
regular perturbation expansion resulted in the disappearance of
all derivatives of temperature in eqn. 8 at O(ε0). The disap-
pearance of the highest order derivative of temperature in the
governing equation and hence the solutions failing to satisfy all
boundary conditions is the classical signature of the boundary
layer structure of the problem. Physically, we expect crystallisa-
tion near the solid-melt boundary (z = δ (t)) to release sufficient
heat that the conductive heat transfer (highest order derivative
in eqn. 4) in the vicinity of the phase boundary cannot be ne-
glected. Moreover in this region, crystallinity can be expected to
show a large change from φ = 0 corresponding to that in the melt
to a finite and large φ corresponding to crystals in the solid re-
gion. Numerical simulations reported in our earlier work7 are in
accordance with these expectations.

Therefore, we propose a boundary layer solution to this prob-
lem. To this point, a composite solution needs to be calculated,
wherein, to the left of the moving phase boundary δ (t), there
exists a boundary layer, a thin region where crystallinity is low
compared to the rest of the solid region (“inner" layer). Outside
this boundary layer where crystallinity is comparatively higher is
termed as the “outer" layer. Governing equations are to be sepa-
rately solved in the inner and outer layer while ensuring appro-
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priate continuity in the solutions in the two regions.

3.2.1 Solution in the outer layer

We assume the following asymptotic expansions for temperature
and crystallinity in terms of the variable ε,

T o(z, t)∼ T o
0 (z, t)+ ε

aT o
1 (z, t)+O(ε2a) (10)

φ
o(z, t)∼ φ

o
0 (z, t)+ ε

b
φ

o
1 (z, t)+O(ε2b). (11)

where the superscript ‘o’ refers to the outer solution, and the sub-
scripts refer to increasing orders in the expansion. The unknown
exponents a and b need to be determined. Substituting in eqns. 4-
5 and collecting terms in the order of hierarchy, at O(ε0),

0 =
∂

∂ t
φ

o
0 , (12)

∂

∂ t
φ

o
0 = (1−φ

o
0 )T

o
0 . (13)

Thus we obtain φ o
0 (z, t) = 1 in the outer layer. Again, at this order,

T o
0 is undetermined but it can be calculated by considering terms

in the next order in hierarchy. Using b = 1 (the value of a does
not need to be defined for this analysis) we find that, at O(ε1),

∂

∂ t
T o

0 =
∂ 2

∂ z2 T o
0 −

∂

∂ t
φ

o
1 , (14)

∂

∂ t
φ

o
1 = −φ

o
1 T o

0 . (15)

It turns out that φ o(z, t) = 1 is unequivocally satisfied in the outer
layer even at O(ε1). This is justified in the analysis done in the
next section 3.2.2 where it is shown that the φ o→ 1 is acceptable
condition in the matching region between the outer and the inner
layer (i.e, the boundary condition on the right hand edge of the
outer layer). In other words, φ o

1 = 0 and there are no corrections
at O(ε1) to the crystallinity profile, φ 0

0 = 1 in the outer layer. Then
the resulting equation for T o

0 (z, t) in the outer layer is the standard
heat equation, which exhibits a similarity solution

T o
0 (z, t) = 1−α erf

(
z

2
√

t

)
. (16)

This temperature profile satisfies the boundary condition T o
0 (z =

0, t) = 1 on the left hand side of the domain. The constant α has
to be determined by matching the temperature profile with the
solution in the inner layer. It may be noted that at long times,
t >> 1, a pseudo steady solution can be written down instead of
eqn. 16. This can be easily seen by analyzing eqn. 14. At long
times, when ∂

∂ t T o
0 ∼

1
t << 1, we have, ∂ 2

∂ z2 T o
0 = 0 and temperature

becomes a linear function of z. This is an important new insight
that we shall use below.

3.2.2 Solution in the boundary layer

To appropriately non-dimensionalise variables we define a bound-
ary layer coordinate

s =
δ (t)− z

εc ; c > 0. (17)

The value of c will be discussed below. Note that the boundary
layer exists to the left of the solid-melt phase boundary δ (t) and
hence s > 0. Then the governing equations can be transformed to
the boundary layer coordinate s (see appendix A.2).

Assuming asymptotic expansions of the following form for tem-
perature and crystallinity in the boundary layer,

T i(s, t) ∼ T i
0(s, t)+ ε

dT i
1(s, t)+o(εd) ; d > 0,

φ
i(s, t) ∼ φ

i
0(s, t)+ ε

e
φ

i
1(s, t)+o(εe) ; e > 0.

Substituting in the governing equations (eqns. 64-65 in the ap-
pendix) and collecting terms at the order of hierarchy, we obtain
at O(ε0)

0 =
∂ 2T i

0(s, t)
∂ s2 −

∂φ i
0(s, t)
∂ t

, (18)

∂φ i
0(s, t)
∂ t

= (1−φ
i
0)T

i
0 . (19)

In eqn. 18, the dominant balance between the conductive heat
flux and the heat released via latent heat of crystallisation is
achieved by (i) selecting c = 1

2 in eqn. 17 and (ii) assuming the
pseudo-steady state limit for temperature, t >> 1. The latter as-
sumption amounts to restricting the analysis to long times when
dδ/dt <<

√
ε. Substituting eqn. 19 in eqn. 18 and eliminating

T i
0(s, t) we obtain

∂ 2

∂ s2 ln(1−φ
i
0)+φ

i
0 = f (s) , (20)

where f (s) is a function of s but independent of time (consis-
tent with the asymptotic, psuedo-steady state approximation
utilized). This equation is second order in s and it accounts for
the inhomogeneous temperature field in the boundary layer. We
can treat this equation as an ODE, with the understanding that
integration constants may actually be slowly varying functions of
time.

Crystallinity profile: The differential equation for the crystallinity
profile may have many possible solutions but we focus on the
simplest case where f (s) = 0 and examine two limiting cases:

1. When φ i
0→ 0 we can approximate eqn. 20 as

− ∂ 2

∂ s2 φ
i
0 +φ

i
0 ' 0. (21)

The solution of this ordinary differential equation valid for
crystallinity very close to the phase boundaryis obtained as

φ
i
0 ' sinhs, (22)

where the boundary condition φ i
0(0) = 0 is imposed. In other

words grows as a hyperbolic sin function. This form also
indicates that ∂φ

∂ s

∣∣∣
s=0

is positive. Specifying this value is

equivalent to specifying the heterogeneous nucleation rate
for crystallisation at s = 0.
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2. When φ i
0→ 1 we can approximate eq. 20 as

∂ 2

∂ s2 ln(1−φ
i
0)'−1, (23)

which has the solution

ln
(

1−φ
i
0

)
'− s2

2
+Cs+D, (24)

where C and D are to be determined from the boundary con-
ditions. Clearly, the above solution automatically satisfies
lims→∞ φ i

0 = 1 irrespective of the values of C and D. Forc-
ing the solution to satisfy the boundary conditions on the
right hand side of the boundary layer, (i) φ i

0(0) = 0 and (ii)
∂φ

∂ s

∣∣∣
s=0

> 0 we obtain C =− ∂φ

∂ s

∣∣∣
s=0

and D = 0 and hence,

φ
i
0 ' 1− e

− s2
2 −

∂φ

∂ s

∣∣∣
s=0

s
. (25)

Since the term in the exponent can be converted to a perfect
square (see below), the crystallinity profile in the boundary layer
is Gaussian in s but approximates to a hyperbolic sin behaviour
as the solid - melt phase boundary is approached. However it
is interesting to note that, though derived for the special case of
φ i

0 → 1, eqn. 25 satisfies the boundary conditions at both s = 0
and s = 1, thus posing as an approximate solution for φ i

0 in the
entire boundary layer. Therefore we take eqn. 25 to represent
the crystallinity profile in the entire boundary layer and proceed
with determining the temperature profile. Later on we will show
that this approach of using eqn. 25 is not a limitation to the main
conclusions derived in this work (see section 3.4).

Another point to be noted is that φ i
0 → 1 is automatically

satisfied at the left edge of the boundary layer, s→ ∞. It justifies
our earlier presumption in section 3.2.1 that corrections to
φ o

0 (x, t) = 1 in the outer region are identically zero.

Temperature profile: To calculate the temperature profile in the
boundary layer, we substitute eqn. 19 and eqn. 25 in eqn. 18,

∂ 2T i
0(s, t)

∂ s2 − e
− s2

2 −
∂φ

∂ s

∣∣∣
s=0

s
T i

0 = 0. (26)

This equation explicitly expresses the dominant thermal physics
in the boundary layer: latent heat generated by crystallization
(second term on the left) is conducted out of the boundary layer
into the outer region (first term on the left). It is immediately
clear from the former term that all the latent heat is released
within the boundary layer for s on the order 101 where the cur-
vature in the temperature profile (associated with conduction) is
non-zero. The equation makes clear the the temperature profile
becomes linear in the far field of the boundary layer. To obtain a
simple analytical expression for T i

0 we rewrite eqn. 26 as

d2T i
0

ds2 = Ω

√
π

2
erfc

(
B√
2

)
δ

(
s− 1

Ω

)
T i

0 , (27)

where Ω = e
1
2 B2

, B = ∂φ

∂ s

∣∣∣
s=0

and δ is the Dirac delta function

(see appendix A.3.1 for details). This transformation involves re-

placing the Gaussian-like thermal forcing function spread over
s of order unity, that represents the latent heat released during
crystallisation,with an equivalent Dirac delta function applied at a
mean location 1

Ω
. The Dirac delta function has the same strength

as the original distribution which is ensured from the equality,

Ω
∫

∞

B e−
p2
2 d p = Ω

√
π

2 erfc B√
2
.

Hence, for 0 < s < 1
Ω

and 1
Ω
< s < ∞ the temperature has two

separate but individually linear variations in the boundary layer.
The resulting piecewise continuous temperature profile is

T i
0(s, t) = E

[
s+

√
π

2
erfc

(
B√
2

)(
s− 1

Ω

)
H

(
s− 1

Ω

)]
, (28)

where E = ∂T
∂ s

∣∣∣
s=0

and H is the Heaviside step function. The

boundary conditions T i
0(0, t) = 0 and ∂T

∂ s

∣∣∣
s=0

> 0 have been

applied in obtaining this expression. This transformation make
solution of the boundary layer temperature profile very straight-
forward. It should be emphasized that the important thermal
features (far-field temperature profile in the boundary layer, the
behavior of the temperature at the location of the pulse) are
insensitive to the details of the equivalent pulse, provided the
magnitude of latent heat released is correct, and the pulse is
located at a value of s of order unity. The the behavior of the
temperature at the location of the pulse leads to a confirmation
of the Gryte-Lovinger ansatz. It is interesting to note that the
linear variation near the left edge of the boundary layer can
be anticipated from eqn. 26. In other words, in the limit of
(s→ ∞) eqn. 26 has the form ∂ 2T (s,t)

∂ s2 ' 0 which predicts a linear
variation of temperature T with the boundary layer coordinate s.
This functional form of temperature ensures the smooth match-
ing of the temperature profile in the outer and the boundary layer.

3.2.3 Matching the outer and the inner layer solutions

In earlier sections, we obtained the analytical expressions describ-
ing the temperature and the crystallinity profiles in the outer
and the boundary layer separately. During this procedure, α in
eqn. 16 and E in eqn. 28 remain as undetermined constants.
Moreover, the location of the solid–melt boundary δ (t) is not cal-
culated yet. To evaluate these undetermined quantities we follow
Van Dyke procedure where the temperature profiles in the bound-
ary layer and the outer layer are matched9. As noted earlier the
crystallinity profiles inside the boundary layer and the outer layer
are already in agreement with each other.

Towards the matching procedure, we rewrite the outer solution
eqn. 16. in terms of the inner variable z = δ (t)−

√
εs. Exploiting

the smallness of the variable ε, eqn. 16 is expanded as a Taylor
series to obtain the temperature profile in the outer region as (see
appendix A.3.2 for details)

T o
0 (x, t)' 1−α

[
erf
(

δ (t)
2
√

t

)
− 1√

π
e
−
(

δ (t)
2
√

t

)2√
ε√
t

s

]
. (29)

Similarly, in the boundary layer we take the limit of s→ ∞ to
perform the matching procedure. Therefore, in this limit, and
when B << 1 we rewrite the boundary layer temperature profile
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(eqn. 28) as

T (s, t)' E
{[

1+
√

π

2

]
s−
√

π

2

}
. (30)

Matching the two solutions, and thus equating the coefficients of
terms of similar powers of s we obtain,

δ (t) = 2β
√

t, (31)

α =
1+E

√
π

2

erfβ
, (32)

where β is a constant yet to be determined.
The solid–melt phase boundary: With the above matching the
temperature profile in the outer region, in the asymptotic limit
of ε, may be written as

T o
0 '

1+E
√

π

2√
π

e−β 2

erfβ

√
ε√
t

s−E

√
π

2
.

This temperature profile in the outer region will match with the
inner solution only if the coefficient multiplying s is O(ε0). Hence
we may write β = γ

√
ε where γ is an O(100) numerical constant.

Thus we determine the location of the solid–melt boundary as

δ (t) = 2γ
√

εt. (33)

γ = 1√
2

can be taken to facilitate comparison with the Stefan
model (see section 3.3 ).
Complete set of solutions: Simplifying the matching conditions,
eqns. 31-32 we find that

E =
1

√
2t
(

1+
√

π

2

)
−
√

π

2

. (34)

This is a remarkably simple result since E = ∂T
∂ s

∣∣∣
s=0

which in-

dicates that the temperature gradient at the solid-melt region
(s = 0) decays algebraically with time.

Then complete set of solutions in the outer and inner layer are

T o
0 (z, t) = 1− z

δ (t)
−

√
π

2
√

2t
(

1+
√

π

2

)
−
√

π

2

z
δ (t)

, (35)

φ
o
0 (z, t) = 1, (36)

T i
0(s, t)'

1
√

2t
(

1+
√

π

2

)
−
√

π

2

[
s+

√
π

2
(s−1) H (s−1)

]
,

(37)

φ
i
0(s, t)' 1− e

− s2
2 −

∂φ

∂ s

∣∣∣
s=0

s
. (38)

Note that only a pseudo-steady form for temperature in the outer
layer, T o

0 (z, t), of eqn. 16, arises naturally in the solution since

transient terms involving δ ′(t) =
√

ε

2t are neglected in formulat-
ing boundary layer equations. In other words, the presumption
of δ ′(t) <<

√
ε or equivalently,

√
2t >> 1 is built into the calcu-

lations. This is a requirement for a psuedo steady solution for
T o

0 (z, t) appearing above. Similarly, although T shows a non-
trivial variation in both the outer and inner regions, the evolution
of φ occurs completely within the boundary layer. This evolu-
tion is assumed to be completely described by the last equation,
for φ i

0(s, t).

3.2.4 Composite Solution

Considering that the solutions in each region are completely de-
rived, a composite solution can be constructed as follows. The
temperature profile T follows from

T comp = T o
0 +T i

0− lim
s→∞

T i
0 . (39)

Replacing s in terms x using its definition and simplifying for the
inner and outer temperature profiles we obtain the composite so-
lution for temperature as

T comp = 1− z̄−

√
π

2
√

2t
(

1+
√

π

2

)
−
√

π

2

(
z̄−
(√

2t (1− z̄)−1
)

[
H
(√

2t (1− z̄)−1
)
−1
])

, (40)

where z̄ = z
δ (t) . Similarly, the composite solution for φ may be

written by combining eqns. 36 and 38 as

φ
comp = 1− e−t(1−z̄)−B

√
2t(1−z̄). (41)

This composite solution is strictly valid only under the psuedo
steady state limit, i.e, when 1√

2t
<< 1. Similarly, for matching

purposes we have assumed that the crystallinity profile near the
phase boundary, ∂φ

∂ s

∣∣∣
s=0

is small. These approximations have

been advantageous as they helped to perform the analytical op-
erations and to obtain the above discussed solution. We demon-
strate the validity of our solution (i) by reducing it to the Ste-
fan model in the appropriate limit and (ii) then validating the
Lovinger–Gryte hypothesis, as described in the next two sections.

3.3 Comparison with Stefan’s Model

As described in section 2.1, the Stefan model of a moving phase
boundary for simple molecules in one dimension is a classical re-
sult in heat transfer. In this case, there exists a sharp boundary
between the solid and the melt phases and the crystallinity profile
reduces to a step function. The heat released during the crystalli-
sation is transferred to the solid layer via conduction giving rise
to the well known boundary condition,

k
∂

∂ z
T
∣∣∣∣
z=∆(t)

= ρL̂φm
d
dt

∆. (42)

The above expression contains dimensional variables. L̂ is the
latent heat of crystallisation, φm is the extent of crystallinity in
the solid phase which is a constant and ∆ is the location of the
solid–melt phase boundary.
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Stefan’s solution8 is given by

T̄ =
Tm−T
Tm−To

= 1− erfη

erfγ
, (43)

where η = x
2
√

α̂t
is the similarity variable, α̂ is the thermal diffu-

sivity and λ = L̂φm

Ĉ(Tm−To)
is the non-dimensional parameter aris-

ing in the formulation. In the above, the constant γ needs
to be determined as a solution to the transcendental equation

λ = e−γ2
√

πγ erfγ
. The location of the phase boundary can be deter-

mined as ∆(t) = 2γ
√

αt.

We now note that the pseudo steady state limit exists when
t >> ∆2

α
, i.e, when λ >> 1 (see appendix A.4 for details). Under

these conditions the equation defining γ simplifies to give γ << 1

so that eγ2 ' 1 and erfγ ' 2√
π

γ leading to γ '
√

ε

2 . Analogously,
the similarity variable evaluated at the phase boundary can be

approximated as z
2
√

αt
'
√

ε

2 . Therefore, we obtain the simplified
form of Stefan’s similarity solution from eqn. 43 as

T̄ = 1− z
∆(t)

. (44)

Scaling the numerator and the denominator of the second term
by the length scale d, we obtain T̄ = 1− z̄

δ (t) which indicates that
the pseudo steady solution for temperature in the Stefan model
is identical to the leading order approximation in the bound-
ary layer crystallisation model discussed in the previous sections
(eqns. 35 and 37 in the limit of t >> 1 and λ >> 1 both reduce
to eqn. 44). It only remains to show that the Stefan model solu-
tion for ∆(t) when λ >> 1 (psuedo steady limit) matches that at
leading order from the crystallisation boundary layer model in the
same limit. This is easily achieved by noting that when λ >> 1,
the Stefan model gives, ∆(t)'

√
2εαt and therefore, ∆

d = δ '
√

2ε t̄
which exactly matches the result from the boundary layer crys-
tallisation model (eqn. 33 with γ = 1√

(2)
).

3.4 Lovinger–Gryte hypothesis

In the boundary layer crystallisation model, the solution for the
temperature profile is obtained as a piece-wise continuous func-
tion, determined by localizing the thermal "forcing" term as an
equivalent Dirac pulse. The temperature at the location of the
pulse, s = 1, where all the crystallisation effectively takes place
can be determined as

T i
0(s = 1, t)' δ ′(t)√

ε

1

1+
√

π

2

. (45)

In eqn. 45, we have replaced 1√
2t

by δ ′(t)√
ε

. As in previous sec-
tions the usual approximations, namely, (i) the pseudo steady
state limit,

√
2t >> 1 and (ii) B = ∂φ

∂ s

∣∣∣
s=0

is sufficiently small

are utilised in deriving eqn. 45 as well.

Note that larger values of T i
0(s= 1) indicate larger undercooling

(note that T is a scaled quantity). Therefore, eqn. 45 shows that
the effective undercooling for crystallisation scales with the front
speed δ ′(t). This is an important conclusion arising form our cal-
culations because this result is consistent with the Lovinger–Gryte

Fig. 2 Variation in the boundary layer thickness, w, plotted as a squared
quantity, with the small parameter ε used in the boundary layer analysis.
Symbols are data obtained from numerical simulations and the dashed
line is a linear fit. The boundary layer thickness is determined in the
simulations as the region where 0.001 < φ < 0.999.

.

hypothesis that the front speed sets the effective undercooling.
We now demonstrate that the same conclusion arises even if

we do not assume the localised thermal forcing model. Near the
phase boundary in the limit of φ << 1 and s << 1, we can obtain
the crystallinity from eqn. 25 and the temperature from eqn. 69
in the appendix as

φ ' B s (46)

T ' δ ′(t)
√

ε

(
1+
√

π

2

) [sinh
(

φ

B

)
−Bcosh

(
φ

B

)]
. (47)

The last expression demonstrates that very near the moving front,
a fixed value of φ corresponds to a fixed value of T

δ ′(t) . In other
words,

T ∼ δ
′(t) for fixed φ << 1 ; s << 1 ;

√
2t >> 1, (48)

again indicating that effective undercooling for crystallisation
scales with the front speed, namely Lovinger–Gryte hypothesis.

4 Comparison with numerical solution
In this section, we compare the analytical results obtained in
the previous sections with full numerical solutions. To numer-
ically solve eqns. 4-5, the technique of method of lines was
adopted. More details are reported in7. The system consid-
ered is same as that illustrated in Fig. 1. Thus, based on the
non-dimensionalisation introduced in section 2.2, the tempera-
ture varies from T = 1 at z = 0 to T = 0 at z = δ (t). Correspond-
ingly the crystallinity varies from φ = 1 at z= 0 to φ = 0 at z= δ (t).
Both temperature and crystallinity are zero in the melt region,
i.e., for z > δ (t).

A crucial assumption that led to the successful development of
the boundary layer analysis for the problem under consideration
is the choice of c = 1

2 in eqn. 17. This choice led to the proper
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(a) (b)

Fig. 3 Comparison of analytical results (solid lines) with numerical solutions (dashed lines) for (a) ε = 0.2, and (b) ε = 0.02. The blue lines show the
temperature, T , profiles whereas the red lines are the corresponding crystallinity, φ , profiles. The boundary between the outer and the inner region
(where crystallinity starts to fall down from 1) are marked by thick black dots on the temperature and crystallinity profiles. The insets show the
magnified view of temperature and the crystallinity profiles across the boundary layer. In the analytical calculations we use B = 0.001, γ = 1/

√
2, and

t = 2000.

rescaling of the boundary layer coordinates resulting a dominant
balance between conductive flux and the heat released during
crystallisation. Therefore, we firstly verify and show that this
choice is indeed correct and the boundary layer thickness varies
as square root of the small variable ε used in the analysis. Fig. 2
shows the results from numerical simulations where the width
of the boundary layer is plotted as a function of ε. The bound-
ary layer thickness w is estimated as that length of the solidified
region in which 0.001 < φ < 0.999. The square of w plotted as a
function of ε in Fig. 2 is a straight line indicating that w∼

√
ε, thus

validating the rescaling of the boundary layer coordinate adopted
in the analytical developments reported in the previous sections.

Next, we compare the temperature and crystallinity profiles cal-
culated from the analytical solution with the profiles obtained
from full numerical simulations. Fig. 3 shows this comparison
for two different values of ε. In these plots, solid lines corre-
spond to analytical solutions and the dashed lines correspond to
numerical solutions. The profiles in the entire domain (both in-
ner and outer regions) are shown in the plots, and the thick black
dots in the temperature and the crystallinity profiles demarcate
the inner and the outer region. The profiles in the boundary layer
region are magnified and shown in the two insets. The plots cor-
respond to the long time limit, i.e, t >> 1. We have also verified
that the analytical solutions given in this figure are independent
of the choice of B as long as B << 1. As expected, in both figures,
the non-dimensional temperature and the crystallinity vary from
unity at z = 0 to zero for z≥ δ (t).

The analytical solutions, especially for the crystallinity profile,
are not accurate in the boundary layer. Note that the exact solu-
tion of the driving differential equations are, of course, the ones
that yield the “exact" numerical solutions; hence the errors are
a consequence of the approximations made to facilitate the an-
alytical solution. However, the temperature at the point where
the Dirac pulse is introduced, i.e., the effective temperature in a
hypothetical system with a square well crystallinity profile, tracks

the exact answers (Fig. 4). Again, the agreement is qualitative,
but the important point is that the analytical solution provides a
means to understand the Lovinger-Gryte ansatz that the crystalli-
sation occurs at an effective velocity dependent isothermal proto-
col. Thus, our analytical solutions capture the essential physics of
these situations.

2 4 6 8
t 1e3

0.5

1.0

1.5

2.0

2.5

T
p

1e−2

ε=0.005

ε=0.020

Fig. 4 Temperature at the pulse position, Tp, versus time, t, from theory
(red solid line) and simulations (symbols) for two different values of ε

(listed in the legend). Note that Tp from theory is independent of ε.

Finally, we consider the Lovinger–Gryte hypothesis, the rela-
tionship between the velocity of the moving front and the cor-
responding temperature, by comparing the analytical and nu-
merical solutions. As explained in section 3.4, eqn. 48 predicts
that the temperature of the moving front increases with increase
in the growth velocity. The data obtained from the simulations
are shown in Fig. 5 which is in agreement with eqn. 48. More-
over, the data shown in Fig. 5 corresponds to simulations per-
formed at various values of ε. However, it can be seen that, on
renormalising the temperature of the moving front, the data col-
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Fig. 5 Dependence of temperature of the moving front (the solid-melt
phase boundary) on the growth velocity v. The symbols are data from
simulations for various values of ε, and hence temperature is scaled with
1/
√

ε. The black solid line passing through the origin is drawn for a visual
guidance to illustrate the linear dependency of temperature on velocity
of the moving front. The moving front is determined as the location at
which φ = 0.001 and the temperature and velocity at this point are used
in this plot. The data also corresponds to the long time limit (t > 1000).

lapses to a single curve, suggesting that the scaling relation is
T
√

ε ∼ δ
′
(t), again consistent with the predictions made in sec-

tion 3.4. Thus, the analytical predictions are in agreement with
the numerical solutions. It must be remembered that T refers
to the non-dimensional temperature Tm−T

Tm−Tl
. Hence an increase in

T in Fig. 5 corresponds to a decrease in the actual temperature,
i.e, the temperature of the crystallising front of a polymer melt
decreases with the growth velocity, which is the Lovinger–Gryte
hypothesis.

5 Conclusion
We develop a theoretical framework, and an associated approx-
imate boundary layer solution, for the Stefan problem modified
to model polymer crystallisation, which is not instantaneous, but
rather whose kinetics follow an Avrami-like form. The analytical
results are consistent with previous numerical work and with the
ansatz of Lovinger and Gryte who proposed that each zone an-
nealing speed corresponds to an effective isothermal crystallisa-
tion temperature. This result arises because the enthalpy of crys-
tallization, which is distributed over the whole zone undergoing
crystallization, appears to be concentrated into a point source in
the context of the equations determining the temperature profile.
In addition, the analytical calculation also predicts the previously
observed behavior of identical evolution of crystal growth-front
in the Stefan problem and an equivalent polymer crystallisation
problem in the limit of large latent heat capacity. This work also
illustrates the boundary layer approximation as a powerful tool
to solve coupled differential equations in asymptotic limits.

This work considers only the case of a stationary sink: the case
with a moving sink, which more closely models zone annealing
experiments, is not included and will be addressed in the follow-
ing paper.
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A Appendix

A.1 Derivation of Avrami crystallization kinetics

In this section, we recap the Avrami formulation10,11 for crys-
tallization kinetics to clarify our adaptation of it for the case of
crystallization in a thermal field. We derive the Avrami formula
for growing particles of dimension, d, and obtain a general equa-
tion for the rate of crystallization. The equation used in this study
corresponds to d = 1, and all the nuclei are born at once (hetero-
geneous nucleation).

Following a sudden uniform quench to a fixed undercooling,
crystallization happens via nucleation and crystal growth, which
in general occur simultaneously. If only a minor change in den-
sity occurs upon solidification, we can assume the total volume of
the system Vtot [=]Ld is constant. with d indicating the space di-
mensionality of the system. Let dN denotes the number of nuclei
spawned during a time interval dt ′ at time t ′. If the solid particles
grow linearly with time, then the size (characterized by a length)
of those nuclei at time t is g(t− t ′) where g is a constant. Then,
instantaneous rate of change of space occupied by solid material,
Vc, at a time t in a d dimensional space is

dN(t ′)m(d)
d
dt

(
g(t− t ′)

)d
= dN(t ′)m(d)gdd(t− t ′)d−1, (49)
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where m(d) is a dimensionless geometric constant depending on
the dimesionality (e.g. m(1) = 1, m(2) = 4π, m(3) = 4π/3 for
centro-symmetric particles). The total rate of change of Vc at
time t is the result of the current rate of growth of all particles
born from t = 0

dVc

dt
= d m(d)

∫ t

0
dt ′

dN(t ′)
dt ′

gd(t− t ′)d−1. (50)

The above eqn. does not account for particle impingement. A
simple (mean-field) correction is to multiply the rhs by the current
fraction of space unoccupied by solid:

1
1−φ

dVc

dt
= d m(d)

∫ t

0
dt ′

dN(t ′)
dt ′

gd(t− t ′)d−1. (51)

This relation leads to several well known forms of Avrami’s law
when taking appropriate assumptions for the nucleation process.
For example, heterogeneous nucleation might be modeled as

dN(t ′)
dt ′

= N0δ (t ′), (52)

where N0 is a constant. It leads to

1
1−φ

dVc

dt
= N0 d m(d) gdtd−1. (53)

For d = 3 one recovers a common form of Avrami’s law

φ = 1− e−
4π

3 g3 N0
Vtot

t3
, (54)

where Vc was eliminated by using φ = Vc
Vtot

. Importantly, re-
gardless of d, one recovers a differential equation for the case
of instantaneous, heterogeneous nucleation, even if the temper-
ature is allowed to vary (note g is temperature dependent). This
points to simple, tractible modeling via partial differential equa-
tions for the case of solidification in a thermal field. We adopt the
presumption of instantaneous heterogeneous nucleation in what
follows. By contrast for homogeneous nucleation one only recov-
ers a differential equation if g is treated as constant, otherwise
an integro-differential equation results, where a memory integral
keeping track of g(t ′) through the temperature history is needed.

The crystallization kinetic equation is even simpler for d = 1,

1
1−φ

dφ

dt
= g

N0

Vtot
, (55)

which is a reasonable presumption for systems where the crystal-
lizing particles grow along one spacial direction, which is the case
for crystallization in a zone refining process4,6. Note, if one takes
the limit t→ 0+, for the last equation, inherent is the condition

dφ

dt

∣∣∣∣
t=0

= g
N0

Vtot
> 0 (56)

which justifies the boundary condition we take on the fraction
crystallized (see equation (22) and the ensuing discussion in the
text).

Clearly, for heterogeneous nucleation and 1-d solid particle
growth, the above equation applies locally, justifying a direct
adaptation to the case of an inhomogeneous, time dependent

thermal field. In particular, for the case of a thermal field we
make the replacements

dφ

dt
→ ∂φ

∂ t
, (57)

g
N0

Vtot
= F(T )→ R

Tm−T
Tm

(58)

where eqn. 58 implies weak undercooling.

A.2 Transformation of the governing equations to the
boundary layer coordinate s

To write the differential eqns. 4-5 in term of the boundary layer
coordinate s,

d f (x, t) =
(

∂ f
∂ t

)
x

dt +
(

∂ f
∂x

)
t
dx =

(
∂g
∂ t

)
s
dt +

(
∂g
∂ s

)
t
ds = dg(s, t),

d f
dt

∣∣∣∣
x
=

(
∂ f
∂ t

)
x
=

(
∂g
∂ t

)
s
+

(
∂g
∂ s

)
t

ds
dt

∣∣∣∣
x
. (59)

Then, it follows(
∂T (x, t)

∂ t

)
x

=

(
∂T (s, t)

∂ t

)
s
+

1
εc

(
∂T (s, t)

∂ s

)
t
δ
′(t), (60)

∂

∂ t
φ(x, t) =

(
∂φ(s, t)

∂ t

)
s
+

1
εc

(
∂φ(s, t)

∂ s

)
t
δ
′(t). (61)

Also
d f
dx

∣∣∣∣
t
=

(
∂ f
∂x

)
t
=

(
∂g
∂ s

)
t

ds
dx

∣∣∣∣
t
,

so that (
∂T (x, t)

∂x

)
t
=− 1

εc

(
∂T (s, t)

∂ s

)
t
, (62)

and (
∂ 2T (x, t)

∂x2

)
t
=

1
ε2c

(
∂ 2T (s, t)

∂ s2

)
t
. (63)

Using eqns. 60-63 in eqns. 4-5, the governing equations in the
boundary layer become

ε
1+c ∂T (s, t)

∂ t
+εδ

′(t)
∂T (s, t)

∂ s
= ε

1−c ∂ 2T (s, t)
∂ s2 −ε

c ∂φ(s, t)
∂ t

−δ
′(t)

∂φ(s, t)
∂ s

,

(64)
and

ε
c ∂φ(s, t)

∂ t
+δ
′(t)

∂φ(s, t)
∂ s

= ε
c(1−φ)T. (65)

A.3 Temperature profile in the boundary layer

A.3.1 Introduction of a Dirac pulse in the governing differ-
ential equation

The heat equation in the boundary layer in the first approximation
(eqn. 26 in the main text) is

∂ 2T (s, t)
∂ s2 − e

− s2
2 −

∂φ

∂ s

∣∣∣
s=0

s
T = 0, (66)

where we have again dropped super and subscripts.

We treat the boundary layer equation for T like an ode with
the understanding that integration constants may be (slowly
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varying) functions of time. First note that the combination
− s2

2 −
∂φ

∂ s

∣∣∣
s=0

s =− s2

2 −Bs appears in the differential equation for

T , which can be rewritten as −( s√
2
+
√

2
2 B)2 + 1

2 B2 so that

e
− s2

2 −
∂φ

∂ s

∣∣∣
s=0

s
= exp−( s√

2
+

√
2

2
B)2 exp

1
2

B2 ; B =
∂φ

∂ s

∣∣∣∣
s=0

.

Putting
p = s+B

leads to
∂ 2T
∂ p2 −Ω e−

p2
2 T = 0; (67)

Ω = e
1
2 B2

,B =
∂φ

∂ s
|s=0

subject to

T (p = B, t) = 0 , B =
∂φ

∂ s

∣∣∣∣
s=0

,

and an additional boundary condition. The behavior for small
s = ε << 1 (⇒ p = B+ε ; ε << 1) resembles that for φ = ε << 1
discussed above in that the governing equation for T is the same
as that for φ , ∂ 2T

∂ p2 ' T , giving

T 'C sinh(B+ s)+Dcosh(B+ s) , (68)

where B= ∂φ

∂ s

∣∣∣
s=0

, C and D are integration "constants" (actually

they depend on t). Applying T (s = 0, t) = 0⇒ T (p = B, t) = 0
eventually gives

T ' E [coshBsinh(B+ s)− sinhBcosh(B+ s)] , (69)

where B = ∂φ

∂ s

∣∣∣
s=0

, and E = ∂T
∂ s

∣∣∣
s=0

. Notice that if one insists

T (0, t) = 0 then ∂T
∂ s

∣∣∣
s=0

> 0 in order to have a nontrivial solution.

These considerations encourage the second auxiliary condition be
∂T
∂ s

∣∣∣
s=0

> 0.

This equation governing T in the boundary layer is difficult to
solve, even asymptotically. A simple approach is to replace the

"pulse" Ω e−
p2
2 by an equivalent Dirac applied at the mean value

of p under the pulse. The equivalent Dirac magnitude is

Ω

∫
∞

B
e−

p2
2 d p = Ω

√
π

2
erfc

B√
2

; B =
∂φ

∂ s

∣∣∣∣
s=0

,

and the Dirac should be applied at

p0 =B+
∫

∞

B
pe−

p2
2 d p=B+e−

1
2 B2

=B+
1
Ω

; Ω= e
1
2 B2

; B=
∂φ

∂ s

∣∣∣∣
s=0

.

So an equivalent Dirac pulse is

Ω e−
p2
2 → Ω

√
π

2
erfc

B√
2

δ (p− p0) ;

Ω = e
1
2 B2

, B =
∂φ

∂ s

∣∣∣∣
s=0

, and p0 = B+
1
Ω
.

Consequently we replace the original system (eqn. 67) by

d2T
d p2 = Ω

√
π

2
erfc

(
B√
2

)
δ (p− p0) T, (70)

from which eqn. 27 in the main text readily follows.

A.3.2 Temperature and crystallinity profiles

For B < p < B+ 1
Ω

and B+ 1
Ω
< p < ∞ , T increases linearly and

the resulting profile is piecewise continuous. So, from eqn. 70,

T (s, t) = E
[

s+

√
π

2
erfc

B√
2

(
s− 1

Ω

)
H
(

s− 1
Ω

)]
, (71)

where Ω = e
1
2 B2

; B = ∂φ

∂ s

∣∣∣
s=0

; E = ∂T
∂ s

∣∣∣
s=0

.

For the purpose of matching we need

(72)

lim
s→∞

T (s, t) ∼ E
[

1 +

√
π

2
erfc

B√
2

]
s− 1

Ω
E

√
π

2
erfc

B√
2

∼ ∂T
∂ s

∣∣∣∣
s=0

{[
1 +

√
π

2
erfc

1√
2

∂φ

∂ s

∣∣∣∣
s=0

]
s

− 1
Ω

√
π

2
erfc

1√
2

∂φ

∂ s

∣∣∣∣
s=0

}
.

Evidently taking B→ 0 is benign to the temperature’s behavior
in the boundary layer in which case

lim
s→∞

T (s, t)∼ ∂T
∂ s

∣∣∣∣
s=0

{[
1+
√

π

2

]
s−
√

π

2

}
; B =

∂φ

∂ s

∣∣∣∣
s=0

<< 1.

(73)

Hereafter we adopted the approximation

erfc
1√
2

B = erfc
1√
2

∂φ

∂ s

∣∣∣∣
s=0
' 1

for clarity in what follows, with the understanding that they can
easily be relaxed, and proceed to match with the outer solution
T o

0 (x, t) = 1−α erf
(

x
2
√

t

)
. Using Van Dyke matching9 we rewrite

the outer solution in terms of the inner variable s = δ (t)−x√
ε
⇒ x =

δ (t)−
√

ε s. Then,

T o
0 (x, t) = 1−α erf

(
x

2
√

t

)
= 1−α erf

(
δ (t)
2
√

t
−
√

εs
2
√

t

)

' 1−α

[
erf
(

δ (t)
2
√

t

)
− 1√

π
e
−
(

δ (t)
2
√

t

)2√
ε√
t

s

]
. (74)

In the asymptotic limit, the second term in the argument of erf
can be considered small, so a Taylor expansion was used to get
the last equation. In order to match to the boundary layer solution
of eqn. 73 we must have

1−α erf
(

δ (t)
2
√

t

)
=− ∂T

∂ s

∣∣∣∣
s=0

√
π

2

=⇒ α erf
(

δ (t)
2
√

t

)
= 1+

∂T
∂ s

∣∣∣∣
s=0

√
π

2
, (75)
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which demands

δ (t) = 2β
√

t ; β constant, (76)

α =
1+ ∂T

∂ s

∣∣∣
s=0

√
π

2

erfβ
. (77)

Then the outer expansion in the asymptotic limit is

T o
0 '

1+ ∂T
∂ s

∣∣∣
s=0

√
π

2
√

π

e−β 2

erfβ

√
ε√
t

s− ∂T
∂ s

∣∣∣∣
s=0

√
π

2
. (78)

In order to match this with the inner solution the coefficient mul-
tiplying s should be O(ε0). Taking β = γ

√
ε , where γ ∼O(100)

is a numerical constant, accomplishes this, and leads to

T o
0 '

1+ ∂T
∂ s

∣∣∣
s=0

√
π

2

2γ
√

t
s− ∂T

∂ s

∣∣∣∣
s=0

√
π

2
(79)

in the asymptotic limit. This pins down the (scaled) liquid/solid
boundary position

δ (t) = 2γ
√

εt. (80)

Matching then demands

∂T
∂ s

∣∣∣∣
s=0

[
1+
√

π

2

]
=

1+ ∂T
∂ s

∣∣∣
s=0

√
π

2

2γ
√

t
, (81)

which gives
∂T
∂ s
|s=0=

1
√

2t
(

1+
√

π

2

)
−
√

π

2

, (82)

a remarkably simple result, which indicates that the temperature
gradient at s = 0 decays algebraically. The constant γ ∼ O(100)

was assigned as γ = 1√
2

to facilitate comparison with the Stefan
model.

In summary, as a result of matching at leading order, we find

T o
0 (x, t) = 1− x

δ (t)
− ∂T

∂ s

∣∣∣∣
s=0

√
π

2
x

δ (t)

= 1− x
δ (t)
−

√
π

2
√

2t
(

1+
√

π

2

)
−
√

π

2

x
δ (t)

, (83)

φ
o
0 (x, t) = 1, (84)

and

T i
0(s, t)'

∂T
∂ s

∣∣∣∣
s=0

[
s+

√
π

2
(s−1) H (s−1)

]

' 1
√

2t
(

1+
√

π

2

)
−
√

π

2

[
s+

√
π

2
(s−1) H (s−1)

]
,

(85)

φ
i
0(s, t)' 1− e−

s2
2 −Bs, (86)

where we have presumed that B = ∂φ

∂ s

∣∣∣
s=0

is sufficiently small

that
coshB' 1 ; erfc

1√
2

B' 1 ; Ω = e
1
2 B2
' 1.

Note that the last equation, for φ i
0(s, t) demands the term in-

volving B (no matter how small) to provide a good description
for the true behavior of φ(s, t) at leading order in the boundary
layer for small s. Note also that a psuedo-steady form for T o

0 (x, t)

arises naturally since transient terms ∼ δ ′(t) =
√

ε

2t were ne-
glected in formulating boundary layer equations. In other words,

the presumption
√

ε

2t <<
√

ε ⇒
√

2t >> 1 is built into the cal-
culation, and this is the requirement for a psuedo steady solution
for T o

0 (x, t).

A.4 Comparison with Stefan model

This section provides the details of the comparison presented in
section 3.3. The (dimensional) Stefan model is

∂

∂ t
T = α

∂ 2

∂x2 T for 0 < x < ∆(t); (87)

T (x, t = 0) = Tm for 0 < x < ∆(t),

T (x = 0, t) = T0 < Tm for t > 0; (88)

k
∂

∂x
T
∣∣∣∣
x=∆(t)

= ρL̂φm
d
dt

∆. (89)

Extra conditions willl lead to ∆(t) :

T (x = ∆(t), t) = Tm ; ∆(t = 0) = 0. (90)

Scaling the temperature as was done previously is convenient:

T̄ =
Tm−T
Tm−To

gives

∂

∂ t
T̄ = α

∂ 2

∂x2 T̄ for 0 < x < ∆(t); (91)

T̄ (x, t = 0) = 0 for 0 < x < ∆(t),

T̄ (x = 0, t) = 1 for t > 0; (92)

− ∂

∂x
T̄
∣∣∣∣
x=∆(t)

=
ρL̂φm

k (Tm−To)

d
dt

∆. (93)

The extra conditions are

T̄ (x = ∆(t), t) = 0 ; ∆(t = 0) = 0. (94)

Dimensional analysis of the parameter in the second boundary
condition shows

ρL̂φm

k (Tm−To)
[=]

E/L3

E/T L
=

T
L2 .
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There is, evidently, one dimensionless parameter in the model

αρL̂φm

k (Tm−To)
=

L̂φm

Ĉ (Tm−To)
= λ ,

but no natural length or time scale. This points to the similarity
solution, which is8

T̄ = 1− erfη

erfγ
; η =

x
2
√

αt
; (95)

λ =
e−γ2

√
πγ erfγ

; (96)

∆(t) = 2γ
√

αt, (97)

where γ is the constant determined by the second equation.

From the diffusion equation we see that a psuedo steady solu-
tion is valid when

1
t
<<

α

∆2 ⇒ t >>
∆2

α
.

But ∆ and t are related via

1
∆
∼ ρL̂φm

k (Tm−To)

∆

t

⇒ ∆
2 ∼ k (Tm−To)

ρL̂φm
t,

so that the first condition can be cast

t >>
∆2

α
∼ k (Tm−To)

αρL̂φm
t

⇒ λ >> 1, (98)

which is one condition needed for the boundary layer solution of
the crystallisation model. Under these conditions the equation
defining γ can be simplified. First note

λ =
e−γ2

√
πγ erfγ

⇒
√

πγ erfγeγ2
=

1
λ

<< 1,

which indicates γ << 1 when λ >> 1 so that eγ2 ' 1 and
erfγ ' 2√

π
γ leading to

√
πγ erfγeγ2

' 2γ
2 =

1
λ
⇒ γ '

√
1

2λ
=

√
ε

2
. (99)

Under these circumstances the domain on η obeys

0≤ η ≤ x
2
√

αt
=

2γ
√

αt
2
√

αt
'
√

ε

2
<< 1, (100)

so that the Stefan similarity solution simplifies to

T̄ = 1− erfη

erfγ
' 1−

2√
π

x
2
√

αt
2√
π

γ
= 1− x

2γ
√

αt
= 1− x

∆(t)
= 1− x̄

δ
,

(101)
where the last equation results from scaling the numerator
and the denominator by the length scale d defined before in

section 2.2. The result indicates that the psuedo steady solution
for temperature in the Stefan model is nearly identical to the
leading order approximation in the crystallisation boundary layer
model (note for the latter λ >> 1 is required for the boundary
layer approximation, while a second condition (2t̄)1/2 >> 1 is
needed to find simple boundary layer solutions, tantamount to a
psuedo-steady approximation for the crystallisation model).

Now we show that the Stefan model solution for ∆(t) when
λ >> 1 (psuedo steady limit) matches that at leading order from
the crystallisation model in the same limit. When λ >> 1, eqns.
87 and 89 yield

∆(t) = 2γ
√

αt '
√

2εαt. (102)

Now recall the scales used:

t̄ =
t
τ

; τ =

(
R

Tm−To

φmTm

)−1
; x̄ =

x
d

; d =

√
α

R Tm−To
φmTm

,

dividing the last equation by d leads to

∆

d
= δ '

√
2εαt√

α

R Tm−To
φmTm

=
√

2ε t̄, (103)

Which matches the result from the boundary layer model, eqn.
33.
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