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Revised July 9, 2021 We use theory and numerical computation to determine the shape of an axisymmetric fluid mem-

brane with a resistance to bending and constant area. The membrane connects two rings in the
classic geometry that produces a catenoidal shape in a soap film. In our problem, we find in-
finitely many branches of solutions for the shape and external force as functions of the separation
of the rings, analogous to the infinite family of eigenmodes for the Euler buckling of a slender
rod. Special attention is paid to the catenoid, which emerges as the shape of maximal allowable
separation when the area is less than a critical area equal to the planar area enclosed by the two
rings. A perturbation theory argument directly relates the tension of catenoidal membranes to the
stability of catenoidal soap films in this regime. When the membrane area is larger than the critical
area, we find additional cylindrical tether solutions to the shape equations at large ring separation,
and that arbitrarily large ring separations are possible. These results apply for the case of van-
ishing Gaussian curvature modulus; when the Gaussian curvature modulus is nonzero and the
area is below the critical area, the force and the membrane tension diverge as the ring separa-
tion approaches its maximum value. We also examine the stability of our shapes and analytically
show that catenoidal membranes have markedly different stability properties than their soap film
counterparts.

1 Introduction
Although the lowest energy state of a symmetric biological mem-
brane is flat, membranes in the cell can be curved because of
forces external to the membrane, such as the forces arising from
scaffolding proteins or the cytoskeleton1. In this paper we con-
sider a simple idealized problem for determining how membrane
shape depends on external force. We study a fluid membrane
of fixed area connected to two rings (Fig. 1). The area is fixed
because bending a thin membrane is much easier than stretch-
ing it. The rings are parallel, have the same radius, and have
aligned centers. This setup is similar to that used to study the
catenoid formed by a soap film2–5 or a smectic film stretched be-
tween two rings6–9, or a capillary bridge10,11. A similar setup has
also been used to study membrane tethers at fixed tension12–14.
The membrane has two circular edges connected to the rings. The
rings exert zero torque on the membrane edge. But since the
rings have a fixed radius and exert the force required to obtain
a given membrane extension, the membrane edges are not com-
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pletely free as in the case of lipid bilayer membranes with reduced
edge tension15–17, or colloidal membranes comprised of rod-like
viruses18–20. In general, the external force has a dominant ef-
fect on the shape. In the absence of the external force, many of
the simplest possible surfaces with edges are ruled out for a mem-
brane with bending stiffness21,22. The condition of zero force and
zero torque at the edge rules out surfaces with edges and constant
mean curvature like a cylinder, a catenoid, an unduloid23, or part
of a sphere; a surface which is part of the Willmore torus24,25; or
a surface which is part of biconcave discoid shape. We will see
that some of these shapes are allowed when there is an external
force. The scope of this paper is limited to axisymmetric shapes,
although some non-axisymmetric shapes such as helicoids can be
treated by similar methods26.

Our work is complementary to recent work in the mathematics
community on the shapes that are critical points of the bending
energy, such as the study of axisymmetric shapes with zero mean
curvature at the edges and with no constraint on the area27, or
the study of axisymmetric shapes with fixed tension28. The paper
of Deckelenick and Grunau29 is an important precursor for our
present article since their numerical experiments suggest a rich
collection of possible shapes in the case of no area constraint and
vanishing mean curvature at the edges of the surface. Our work is
distinct from these investigations since we enforce the constraint
of fixed area and impose the most general condition of vanishing
bending moment at the edge, i.e. with nonzero Gaussian curva-
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Fig. 1 (Color online.) A membrane connecting two rings of radius a,
separated by distance h. The surface is a surface of revolution described
by r(z). The shape of this particular membrane is the catenoid of greatest
area for the ring radius a; or equivalently, the catenoid with greatest h for
the given a.

ture modulus.
We begin our analysis in Sec. 1.1 with a review of the proper-

ties of the catenoid in the context of the soap film problem. Then
in Sec. 1.2 we review the Willmore problem, which is to find the
shape that minimizes the integral of the square of the mean cur-
vature without a constraint on the area. Part of the Willmore
torus turns out to be one of the solutions to our problem at a cer-
tain area and ring separation. Section 2 sets the notation we use
for the standard Canham-Helfrich energy for a membrane with
fixed area, as well the parametrization for axisymmetric shapes.
In Sec. 3 we present our main results, showing that there are
three regimes of behavior depending on the area. We begin in
Sec. 3.1 with the case of zero Gaussian curvature modulus. For
small area, we find two solutions for each extension below a max-
imum extension, at which a catenoid forms. There is a regime of
intermediate area for which two catenoids are allowed at two spe-
cific values of the extension, as well as extended ‘tether’ shapes
which may be drawn out to arbitrary length. At the greatest ar-
eas, no catenoids ever form, but tethers form at large extension.
In the rest of Sec. 3 we consider the case of nonzero Gaussian
curvature modulus; some special isolated shapes such as spheres,
cylinders, and Willmore tori; and stability. Section 4 is the conclu-
sion. An appendix summarizes the differential geometry formulas
we use and reviews the argument that the Noether invariant for
this problem is the axial force.

1.1 Soap film problem: zero mean curvature
First we review the classic problem of a soap film stretched be-
tween two rings. The rings each have radius a and are separated
by a distance h. The rings are parallel to each other and lie in
planes normal to the z axis, with centers on the z axis (Fig. 1).
Since the energy of the soap film is the surface tension µ times
the area, the equilibrium shape minimizes the area. The condi-
tion for the surface to be an extremum of area, or more simply

a minimal surface, is that the mean curvature vanishes30. In our
convention a sphere has negative mean curvature; the basic for-
mulas are summarized in Appendix A.1. In cylindrical coordinates
in which radius r is a function of z and we denote derivatives with
respect to z via subscripts, this condition is

1

r
√

1+ r2
z

− rzz

(1+ r2
z )

3/2
= 0. (1)

The catenoid,
r = bcosh(z/b), (2)

is the only nonplanar surface of revolution that is a minimal sur-
face31. The parameter b is the radius of the neck of the catenoid;
it is related to the ring separation h by h = 2bcosh−1(a/b). The
force required to hold the rings apart at fixed separation is given
by F = 2πµb. Figure 2 shows the force as a function of ring sep-
aration6, and reveals that as long as the separation is less than
the maximum value of separation hmax ≈ 1.3255a, there are two
catenoids connecting the rings. There is one catenoid solution at
h = hmax, and no catenoid solutions for h > hmax.

The area of a catenoid of neck radius b and ring separation h
is given by A = πb[h+ bsinh(h/b)]. For a given h/a, the catenoid
with the larger neck radius has less area (Figs. 2 and 3). This
branch of catenoids is also stable to small perturbations, whereas
the larger-area branch is unstable6,7. See ref.7 for a photograph
of the stable and unstable catenoids for the same h. Note that for
a given ring radius a, the critical catenoid at the largest extension
h ≈ 1.3255a is also the catenoid of greatest area32 (Fig. 3), with
Ā≡A/(2πa2)≈ 1.1997, a number we define to be Āmax. We hence-
forth refer to the catenoid with larger neck as the “thick catenoid”
and the catenoid with smaller neck as the “thin catenoid.”

While the catenoid locally minimizes area among continuous
surfaces of revolution, it is not necessarily an absolute minimum.
Consider the discontinuous Goldschmidt solution consisting of
two disks of radius a with center-to-center distance h. Regular-
izing this solution by adding a thin connecting cylinder produces
a continuous shape of area A→ 2πa2 as the radius of the connect-
ing cylinder vanishes. In particular, when Ā > 1, the Goldschmidt
solution has less area than both the thin and thick catenoids.

1.2 Willmore problem

Next we consider a surface with a cost for bending only, but with
no constraint on the area. A classic mathematical problem is to
find the surface of given topological character that has the least
possible curvature, as measured by the bending energy

EW =
∫

dAH2, (3)

where H is the mean curvature and dA is the area element (see33

and34 for surveys). Willmore showed that the energy EW satis-
fies EW ≥ 4π for any closed orientable surface24,25. It is easily
checked that any sphere gives the minimum energy. Note that the
bending energy eqn (3) is invariant under conformal transforma-
tions of three-dimensional space35,36. Willmore further consid-
ered the case of tori, and showed that EW ≥ 2π2 for the special
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Fig. 2 Dimensionless force F/(2πaµ) vs. dimensionless height h/a
of the catenoid. The upper solid branch (blue) corresponds to shapes
with lower area, for a given separation h, than the lower dashed branch
(green).
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Fig. 3 Dimensionless area A/(2πa2) vs. dimensionless height h/a of
the catenoid. The color scheme is the same as in Fig. 2: for a given
separation h/a, the catenoid with larger neck radius b has smaller area.
The dotted line corresponds to the area of the Goldschmidt solution, in
which a flat membrane spans each ring. The dimensionless area Ā of the
critical catenoid at the maximal extension is Ā = Āmax ≈ 1.1997.

class of tori formed by a tube of constant radius around a closed
space curve. He showed that the torus of this type that gives the
minimum energy is the one in which the space curve is a circle
and the radius of the tube is 1/

√
2 times the radius of the circle

(Fig. 4, left), and conjectured that this torus minimizes EW over
all surfaces with the topology of the torus24,25. The Willmore
conjecture was shown to be true by Marques and Neves37.

To connect this problem with the problem of stretching a mem-
brane between two rings, suppose we cut the Willmore torus
along circles of unit radius to make two surfaces (Fig. 4).

The Euler-Lagrange equation for the energy EW is

∆H +2H(H2−K) = 0, (4)

where ∆ is the Laplacian and K is the Gaussian curvature38. Any
minimal surface, such as a catenoid, satisfies the Euler-Lagrange
equation since it has H = 0. Spheres also satisfy eqn (4) since
the mean curvature is uniform and H2 = K. Now consider a torus
formed by a tube of radius R2 with the centerline of the tube a
circle of radius R1:

r(z) = R1±
√

R2
2− z2 (5)

This surface is not a minimal surface, but it satisfies eqn (4) when
it is a section of a Willmore torus, i.e. R2 = R1/

√
2. We will review

below how to calculate the force required to hold in equilibrium a
surface with the bending energy eqn (3), but the inner part of the
torus is under tension, while the outer part is under compression.
We’ll also see that the bending moment acting at the edge is given
by the mean curvature H; in Fig. 4 we chose to cut the torus along
the two circles that have H = 0 so that no bending moment is re-
quired in equilibrium. It was shown by Deckelnick and Grunau29

that this solution is not an isolated solution but part of a family
of solutions. Our constraint of fixed area leads to a different set
of solutions.

2 Membrane equations

Next, we turn to the problem of a membrane that resists bending
at fixed area. The approximation of fixed area is valid as long
as the tension is small compared to the area expansion modulus.
Our goal is to calculate the shape of an axisymmetric membrane
of fixed area connecting two circular rings. We also calculate the
force as a function of ring displacement.

2.1 Governing equations

We assume the energy of the membrane is given by the Canham-
Helfrich energy with a Lagrange multiplier µ corresponding to
the tension and enforcing the constraint of fixed area:

E =
κ

2

∫
dA(2H)2 + κ̄

∫
dAK +µ

∫
dA. (6)

This energy is a simple generalization of the Willmore energy EW

of eqn (3), with κ the bending modulus, and κ̄ the Gaussian
curvature modulus39,40. Motivated by recent work on colloidal
membranes41, we study the case of a positive Gaussian curvature
modulus. It is thought that the entropy of the polymer depletant
that stabilizes colloidal membranes leads to a positive Gaussian
curvature modulus41. Mathematically, a positive Gaussian curva-
ture can be problematic since it favors arbitrarily large negative K;
therefore, some authors42 consider the case of a negative Gaus-
sian curvature modulus. Sometimes higher order terms must be
introduced to stabilize the system when the Gaussian curvature
modulus is positive43. In case of colloidal membranes with a free
edge, the cost of bending the edge prevents the positive Gaus-
sian curvature modulus from leading to negative Gaussian curva-
ture of arbitrarily high magnitude. In our problem, the penalty
for mean curvature and the area constraint prevent the Gaussian
curvature from becoming arbitrarily large.
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Fig. 4 A Willmore torus, which has R2/R1 = 1/
√

2, (left) can be cut to make two axisymmetric shapes of different area. The torus is force-free, but
since there are internal bending forces in the torus, the cut shapes require external forces along their boundary circles to maintain equilibrium. The net
forces are indicated by the arrows; the force on the inner part of the torus (middle) is tensile, equal in magnitude to the compressive force on the outer
part of the torus (right). The circular cuts in this figure are made along the curves with vanishing mean curvature; the green color indicates that the
mean curvature is negative, whereas the blue color signifies positive mean curvature.

The Euler-Lagrange equation is given by38

κ

(
∆H +2H3−2HK

)
−µH = 0, (7)

which differs from eqn (4) only by the term linear in the mean
curvature arising from the area constraint. The condition of van-
ishing bending torque at the edge is44,45

2κH + κ̄kn = 0, (8)

where kn is the normal curvature of the boundary. If T̂ is the
tangent vector of the boundary and n̂C is the membrane normal
on the boundary, then kn = n̂C ·dT̂/dl, where l is arclength along
the boundary. The convention is that l is increasing when the
surface is on the left of the boundary. Note that for our circular
boundaries, kn < 0.

Fig. 5 The surface of revolution obtained by rotating the graph r(z) about
the z-axis. The surface connects two parallel circular rings of radius a,
separated by distance h. The surface is parameterized by arclength s
along a meridian. The normal to the surface is n̂ and the normal to the
surface at the boundary is n̂C. The angle ψ is measured from the outward
radial direction to the surface tangent, and the length of the meridian is
L.

2.2 Parameterization

We follow the approach of Jülicher and Seifert46, denoting the
contour of the membrane by r and z, which are functions of the
arclength s measured along the contour (Fig. 5). The angle ψ is
the angle between the contour tangent vector t1 = rsr̂+ zsẑ and
the radial direction r̂, so that

rs = cosψ (9)

zs = −sinψ. (10)

Our task is to minimize the energy E, eqn (6). Writing E =
∫

dsE ,
we introduce the energy density E :

E

2π
=

κ

2
(2H)2r+ κ̄rK +µr

+ [γ(s)(rs− cosψ)+η(s)(zs + sinψ)] , (11)

where 2H = −[ψs +(sinψ)/r], K = (ψs sinψ)/r, and we have in-
troduced the s-dependent Lagrange multipliers γ and η to allow
the variations in r, ψ, and z to be taken independently (see the
appendix for definitions of the geometrical quantities). Note that
the boundary term arising from the variation of z is 2πηδ z|L0 ; in
other words, the axial force required to hold the rings with sepa-
ration h is

F =−2πη . (12)

We follow the standard procedures of variational calculus when
the end points of the domain are free to move47, since although
value of the arclength s is fixed at s = 0 at one endpoint, the value
of s at the other endpoint, s = L, is only determined once the
problem is completely solved. The variation of the end point at
s = L leads to the boundary condition46 H (s = L) = 0, where H

is the Hamiltonian obtained from the Legendre transform of E :

H = ψs
∂E

∂ψs
+ rs

∂E

∂ rs
+ zs

∂E

∂ zs
−E . (13)
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In our parameterization,

H

2π
=

κ

2

[
rψ

2
s −

sin2
ψ

r

]
−µr+ γ cosψ−η sinψ (14)

= −κrH
[

ψs−
sinψ

r

]
−µr+ γ cosψ−η sinψ. (15)

Note that H = 0 for all s, since it is the conserved quantity asso-
ciated with the fact that the arclength s does not appear explicitly
in E . The other boundary conditions are r(0) = r(L) = a, z(0) = h,
z(L)= 0, and the condition of vanishing bending moment at either
ring:

[κ (rψs + sinψ)+ κ̄ sinψ]s=0,s=L = 0. (16)

Defining t = −1/2+ s/L and denoting derivatives with respect to
t with a dot, the Euler-Lagrange equations are46

ψ̇ = Lψs (17)

r
L

ψ̇s = −cosψψs +
sinψ cosψ

r

+
γ

κ
sinψ +

η

κ
cosψ (18)

ṙ = Lcosψ (19)

ż = −Lsinψ (20)

γ̇ = L
[

κ

2
ψ

2
s −

κ

2
sin2

ψ

r2 +µ

]
(21)

= L
[
−κH

(
ψs +

sinψ

r

)
+µ

]
(22)

η̇ = 0. (23)

To these equations we add the area equation ˙A = 2πrL, where
A ≡ 2π

∫ t
−1/2 dt ′Lr(t). We also add the conditions that µ and L are

constant, leading to a total of nine first-order equations. In addi-
tion to the seven boundary conditions we have already mentioned
[for the quantities r(t =−1/2), r(t = 1/2), z(t =−1/2), z(t = 1/2),
the bending moment at either endpoint, and H (t = 1)], we
add the conditions on the area function: A (t = −1/2) = 0, and
A (t = 1/2) = A, where A is the imposed area.

3 Results
Solving the Euler-Lagrange equations in the geometry described
above reveals a whole zoo of axisymmetric shapes, both familiar
and unfamiliar. We blend analytical and numerical approaches to
probe the shapes that form in various parameter regimes. Given
an extension h and an area A, the MATLAB routine bvp4c was
used to numerically solve eqn (17)-(23) and their associated
boundary conditions. By treating µ as an additional dependent
variable in these equations, the tension can be computed as part
of this procedure. The axial force is calculated from eqn (12). We
give an equivalent, perhaps more physical expression for the axial
force in terms of the tension and bending stiffness in eqn (101)
of Appendix A.2. Once a solution at extension h is obtained, it
is used as an initial guess for the solution at a nearby extension

h + δh; in this way, we determined shapes, tension, and force
as functions of extension. Strictly speaking, negative extensions
are numerically permissible, but since negative extension requires
the two boundary rings to pass through each other, we generally
do not concern ourselves with this unphysical regime. The same
goes for self-intersecting solutions, which can occur when the ex-
tension becomes small. Some of these shapes are plotted in the
ESI†.

3.1 Case of zero Gaussian curvature modulus
We begin by considering the simplified case of κ̄ = 0. In this case,
the condition of vanishing torque at the edge, eqn (8), implies
that the mean curvature vanishes at the edge. Our first observa-
tion is that there are three distinct parameter regimes governed
by area. To begin, suppose the area of the membrane is less than
the area of the planar disks bounded by the two rings, Ā ≤ 1. In
this regime, the axisymmetric surface of least area is always the
thick catenoid. A quick argument shows that the membrane has a
finite maximal extension h∗ = h∗(A), where h∗(A) is the separation
of the rings for a thick catenoid of area A (the solid blue curve in
Fig. 3). A hypothetical shape with h > h∗ would have area strictly
less than that of the thick catenoid with separation h, which is by
definition area minimizing. Furthermore, the shape of the mem-
brane when h = h∗ will always be a thick catenoid because this
shape is the unique axisymmetric surface that can be formed for
the given extension and area.

The second regime is when 1 < Ā < Āmax, where Āmax ≈ 1.1997
is the critical dimensionless area beyond which catenoids do not
exist. According to Fig. 3, this is the regime where there are two
possible catenoids for the given area, one thick and one thin. Es-
sentially, the number of branches is doubled, and each branch has
a maximal extension that again corresponds to the width of one
of the two catenoids. The notable exception in this regime is the
tether which has no maximal extension; mathematically, this is
a regularized Goldschmidt solution, which is possible when the
area exceeds that of two disks.

The final regime, Ā ≥ Āmax, is where the area is sufficiently
large that catenoids do not appear at all. Here, the shapes of
maximal extension are previously unknown non-catenoidal sur-
faces. Unlike the previous cases, the branches of the thick and
thin (former) catenoids meet each other at these shapes of max-
imal extension. The tether remains a possible solution in this
regime as well.

3.1.1 Small area: Ā≤ 1

As argued above, when the dimensionless area Ā is smaller than
the critical value of 1, we need only consider extensions in the
range 0 ≤ h ≤ h∗, with the catenoid known to be the equilibrium
shape at maximal extension h = h∗. This characterization of the
catenoid leads to a curious phenomenon: suppose we wish to cal-
culate the tension of the catenoid. Directly substituting H = 0 into
the Euler-Lagrange equations does not lead to a form where the
tension can be calculated by applying the area constraint; instead,
µ drops out and is left undetermined.

To circumvent this issue, we instead formulate the calculation
by perturbing the Euler-Lagrange equation, eqn (7), around the
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Fig. 6 The first five buckling modes of an axisymmetric membrane with κ̄ = 0 and dimensionless area Ā = 1. Each row of shapes corresponds to a
single mode, first traversing the branch of less negative force with extensions h/a = 0 (A), h/a = 0.35 (B), h/a = 0.7 (C), h/a≈ 1.0554 (D, the catenoid),
then continuously traversing the branch of more negative force with extensions h/a = 0.70 (E), h/a = 0.35 (F), and h/a = 0 (G). Branch behavior depends
on the parity of n: if n is odd, the shapes on each branch are distinct, and if n is even, the shapes on each branch are mirror images of each other
(denoted by a prime). Labels of stable surfaces are circled. Surfaces can self-intersect as h/a approaches zero. All shapes shown here require a
compressive stabilizing force at the boundary rings. Color indicates the dimensionless local mean curvature Ha. Black rings of radius a have been
added at z =±h/2 for visibility. Plots of the corresponding meridians r(z) are available in the ESI†.

catenoid state. From the formula for the catenoid, eqn (2), we
find that the arclength is given by L0/2− s = bsinh(z/b), where
L0 is the contour length of a longitude of the catenoid. Eval-
uating cosh(z/b)2 − sinh(z/b)2 = 1 for z = h/2 (s = 0) and for
general z (general t = s/L0 − 1/2) yields L0 =

√
2(a2−b2) and

r0(t) =
√

L2
0t2 +b2, respectively. Likwise, using the condition

H0 = 0 in the formula for the Gaussian curvature, eqn (82), yields
K0 =−b2/r4

0. We expand

r(t) = r0(t)+ r1(t)+ . . . (24)

H(t) = H1(t)+ . . . (25)

K(t) =−b2

r4
0
+K1(t)+ . . . (26)

µ = µ0 +µ1 + . . . (27)

where ε = |L−L0|/L0� 1, r0(t) is O(ε0), r1(t) is O(ε), and so on.
Using eqn (83) in eqn (7) and working to order ε, we have

κ(∆H1−2K0H1) = µ0H1 (28)

with boundary conditions

H1(t =−1/2) = H1(t = 1/2) = 0. (29)

That is, the tension divided by κ for a catenoidal membrane is an
eigenvalue of the negative Jacobi operator, −J , where

J =−∆+2K. (30)

Table 1 lists the first five eigenvalues of −J for a variety of Ā;
when Ā< 1, they are all negative. The Jacobi operator arises most
prominently in the formula for the second variation of area for a
minimal surface31,48, thus connecting the tension of a catenoidal
membrane to the stability of catenoidal soap films. Casting the
problem in this form reveals that there are actually infinitely
many modes of equilibrium solutions, each with two solution
branches which meet when h = h∗ at a catenoid whose tension
and force are negative. As mode number n = 1,2,3, . . . increases,
so does the number of oscillations in r(z), as can be seen in Fig. 6.
The even symmetry of eqn (28) under z 7→−z implies that the two
branches are reflections of each other when n is even, while the
shapes are symmetric about the z = 0 plane when n is odd. These
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Thick Catenoid Eigenvalues
Ā n = 1 n = 2 n = 3 n = 4 n = 5

0.2 -243.6 -948.8 -2204 -3920 -6128
0.4 -58.44 -238.4 -538.4 -958.5 -1499
0.6 -24.03 -101.0 -229.3 -409.0 -640.1
0.8 -11.79 -52.49 -120.2 -215.0 -336.9
1 -5.75 -29.20 -67.96 -122.2 -192.0

1.1 -3.54 -21.29 -50.30 -90.91 -143.2
Āmax 0 -11.84 -29.45 -54.33 -86.33

Thin Catenoid Eigenvalues
Ā n = 1 n = 2 n = 3 n = 4 n = 5

1.01 171.5 -5.96 -10.37 -31.61 -44.47
1.05 22.95 -6.50 -14.72 -34.38 -54.64
1.1 8.45 -7.30 -18.35 -37.59 -60.74

1.15 3.78 -8.41 -21.61 -41.68 -67.04
Āmax 0 -11.84 -29.45 -54.33 -86.33

Table 1 The five largest numerically computed eigenvalues of the nega-
tive Jacobi operator −J [defined in eqn (30)] for a selection of catenoids
of dimensionless area Ā. The eigenvalues of −J both govern the sta-
bility of catenoidal soap films and are the tensions µ(n)/κ of fixed area
catenoidal membranes. The eigenvalues for the thick catenoid are al-
ways negative, while the leading eigenvalue for the thin catenoid is al-
ways positive (not counting the critical case Ā = Āmax).

observations indicate that the determination of the tension of the
catenoidal shapes is analogous to the Euler buckling problem of a
solid thin rod under compression.49 Fig. 7 illustrates the force as
a function of extension for the first five modes. For all shapes, the
force is negative (compressive), but the tension can be positive
or negative (see the ESI† for the corresponding tension vs. exten-
sion plot). In section 3.4, we calculate the stability of the shapes,
which is indicated in Fig. 7. Note that the higher order shapes are
unstable.

3.1.2 Intermediate area: 1 < Ā < Āmax

As Ā increases beyond unity, a thin catenoid emerges in addition
to the existing thick catenoid as a possible solution. Repeating the
perturbation argument in the previous section shows that each
catenoid has infinitely many permissible tensions, and that locally
there are two solution branches per tension that emanate from
a catenoid. Qualitatively, the shapes from the branches corre-
sponding to the thick catenoid resemble those from the Ā < 1 case
(Fig. 8), while those from the thin catenoid can look quite dif-
ferent, with necks that are comparatively much smaller (Fig. 9).
In fact, the necks of some of these shapes can even decrease to
zero as they are compressed, effectively terminating the branch
at some nonzero value of h. The thin solutions also have less en-
ergy than their thick counterparts and can have different stability
properties.

For this range of Ā, significant differences between the n = 1
mode and the n > 1 modes develop. As Fig. 10 shows, the n = 1
mode is the only one where the thick and thin catenoids are con-
nected by a path of equilibrium shapes. While the thick catenoid
always has F < 0 as before, the thin catenoid has F > 0 for n = 1.
This property can be related back to the eigenvalues of−J : since
the thin catenoid is an unstable equilibrium of the area functional,

Fig. 7 Dimensionless force vs. extension for the first five bending
modes of a membrane with Ā = 1 and κ̄ = 0. Labeled points corre-
spond to the shapes in Fig. 6. Each branch has a maximal extension
h∗/a ≈ 1.0554 (grey dashed line), where the membrane assumes the
shape of a catenoid with compressive force F = 2πµb and beyond which
no equilibrium surfaces exist. For even modes, the shapes of the two
branches are mirror images of each other and hence their curves in the
force vs. extension diagram overlap; for odd modes, the two curves are
similar but different. Stable surfaces are indicated with a solid line while
unstable surfaces are indicated with a dotted line; for Ā = 1 and κ̄ = 0, the
only stable surfaces are found at the lowest mode.

its leading tension eigenvalue (and therefore its corresponding
force) is positive (see Table 1). A consequence of this sign dif-
ference is that one of the shapes on the connecting line between
shapes 1K and 1λ in Fig. 10 is a free-floating surface with F = 0.
We find that the n = 1 thin catenoid is a local minimum of exten-
sion rather than a maximum, leading to a possible hysteresis loop.
(For n > 1, the thin catenoid has negative tension and is a local
maximum of extension just like the thick catenoid.) As the mem-
brane is stretched beyond this thin catenoid, its neck can con-
tinue to decrease into a slender connecting tether (Figs. 10 and 8,
shapes 1m and 1n). Much like the Goldschmidt solution, and in
contrast with the other branches, this tether solution has no max-
imal extension–the rings can be pulled arbitrarily far apart. Mem-
brane tethers have been treated extensively elsewhere;13,14 here,
we only recap their basic properties.

Past a certain extension, H cannot be zero everywhere, and
the membrane instead opts to form two partial catenoids at ei-
ther end and connect them using the excess area. As extension
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keeps increasing, the connection becomes thin and cylindrical;
this collapse of the neck is accompanied by sharp increases in the
force and tension (Fig. 10 inset). A crude approximation shows
that the force increases linearly with extension while tension in-
creases quadratically when h� a. Assume that a very thin tether
of radius b� a connects to the rings via two very flat catenoids.
We approximate the area as A≈ 2πa2 +2πbh. Thus,

b =
A−2πa2

2πh
. (31)

The energy is the sum of the bending energy and the tension times
the area. We neglect the area of the catenoids since we assume
they depend weakly on h and b. Thus,

E ≈ πκh
b

+2πhbµ. (32)

The force is F = ∂E/∂h = πκ/b + 2πbµ. Also, we must have
∂E/∂b = 0 (normal force balance), which implies µ = κ/2b2.
Putting it all together yields

µ =
κ

2
4π2h2

(A−2πa2)2 (33)

F =
4π2κh

A−2πa2 . (34)

It has been shown that, asymptotically, the ends are catenoids
of neck radius

√
2κ/µ, while the end of the tether profile is an

exponentially decaying sinusoid with characteristic decay length√
κ/µ.13 We observe the same scalings for our shapes as h→ ∞.

3.1.3 Large area: Ā≥ Āmax

For the critical value Ā= Āmax, the thin and thick catenoids are the
same. The branches of each mode meet at this catenoid, which
has extension hmax. If the area is increased yet further, the mem-
brane enters a regime where catenoids cannot be formed. Since
there is no longer a catenoid to serve as a base state around which
to perturb, the linearization argument from the previous sections
does not directly carry over. Regardless, there are some similar-
ities with the previous cases. Fig. 11 shows some of the shapes
from the five lowest modes.

First, when n = 1, the membrane still develops a tether. How-
ever, since the area is too large for catenoids to form, there are no
turning points where dh/dF = 0. Instead, the force is a monoton-
ically increasing function of extension and there is no hysteresis.
Just as in the case of intermediate area, there exists an equilib-
rium shape with F = 0 on this branch. As shown in the smaller
inset of Fig. 12, the tether can still be arbitrarily long and thin,
and the force continues to be a nearly linear function of extension
in the large h/a limit.

For n > 1, we still find that the branches have maximal exten-
sions (large inset of Fig. 12) that increase with area but are al-
ways finite. Unlike previous cases, different branches have differ-
ent maximal extensions because the shape of maximal extension
is no longer a catenoid. Some of these unusual shapes of maxi-
mal extension are shown in Fig. 11. Just as for smaller areas the
catenoid served as a junction between two branches, so do these

energy-minimizing shapes. A very notable difference, however, is
that it is one branch of thin shapes and one branch of thick shapes
that are joined, rather than two branches of the same kind. As be-
fore, some of the thin branches have a minimum radius that goes
to zero at h/a > 0, and the thin shapes have less energy than the
corresponding thick shapes.

3.2 Case of nonzero Gaussian curvature modulus
For the case of κ̄ 6= 0, the aforementioned division into three area
regimes still holds. Somewhat surprisingly, changing κ̄ generally
has a very weak effect on the membrane shapes, even if κ̄ is com-
parable in magnitude to κ (Fig. 13a). The most prominent differ-
ences between the κ̄ = 0 and κ̄ 6= 0 cases are seen in the behavior
of the force (Fig. 13b) and tension.

3.2.1 Small area: Ā≤ 1

Being minimal surfaces, catenoids do not satisfy the no-torque
boundary condition eqn (8) when κ̄ 6= 0. This leads to an ap-
parent paradox: as we have seen, at the maximal extension, the
catenoid is the unique axisymmetric surface, so the membrane
must become more and more “catenoid-like” as it is pulled; yet,
a true catenoid is unattainable. The resolution is that a nonzero
Gaussian curvature modulus introduces singular behavior into the
mean curvature.

This singular behavior manifests itself in the force vs. extension
plot as well. From the numerically calculated shapes, we observe
that the force F and tension µ diverge as h→ h∗ for all modes.
Two branches are still present, but they are no longer connected.
If n is odd, one branch appears to go to positive infinity while
the other goes to negative infinity (Fig. 13b). If n is even, both
branches go to negative infinity (assuming κ̄ > 0). Changing the
sign of κ̄ reverses which branch goes to which infinity but F and µ

still blow up. However, the membrane profiles r(z) qualitatively
look very similar to the shapes from the κ̄ = 0 case: an infinite
number of modes are still visible, each with two branches. The
branches are not connected at h = h∗ due to the divergence of the
force and tension at the maximal extension at h = h∗.

To determine how the tension diverges when h approaches h∗,
we use the observation from our numerical results that when
κ̄ 6= 0 and h → h∗, the membrane shape is close to that of a
catenoid except in thin boundary layers near the two edges. The
width of each boundary layer is given by the natural length scale
δ =

√
κ/|µ| in the Euler-Lagrange eqn (7). In these boundary lay-

ers, the mean curvature H changes rapidly, but H and K remain
bounded. Therefore, the dominant balance for eqn (7) is

±δ
2 d2H

ds2 = H, (35)

with the sign on the left-hand side of eqn (35) matching the sign
of µ.

The shape departs from a catenoidal shape because h 6= h∗, and
because the no-torque boundary conditions [eqn (8)] forbid H = 0
near the edges with κ̄ 6= 0. In the following, we assume κ̄ � κ to
make analytical progress and because this limit is appropriate for
colloidal membranes41,50. For the catenoid of separation h∗(A)
connecting rings of radius a, the normal curvature of each edge is
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Fig. 8 Representative shapes from the branches of the first five buckling modes connected to the thick catenoid for an axisymmetric membrane with
κ̄ = 0 and dimensionless area Ā = 1.1. Each row corresponds to one mode; upper (resp. lower) case letters denote a shape connected to the thick
(resp. thin) catenoid (λ is used in place of lower case L). For n = 1, the membrane can be continuously pulled from zero extension (H) into a thick
catenoid (K), then compressed into a thin catenoid (λ ). Pulling on the thin catenoid results in the emergence of a thin tether (m) connecting two
catenoid-like ends; this tether has no maximal extension (n). For n > 1, the branch behavior depends on the parity of n: if n is odd, the shapes are
distinct, first traversing the branch with less negative force (H to J) to the thick catenoid (K), then the branch with more negative force (L to N). If n is
even, the shapes are mirror images of each other (denoted by a prime). Labels of stable surfaces are circled. Surfaces begin to self-intersect as h
approaches zero. Color indicates local mean curvature Ha. Black rings of radius a have been added at z =±h/2 for visibility. Plots of the corresponding
meridians r(z) are available in the ESI†.

kn = −b/a2. For h near h∗, we have kn = −b/a2[1+O(ε)], where
ε = |L−L0|/L0 was introduced in sec 3.1.1. Thus, to leading order
in the small quantities ε and κ̄/κ, the no-torque condition is

2κH− κ̄
b
a2

∣∣∣∣
s=0,L

= 0, (36)

There are two cases to consider: µ positive or negative. Once
H is known, we calculate the shape from the definition of the
mean curvature and use the constraint of constant area to find
the tension. In the following we focus on the case of positive
tension; the case of negative tension is discussed in the ESI†.

When µ > 0, the solution for the mean curvature when δ � 1
and to leading order in κ̄/κ is

H =
κ̄b

2κa2
cosh [(s−L/2)/δ ]

cosh[L/(2δ )]
. (37)

Note that H is exponentially small except near the endpoints,
where it exhibits boundary layers of width O(δ ). Given the

mean curvature, we solve for the shape r = r0 + r1, where r0 =√
t2L2

0 +b2 is the catenoid shape in terms of the dimensionless
coordinate t = s/L0−1/2 as in sec 3.1.1, and r1 is a perturbation
that vanishes when ε→ 0. As is traditional, we divide the domain
into inner regions near edges and an outer region where the mean
curvature is approximately zero. Then we approximately solve for
r1 in each region, and match the two solutions to generate a com-
posite solution.

First consider the outer region where H is exponentially small.
Using eqn (81), rs = cosψ, and L = L0(1+ ε) to expand H = 0 to
first order in r1 = rout and ε, we find

r0

bL2
0

d2rout

dt2 +
2t

br0

drout

dt
+

b
r3
0

rout−2
ε

b
= 0, (38)
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Fig. 9 The second through fifth buckling modes connected to the thin catenoid for an axisymmetric membrane with κ̄ = 0 and dimensionless area
Ā = 1.1. Each row contains shapes from two continuous branches that meet at the thin catenoid; the label λ is used in place of lower case L. The
branch behavior depends on the parity of n: if n is odd, the shapes are distinct, first traversing the branch with more negative force with h/a = 0 (h),
h/a = 0.35 (i), h/a = 0.7, and h/a≈ 1.0428 (k, the thin catenoid), followed by the branch with less negative force with an intermediate point (λ ) and the
point where the radius of the membrane collapses to zero (m). If n is even, the shapes are mirror images of each other (denoted by a prime). Labels
of stable surfaces are circled. Surfaces begin to self-intersect as h approaches zero. Color indicates local mean curvature Ha. Black rings of radius a
have been added at z =±h/2 for visibility. Plots of the corresponding meridians r(z) are available in the ESI†.

which has solution

rout =
εL2

0t2 +C0

r0(t)
(39)

=
ε(s−L0/2)2 +C0

r0(s)
. (40)

Note that we used reflection symmetry about t = 0 to determine
the integration constant that multiplies the solution t/r0(t).

Next, consider the inner regions, such as the region near the
endpoint t = −1/2. Since (t + 1/2)L = s . δ � 1 in this region,
we may take r0 ≈ a and

√
1− (dr0/ds)2 ≈ b/a. Furthermore, the

second derivative term dominates the mean curvature, and we
may write the equation for mean curvature in terms of r1 = rin as

a
b

d2rin

ds2 =
κ̄b
κa2 exp(−s/δ ), (41)

where on the right-hand side we have written H for small δ/L.
The solution in the inner region near s = 0 has the form

rin =
κ̄b2

µa3 exp(−s/δ )+C1s− κ̄b2

µa3 (42)

where we have made use of the boundary condition rin = 0 at the
endpoint s = 0. It remains to solve for the constants C0 and C1

from matching. Since the linear term of the inner solution cannot
match with the outer solution, C1 is zero. As for C0, we calculate

the overlapping part and find

lim
s→0

rout =
εL2

0/4+C0

a
=− κ̄b2

µa3 = lim
s/δ→∞

rin (43)

The uniformly accurate composite approximation is then given by
the sum of the inner and outer solutions minus the overlapping
part. We use reflection symmetry about s = L0/2 to get the correct
expression near s = L0:

r1 =
κ̄b2

µa3

[
e−s/δ + e−(L0−s)/δ − a

r0(s)

]
+

εs(s−L0)

r0(s)
. (44)

The excellent agreement between the numerically computed so-
lution and the approximation eqn (44) for small ε is shown in
the ESI†. Using the fact that the area constraint implies that the
integral of r1(s) vanishes to leading order, eqn (44) implies the
scaling law

µ ∝
κ̄

a2 ε
−1 (45)

as h→ h∗. Using dz/ds2+dr/ds2 = 1 and the area constraint leads
to the relation µ ∝ [(h∗−h)/h∗]−2/3 for h near h∗. To leading order,
F ∼ 2πµb in this limit as before. These relations are independent
of mode (that is, the tension vs. extension or force vs. extension
curves for each mode all collapse in the h→ h∗ limit).

If instead we have µ < 0, the mean curvature to leading order
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(a)

(b)

Fig. 10 (a) Dimensionless force vs. extension for the first five bend-
ing modes of a membrane with Ā = 1.1 and κ̄ = 0. Labeled points cor-
respond to the shapes in Figs. 8 and 9. Two possible catenoids with
maximal extensions h/a ≈ 1.0428 (thin) and h/a ≈ 1.1813 (thick) can be
formed with this area; locally, each catenoid has two solution branches
per force eigenvalue. Stable surfaces are indicated with a solid line while
unstable surfaces are indicated with a dotted line. (Inset) The n = 1 mode
tether emerging from the thin catenoid has no maximal extension. As h
increases, the force becomes a linear function of extension. (b) Larger
version of the n > 1 thin catenoid branches. On some of these branches,
the membrane can have a minimum radius that goes to zero, terminating
the branch at a nonzero extension. Note that in addition to the stable
region near the shape 3λ , there is a very small region of stability around
the surface 3h.

is

H =
κ̄b

2κa2
cos [(s−L/2)/δ ]

cos[L/(2δ )]
. (46)

Thus in this limit the mean curvature oscillates rapidly but con-

verges weakly to zero. Note that eqn (46) is a poor approximation
when L0

√
|µ|/κ = kπ, where k is an odd integer. The linearized

membrane shape equation has an infinite sequence of eigenval-
ues when µ < 0, and by the Fredholm Alternative, we cannot ex-
pect our inhomogeneous problem to be solvable at these points.
Eqn (35) with Dirichlet boundary conditions has eigenvalues at
δ = L0/kπ, which leads to a poor approximation whenever δ ap-
proaches these values. Refining the approximation with higher
order terms alleviates this issue but for simplicity of presentation
we will only consider leading order terms here.

To approximately solve eqn (38), we split the equation into two
parts: an “oscillatory” part, r(osc)

1 , that solves the inhomogeneous
equation with the oscillatory H forcing and a “remaining” part,
r(rem)
1 , that solves the equation with the remaining ε term. The

boundary conditions for the “remaining” part will be chosen so
that the sum adds up to zero at the boundaries. Thus, we are
solving

r0

bL2
0

d2r(osc)
1

dt
+

2t
br0

dr(osc)
1
dt

+
b
r3

0
r(osc)

1 =
κ̄b

2κa2
cos[(s−L0/2)/δ ]

cos[L0/(2δ )]

(47)
and

r0

bL2
0

d2r(rem)
1
dt

+
2t

br0

dr(rem)
1
dt

+
b
r3

0
r(rem)

1 =−2ε

b
(48)

subject to

r(rem)
1 (t =−1/2,1/2) =−r(osc)

1 (t =−1/2,1/2). (49)

For r(osc)
1 , we use the WKB approximation and find

r(osc)
1 =− κ̄b2

µa2r0

cos [(s−L0/2)/δ ]

cos[L0/(2δ )]
, (50)

and consequently,

r(rem)
1 =

κ̄b2

µa3 +2ε

[
a− r0−

L0

2
tanh−1 L0

2a
+

(
s− L0

2

)
tanh−1 s−L0/2

r0

]
.

(51)
Our leading order perturbation is the sum of eqn (50) and (51)
(again, this expression doesn’t apply near eigenvalues) and is
plotted in the ESI†. Upon applying the area constraint, we again
find the general approximation µ ∼ κ̄ε−1/a2 for the negative ten-
sion branch.

While in the case of zero Gaussian curvature modulus all shapes
with Ā < 1 required compressive external forces, the divergence
of F for κ̄ 6= 0 will make the force for one branch positive for
n odd and h near h∗ (the sign of κ̄ determines which branch).
This implies the existence of an equilibrium shape with F = 0. In
short: nonzero Gaussian curvature modulus is necessary in order
to have a free-standing shape with Ā < 1, and this shape is very
nearly a catenoid.

3.2.2 Intermediate area: 1 < Ā < Āmax

The arguments in the previous case can be generalized in a
straightforward manner to show that tension and force diverge
when either catenoid is approached. Thus, while it was possi-
ble to continuously deform a thick catenoid into a thin catenoid
and into a tether when κ̄ was zero, this is prohibited when κ̄ 6= 0
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Fig. 11 The different branches of first five buckling modes of an axisymmetric membrane with κ̄ = 0 and dimensionless area Ā = 1.3. Each row contains
shapes obtained from continuously traversing two branches of solutions of a single mode; upper (resp. lower) case letters denote a shape related to
the thick (resp. thin) catenoid. For n = 1, the membrane can be pulled directly into a thin tether with no maximal extension (s). For n > 1, the membrane
can be pulled from zero extension through some shapes resembling thick catenoidal shapes (O to Q or T to V) to a non-catenoidal shape of maximal
extension (R). Compressing this maximal shape can yield shapes that resemble thin catenoidal shapes (s or x to z). For some branches, the radius of
the membrane approaches zero and thus the branch terminates. If n is even, the two branches are mirror images of each other (denoted by a prime
symbol). Labels of stable surfaces are circled. Color indicates local mean curvature Ha. Black rings of radius a have been added at z = ±h/2 for
visibility. Plots of the corresponding meridians r(z) are available in the ESI†.

due to the divergences near each catenoid. The scalings in the previous section are seen to hold near each catenoid.
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Fig. 12 Dimensionless force vs. extension for the first five bending
modes of a membrane with Ā = 1.3 and κ̄ = 0. Labeled points corre-
spond to the shapes in Fig. 11. For even modes, the two branches are
symmetric and hence their curves in the force vs. extension diagram
overlap each other; for odd modes, the two curves are similar but not ex-
act. Stable surfaces are indicated with a solid line while unstable surfaces
are indicated with a dotted line. (Small inset) For n = 1, the membrane
can be pulled into a tether and has no maximal extension. (Large inset)
Magnified version of the n > 1 branches in the boxed region. For n > 1,
each branch has a different maximal extension at a shape that is not a
catenoid.

For n = 1, tethers are still observed; qualitatively they resemble
the tethers from the κ̄ = 0 case in shape. It is interesting to note
that if κ̄ > 0, the force is no longer a monotonically increasing
function of extension. Instead, the formation of the tether co-
incides with a drop in F , after which F returns to monotonically
increasing as h increases. This kind of behavior has been observed
in other works13.

3.2.3 Large area: Ā≥ Āmax

Analogous to the κ̄ = 0 case, the tether is still a valid n = 1 so-
lution. The properties described in the previous section are ob-
served to hold here as well.

Higher order modes still have finite extensions. However, since
there is no reason for the shapes to become catenoid-like as they
are pulled, the tension and force do not blow up as the maxi-
mal extension is reached, unlike the Ā < Āmax case. The maximal
extension is observed to depend on κ̄, albeit weakly.

(a)

(b)

(c)

Fig. 13 (a) Shape profiles for the n= 1 buckling mode of an axisymmetric
membrane with Ā = 1 and κ̄/κ = 0 (black), -1 (blue), and 1 (red), showing
very little difference in shape as κ̄ is varied. The dotted line shows the
catenoid, which is incompatible with boundary conditions when κ̄ 6= 0.
(b) As the maximal extension h = h∗ (grey dashed line) is approached,
the force diverges when κ̄ 6= 0. The direction of divergence depends on
the sign of κ̄ and the branch. (c) The minimal eigenvalue of the stability
operator also exhibits a divergence at h = h∗ when κ̄ 6= 0. The sign of the
divergence is the same as that of F . At h = h∗, when κ̄ = 0, the minimal
nonzero eigenvalue is given by µ(2)(µ(1)− µ(1))/(2κ), where µ(n) is the
tension of the nth mode catenoid.

3.3 Special isolated shapes
Here, we determine the conditions under which the membrane
assumes a spherical, cylindrical, or Willmore toroidal shape.
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These are simple analytical limits of the n = 1 mode described
above which can easily be verified to satisfy the membrane shape
equation eqn (7). Since we assume a certain shape profile, the
area and extension need to be chosen consistently; consequently,
these are isolated solutions that do not persist when the exten-
sion is varied. Previous work21,22 has ruled out the existence of
such shapes in force-free settings, but here we demonstrate they
exist if the correct external forces are applied and the ratio κ̄/κ

is tuned to a special value. For spheres and cylinders, this special
value is negative, and therefore we do not find sections of spheres
or cylinders in our numerical calculations, which have κ̄ > 0.

3.3.1 Spheres

Since spheres are easily seen to solve the membrane shape equa-
tion eqn (7) with µ = 0, we expect that if the boundary condi-
tions allow for it, the membrane will assume this configuration.
Our sphere will have caps missing due to boundary conditions;
regardless, such a shape must satisfy H = −1/b and K = H2,
where b > a is the radius of the sphere. Using kn = −1/b for
the normal curvature of a latitude of a sphere of radius b in the
no-torque boundary condition eqn (8) allows one to deduce the
requirement κ̄ = −2κ for sphere formation. The extension h at
which we have a sphere is given by the Pythagorean theorem,
h = 2

√
b2−a2, while the area must also be consistently chosen,

A = 4πb2
√

1− (a/b)2. Since the tension of a spherical membrane
is always zero, Eqn (101) confirms that the axial force is also
zero. However, since we have fixed r = a at the boundaries, exter-
nal radial forces act at the edge of the membrane, and there is no
contradiction with the nonexistence theorem for portions of mem-
brane spheres with edges in the absence of external forces21,22.

3.3.2 Cylinders

A cylinder has 2H = −1/a, K = 0, and kn = −1/a for a latitude;
plugging these into eqn (8) yields the necessary condition κ̄ =−κ

to satisfy the no-torque boundary condition. Then, if the area and
extension satisfy A= 2πah, we will have a cylinder. As can be seen
from the membrane shape equation (7), the tension of a cylinder
is always µ = κ/2a2; consequently, the force is F = 2πκ/a. An
example cylinder can be seen in Fig. 13a when h/a = 1.

3.3.3 Willmore tori

We parameterize the torus by X(s1,s2) = R1ρ̂ρρ + R2(−coss2ρ̂ρρ +

sins2ẑ), where ρ̂ρρ = x̂cos(s1/R1) + ŷsin(s1/R1). Note that s1 is a
length, and s2 is an angle. Using the formulas from Appendix A.1
(see also Willmore’s textbook25), we find

dA = R2 [1− (R2 coss2)/R1]ds1ds2 (52)

H = − 1−2(R2 coss2)/R1

2R2[1− (R1 coss2)/R2]
(53)

K = − 1
R1R2

coss2

1− (R2 coss2)/R1
(54)

and

∆H +2H(H2−K) =
1−2R2

2/R2
1

4R3
2 [1− (R2 coss2)/R1]

3 . (55)

Thus we see that the torus satisfies the Euler-Lagrange equa-
tion (7) with zero tension if R2/R1 = 1/

√
2.

Next, we construct two different axisymmetric surfaces by cut-
ting the torus along two circular latitudes at s2 =±s0, as in Fig . 4,
where the the “outer" surface is green and the “inner" surface
is blue. The circular edges are the suspending rings of radius
a, where for the Willmore torus we have a = R1 − R2 coss0 =

R1[1− (coss0)/
√

2]. As in the case of the spherical and cylindrical
sections discussed in the preceding subsections, the condition of
zero torque, eqn (8), leads to a condition on κ̄/κ. However, un-
like the sphere and the cylinder, this condition depends on where
we cut the surface. For either the inner or the outer shape, the
normal curvature is given by kn = −coss0/a. Combining the no-
torque condition (8) with the formula for the mean curvature for
the Willmore torus yields

R1 = a
2κ + κ̄

κ + κ̄
(56)

for both the inner and outer surface. Writing a in terms of R1 and
s0, eqn (56) becomes

coss0 =

√
2κ

2κ + κ̄
. (57)

In other words, the value of κ̄/κ determines what portion of the
torus satisfies the equilibrium conditions. For example, if κ̄ = 0,
then s0 = π/4, as in Fig. 4, where the edges are curves with zero
mean curvature. Note that eqn (57) has a real solution only for
κ̄ > −2+

√
2. Once s0 is found, then R1 is determined by the

area constraint. For example, when κ̄ = 0, we find that R1 =

2a and the reduced area of the inner surface is Ā =
√

2(π − 2) ≈
1.6145, and the reduced area of the outer surface is Ā =

√
2(3π +

2) ≈ 16.16. Oddly, the ratio of the areas of the outer and inner
Willmore surface portions is very close to ten: (3π +2)/(π−2)≈
10.008.

The force is conveniently found by using the cylindrical coordi-

nate r = R1±
√

R2
1/2− z2 and eqn (101) with µ = 0, which yields

F =±2π
√

2κ/R1, (58)

with the plus sign for the inner surface and the minus sign for the
outer surface. Again, for κ̄ = 0, F =±π

√
2κ/a.

3.4 Stability

In order to analyze the stability of our surfaces, we calculate the
second variation of eqn (6)38,51 in the coordinate system shown
in Fig. 5. While the formula that appears in these references was
derived for closed surfaces and hence does not include a Gaus-
sian curvature term, it is straightforward to compute the variation
of this term, which only appears at the boundary thanks to the
Gauss-Bonnet theorem. Assuming an axisymmetric perturbation
u(s) to the surface in the normal direction, and using the formulas
in Appendix A.1, the second variation is δ (2)E =

∫
dAuL u, where

L u = G2(s)∆2u+G1(s)∆u+G0(s)u, (59)

G2(s) =
κ

2
, (60)
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G1(s) = κ(H2−2K)−2κHψs−
µ

2
, (61)

and

G0(s) = κ[2(K−4H2)(K−H2)−ψsHss−
rs sinψ

r2 Hs−H∆H +H2
s ]

+µK− κ

r
(rsHψs)s +

κ

r

(
Hrs sinψ

2r

)
s
. (62)

The reader is cautioned that there is a discrepancy regarding the
formula for G0 in the references we have cited. Here, we calcu-
late G0 using the formula that appears in ref51, which claims to
have corrected the one that appears in ref38. Numerical tests in-
dicate that the discrepancy does not meaningfully affect any of
the results for our system.

It is convenient to use integration by parts and the fact that G2

is constant to write L in the symmetric form

L u =
1
r
[rF2(s)uss]ss +

1
r
[rF1(s)us]s +

1
r
[rF0(s)u] , (63)

with
F2(s) = G2, (64)

F1(s) = G1(s)−
G2

r

(
r2
s
r
− rss

)
(65)

and
F0(s) = G0(s)+

1
2

∆G1(s) (66)

The boundary conditions associated with this variation are

u|s=0 = u|s=L = 0 (67)

and
κ∆u+ κ̄

cosψ

r
us

∣∣∣
s=0

= κ∆u+ κ̄
cosψ

r
us

∣∣∣
s=L

= 0. (68)

Note that L with these boundary conditions is self-adjoint. We
must also ensure that the perturbation does not change the area
to first order, which yields an additional orthogonality constraint∫

dA2Hu = 0. (69)

We thus need to solve a constrained eigenvalue problem52,53

of the form
L u+2H p = λu (70)

for eigenvalue λ where p is a Lagrange multiplier that enforces
the orthogonality constraint eqn (69). Taking the inner product
of both sides of this equation with 2H reveals

p =−
∫

dA2HL u∫
dA(2H)2 , (71)

which upon substitution converts eqn (70) into an unconstrained
eigenvalue problem:

PL u = λu, (72)

where P is a projection onto the subspace (2H)⊥. From this
formulation, it is clear that u = 2H is an eigenfunction with eigen-
value zero; the remaining eigenfunctions are orthogonal to 2H,
and p is zero for these eigenfunctions. Since we are interested in
the smallest nonzero eigenvalue, we first discretize the operator

P†L P (which is equivalent to discretizing PL but has the ad-
vantage of being symmetric) using central finite differences, tak-
ing care to satisfy eqn (67) and eqn (68) at the interval endpoints,
and solve a standard matrix eigenvalue problem. The smallest
nonzero eigenvalue of this matrix and corresponding eigenvector
are used as initial guesses for MATLAB’s bvp4c in a routine that
mirrors the one described in Section 2.2. As before, we consider
separately the two cases κ̄ = 0 and κ̄ 6= 0.

3.4.1 Case of zero Gaussian curvature modulus

While analysis of the general expression for L requires a numeri-
cal routine, the stability of the catenoids can be determined more
readily by exploiting the intimate connection between Willmore
stability and area stability for minimal surfaces. For the nth mode
catenoid with tension µ(n), the stability operator simplifies to

L =
κ

2
J 2 +

µ(n)

2
J . (73)

Recall that for catenoidal membranes, the allowable tensions
µ(n)/κ are precisely the eigenvalues of the negative of the Jacobi
operator J [eqn 30]. Furthermore, note that any eigenfunction
of J is an eigenfunction of L when H = 0 because Dirichlet
conditions on u imply Dirichlet conditions on ∆u, simply by virtue
of the eigenvalue equation, and the orthogonality constraint eqn
(69) is trivially satisfied. As a consequence, the eigenvalues of L

take the form λm = µ(m)(µ(m)−µ(n))/(2κ) for m = 1,2, . . . for the
nth mode catenoid. From this expression, we can deduce for the
thick catenoid, whose allowable tensions µ(m) are all negative,
that the n = 1 mode is (marginally) stable while the higher order
modes have at least one negative eigenvalue λn−1 and are hence
unstable. For the thin catenoid, which has µ(1) > 0, the first and
second modes are both (marginally) stable, while the higher or-
der modes are unstable. This situation stands in stark contrast to
the case of the soap film, where thin catenoids are always unsta-
ble and thick catenoids are always stable with respect to the area
functional.

When H 6= 0, our numerical results indicate that the minimal
eigenvalue tends to decrease as n is increased, so that higher or-
der surfaces tend to be unstable. For the three values of Ā ex-
plored in this paper, no shape with n > 4 was found to be stable.
For Ā = 1, only the n = 1 branches are stable, and this is only
when the extension h/a & 0.1 (Fig. 7). For Ā > 1, thin branches
can contain stable shapes for sufficiently small n, as Figs. 10 and
12 show. Notably, the tethers that appear when Ā > 1 are stable,
in agreement with previous work13.

3.4.2 Case of nonzero Gaussian curvature modulus

For the reasons discussed above, the minimal eigenvalue diverges
when κ̄ 6= 0 and Ā< Āmax. The direction of divergence of the mini-
mal eigenvalue is the same as the that of the force, as illustrated in
Fig. 13c. This shows that at extensions near h = h∗, nonzero κ̄ has
a stabilizing effect on one branch and a destabilizing effect on the
other. In particular, a nonzero κ̄ is necessary to stabilize higher
order catenoid-like surfaces. Changing the sign of κ̄ changes the
direction of divergence.

When Ā > Āmax, the divergence at the maximal extension is not
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present, as noted before. Values of |κ̄| < κ are observed to have
a negligible effect on the stability of these surfaces. The tether
remains a stable solution.

4 Conclusions
We have generalized the time-honored soap film Plateau prob-
lem to the stretching of a fixed-area fluid membrane suspended
between two symmetric rings. In so doing, we have unified var-
ious classic shapes such as catenoids, thin tethers, and Willmore
tori, as well as new buckled oscillatory shapes, as different limits
of a single system, with area serving as a bifurcation parameter.
Fig. 14 summarizes how the force vs. extension curve changes
with area. Since we enforce fixed area, the tension must be de-
termined, and the membrane shape equation eqn (7) becomes a
nonlinear eigenvalue problem, generally yielding infinitely many
solution branches for a given extension. Particular attention was
paid to the catenoid, which always appears at a local (and global,
if Ā < 1) extremum of extension. By formulating the catenoid-
pulling problem as a perturbation problem, we calculated its per-
missible values of force (in the zero Gaussian curvature modulus
case) and its singular behavior (in the nonzero Gaussian curva-
ture modulus case). The tension and stability of catenoidal mem-
branes were also shown to be directly connected to the stability
of catenoidal soap films, by means of the Jacobi operator J for
minimal surfaces.

Although the model described in this paper was initially con-
ceived for axisymmetric colloidal membranes, colloidal mem-
branes have more degrees of freedom that we do not account
for here. For example, a more general model could remove the
fixed ring assumption and balance forces at the boundary rings,
perhaps with an edge bending stiffness and a line tension. A more
ambitious model might build in liquid crystalline rod-rod interac-
tions.

Future work could also include spontaneous curvature, where
Delaunay surfaces could appear as possible solutions. There
are also other asymmetric or self-intersecting solutions we didn’t
cover in depth in this paper. Analysis of these shapes may
strengthen the analogy between these surfaces and the classical
elastica. It would also be interesting to study the forces associated
with membrane transitions analogous to the transition between a
helicoid and a catenoid seen in a soap film54, or the topologi-
cal transition transformation from Möbius strip to two-sided soap
film55.
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A Appendices

A.1 Geometrical formulas

Here we define all the geometric quantities we use for complete-
ness, and especially to make our sign conventions clear. We begin
by writing the general geometric formulas, and then specialize to
the coordinates of Fig. 5. A surface is given by the parametriza-
tion X(ξ 1,ξ 2), where ξ 1 and ξ 2 are coordinates. The first funda-
mental form is given by

I = dX ·dX = gi jdξ
idξ

j, (74)

where gi j = ti · t j is the metric tensor. Thus, the area element
is dA =

√
gd2ξ , where g denotes the determinant of the metric

tensor. Also, the outward normal to the surface is given by n̂ =

∂X/∂ξ 1×∂X/∂ξ 2/
√

g, and the second fundamental form is given
by

II =−dn ·dX = Ki jdξ
idξ

j, (75)

where Ki j is the curvature tensor. As usual we raise indices with
gi j, the inverse of the metric tensor; for example, Ki

j = gikKk j. The
mean curvature is H = Ki

i/2 and Gaussian curvature is K = detKi
j.

The Laplacian operator is defined to be

∆ =
1
√

g
∂

∂ξ i
√

ggi j ∂

∂ξ j . (76)

As described in discussion of eqn (8), the normal curvature kn

of a boundary curve C of the surface is given by kn = nC · dT̂/d`,
where nC is the surface normal to the edge, T̂ is the unit tangent
vector of the edge, and the direction of increasing arclength `

along the edge is such that the surface lies to the left of edge as it
is traversed.

For an axisymmetric surface we use the coordinates s and φ ,
where s is arclength of the meridian, and φ is the azimuthal angle
(Fig. 5). The position in Cartesian components of a point with
coordinates (s,φ) is X = (r(s)cosφ ,r(s)sinφ ,z(s)), which leads to
the tangent vectors

t1 = (cosψ cosφ ,cosψ sinφ ,−sinψ) (77)

t2 = (−r sinφ ,r cosφ ,0). (78)

Thus, the first and second fundamental forms are given by

I = ds2 + r2dφ
2 (79)

II = −dψ

ds
ds2− r sin(ψ)dφ

2. (80)

The area element is dA= rdsdφ , the outward normal to the surface
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Fig. 14 Two views of the manifold of lowest mode equilibrium solutions to the axisymmetric membrane pulling problem with zero Gaussian curvature
modulus in (h/a, Ā,Fa/κ)-space, showing a cusp-type catastrophe at Ā = Āmax = 1.1997, where the catenoid ceases to exist. The manifold runs off to
infinite force at Ā = 1+ and also at h = 0 (not shown), where the thin catenoid has vanishingly small neck radius. Black curves are level sets of constant
Ā with the thick black lines spaced by 0.1 from Ā = 1 to 1.3; the lines at Ā = 1, 1.1, and 1.3 correspond to the n = 1 curves of Figs. 7, 10, and 12,
respectively. Color indicates dimensionless force.

is n̂ = (sinψ cosφ ,sinψ sinφ ,cosψ), and the mean and Gaussian
curvature are

H = −1
2

(
dψ

ds
+

sinψ

r

)
(81)

K =
sin(ψ)

r
dψ

ds
. (82)

Finally, the Laplacian operator for an axisymmetric surface is

∆ =
1
r

d
ds

r
d
ds

. (83)

A.2 The Noether invariant and axial force

In this section we derive an expression for the Noether invariant
associated with the energy eqn (6) under translation along the
axis of symmetry and show that this invariant is in fact the axial
force, as has been shown by Capovilla and Guven56. We include
the derivation here in the axisymmetric case for convenience. For
the purposes of this derivation it is convenient to write the energy
as E =

∫
Edz, where E(r,rz,rzz)dz = E (r,rs,rss)ds, with the z-axis

the axis of symmetry, rather than using the parameterization of
Sec. 2.2. Since the energy density has no explicit dependence on
the variable z, ∂E/∂ z = 0, and we may write

dE
dz

=
∂E

∂ r
rz +

∂E

∂ rz
rzz +

∂E

∂ rzz
rzzz. (84)

On the other hand, the Euler-Lagrange equation for r(z) is

∂E

∂ r
− d

dz
∂E

∂ rz
+

d2

dz2
∂E

∂ rzz
= 0. (85)

Using eqn (85) to eliminate ∂E/∂ r from eqn (84), and using the
Leibniz rule to rearrange some derivatives, we find that

E− rz
∂E

∂ rz
− rzz

∂E

∂ rzz
+ rz

d
dz

(
∂E

∂ rzz

)
≡ F (86)

is constant57.
This conserved quantity can be shown to be the axial force by

using the principle of virtual work:

δE−F1δ z1−
∫

dφr1mδθ1 = 0, (87)

where F1 is the external force, z1 is the z-position of the ring sub-
ject to the virtual displacement δ z1, r1 is the radius of the mem-
brane at z1, m is the external bending moment per unit length
at z1, and δθ1 the virtual change in the angle θ1 defined by
tanθ1 = rz(z1). First consider the variation δE due to the change
in radius ζ (z) and change in ring position (the ring at −z1 =−h/2
remains fixed):

δE =
∫ z1+δ z1

−z1

[E(r+ζ ,rz +ζz,rzz +ζzz)−E(r,rz,rzz)] . (88)

Expanding to first order ζ and δ z1, and integrating by parts as
usual, we find

δE
2π

=
∫ z1

−z1

δE
δ r

dz

+

[
ζ

(
∂E

∂ rz
− d

dz
∂E

∂ rzz

)
+ζz

∂E

∂ rzz
+Eδ z1

]
z1

, (89)

where
δE
δ r

=
∂E

∂ r
− d

dz
∂E

∂ rz
+

d2

dz2
∂E

∂ rzz
. (90)

To make progress, we must relate ζ (z1) and ζz(z1) to δ z1 and δθ1

using47

r(z1)+δ r1 = r(z1 +δ z1)+ζ (z1 +δ z1) (91)

tan(θ1 +δθ1) = rz(z1 +δ z1)+ζz(z1 +δ z1), (92)

or, working to first order in the small quantities,

ζ (z1) = δ r1−δ z1rz(z1) (93)

ζz(z1) = sec2
θ1δθ1−δ z1rzz(z1). (94)
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Using these formulas for ζ and ζz at the displaced end, we find

(δE−F1δ z1)−2πr1mδθ1 = 2π

∫ z1

0

δE
δ r

dz

+

[
E− rz

∂E

∂ rz
+ rz

d
dz

∂E

∂ rzz
− rzz

∂E

∂ rzz
−F1

]
z1

δ z1 (95)

+

[
sec2

θ1
∂E

∂ rzz
−2πr1m

]
z1

δθ1 +

[
∂E

∂ rz
− d

dz
∂E

∂ rzz

]
z1

δ r1.

Since δE −F1δ z1 − (2π)r1mδθ1 = 0, we conclude that the axial
force is the Noether invariant found in eqn (86), F = F1. Note
that δ r1 = 0 for our rigid rings, but we could use the coeffi-
cient of δ r1 in eqn (95) to find the radial force per unit length
of the membrane on the ring. Also, the bending moment per
unit length is given by m = ∂E/∂ rzz/(2πr1 cos2 θ1). Using the
following formulas for axisymmetric shapes, which arise from
X=(r(z)cosφ ,r(z)sin(φ),z) and the formulas of the preceding sec-
tion,

√
g = r

√
1+ r2

z

2H =
rzz

(1+ r2
z )

3/2
− 1

r(1+ r2
z )

1/2
(96)

K = − rzz

r(1+ r2
z )

2 (97)

kn = − 1

r1(z1)
√

1+ rz(z1)2
, (98)

one may verify that our formula for m gives the expected total
edge bending moment45 M = 2πmr1 = 2κH + κ̄kn.

In the case of a soap film between two rings with centers on the
z-axis, the axial force F needed to hold the two rings apart can be
found from eqn (86) with the result

E− rz
∂E

∂ rz
= 2πµ

r√
1+ r2

z

= F, (99)

where we have used the soap film energy density E =

2πµr
√

1+ r2
z . When r = b, where b is the neck radius of the

catenoid, i.e., the smallest radius of the catenoid, then rz = 0 and
F = 2πµb as expected.

For the general energy eqn (6) we have,

E = 2πµr
√

1+ r2
z

+ 2π
κ

2
r
√

1+ r2
z

[
rzz

(1+ r2
z )

3/2
− 1

r(1+ r2
z )

1/2

]2
, (100)

where we have not written the Gaussian curvature term because
direct calculation shows it makes make no contribution to F . The
full expression for F in this case of nonzero bending modulus κ

is too complicated to quote, but if we choose the origin of z to
coincide with the neck, where rz = 0, then

F = 2πbµ +2πκ
1−b2r2

zz(0)
2b

. (101)

Eqn (101) can be seen to be equivalent to eqn (12) by evaluating
H at the neck and using the fact that H = 0. For a free-floating
shape, F = 0, and we find a relation between the membrane ten-
sion, membrane bending stiffness, and longitudinal curvature at
z = 0:

µ =
κ

2

[
r2

zz(0)−
1
b2

]
. (102)

The sign of the Gaussian curvature modulus only affects the
bending moment boundary condition 2κH + κ̄kn = 0. Positive κ̄

makes the mean curvature at the edge negative, and negative κ̄

makes the mean curvature at the edge positive. Unduloids and
spheres have negative mean curvature in our convention, whereas
nodoids have positive mean curvature (e.g. see ref58, whose sign
convention is opposite to ours).
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