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Emergence of Structure in Columns of Grains and Elastic
Loops

Arman Guerra and Douglas P. Holmes∗

It is possible to build free-standing, load-bearing structures using only rocks and loops of elastic
material. We investigate how these structures emerge, and find that the necessary maximum loop
spacing (the critical spacing) is a function of the frictional properties of the grains and the elasticity of
the confining material. We derive a model to understand both of these relationships, which depends
on a simplification of the behavior of the grains at the edge of a structure. We find that higher
friction leads to larger stable grain-grain and grain-loop contact angles resulting in a simple function
for the frictional critical spacing, which depends linearly on friction to first order. On the other hand,
a higher bending rigidity enables the loops to better contain the hydrostatic pressure of the grains,
which we understand using a hydroelastic scale. These findings will illuminate the stabilization of
dirt by plant roots, and potentially enable the construction of simple adhesion-less structures using
only granular material and fiber.

1 Introduction

Ensembles of dry, adhesion-less grains can flow like a fluid1–3,
or jam into a solid-like state4,5. There are two notable mecha-
nisms by which grains jam. The first is the densification induced
by an external force6,7, e.g. coffee beans will jam when vacuum
packed in an air-tight bag. Jamming occurs when the number of
inter-grain contacts reaches a critical value – the aggregate be-
comes isostatic, since each grain is held in place by its neighbors
or the container7. As anyone who has run their hand through
the sand on a beach knows, however, these states are fragile, and
a small change in the direction of the external forces can often
induce flow. The second mechanism is the entanglement or inter-
locking of particles. This occurs either when the particles have a
high aspect ratio and are flexible, such as when birds build a nest
made from sticks8,9, fibers are spun into felt or cotton balls10–12,
or when particles geometrically interlock, such as when ants as-
semble themselves into bridges and rafts13, or staples are mixed
together14,15. These jammed states can be very stable in the ab-
sence of any additional, external confinement.

Both of these mechanisms appear when plant roots penetrate
into soil, i.e. an elastogranular interaction16 between a slender
elastic structure and a granular material. The elastica will en-
circle and confine grains, and at the same time entangle with
themselves, securing themselves and the grains that they contact
in place17,18. Entangled plant roots aid in preventing landslides
and stabilizing the banks of rivers19,20. Recently this method of
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stabilizing granular matter has been used to build structures – re-
searchers have combined different kinds of fibers and grains and
shaped them into load bearing walls and columns21–23.

Fig. 1 (a) The emergence of structure of a column of grains with exterior
loops of string. Each frame is a column prepared with a different initial
spacing Si. The frame indicated with the blue curly bracket is prepared
with Si just below the critical spacing Sc. (b) The column underlined in
blue in (a) loaded to over 105 Pa

In this Letter, we consider a simplified version of these struc-
tures, columns made from grains and loops of elastic rods that
provide external confinement (Figure 1). These loops act as con-
tainers for the grains, but in contrast to many other structures
made from confined grains24,25, the spacings between the loops
can be larger than the grain diameter. Therefore, we ask the ques-
tion: what are the minimum criteria to form a stable, elastogran-
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ular column?

2 Methods

We will parameterize the positions of the loops as the spacing
between them, S. In the limit of very large initial loop spacing
(Si → ∞), a column will collapse into a pile, the shape of which
is determined by the properties of the grains (Figure 1a, left)26.
As Si→ 0, the column will retain most of its initial shape. We de-
fine the critical spacing Sc as the maximum loop spacing that will
allow the columns to stand up with minimal reduction in their
height (schematic in Figure 2a) i.e. the final height H f is within
95% of Hi (to account for grain settling, more detail in Appendix
A). When Si crosses below Sc, the column may still lose rattler
particles, i.e. particles which do not contribute to the stability of
the jammed state27, but retain its initial imposed shape. Decreas-
ing Si further leads to no qualitative change in the final shape
(Figure 1a, right). We note that a column prepared at Si ≈ Sc can
handle a uniaxial compressive stress of over 105 Pa (Figure 1b).

2.1 Experiments

To determine Sc, we built elastogranular columns which varied
in Si, and considered a wide variety of granular matter (glass
beads, plastic sous-vide balls, peanut M&M’s, and ceramic rocks
– diameters ranging between 1.0 and 1.9 cm) which we selected
based on their varying frictional properties. We note that all of
the granular material we considered is approximately spherical
making it otherwise challenging to stabilize, i.e we do not con-
sider any grains with large aspect ratios9, interlocking parts15

etc., which may otherwise become kinematically trapped into a
structural form. First, we poured the granular particles into an 8
cm diameter hollow, hard, cylindrical slip-cast mold (Clear Cast
Acrylic Tube, 3-1/2" OD x 3-1/8" ID, McMaster) until they reached
a prescribed initial height Hi of 16cm. At regular intervals in this
pouring process we leveled the grains and placed an 8cm diam-
eter loop around the exterior of the grains. For our first exper-
iments we used string (type 18 Twisted Mason’s Twine, McMas-
ter). We then removed the slip cast mold vertically in a quasi-
static manner (20mm/s) using a linear actuator (Zaber Technolo-
gies T-LSR300B), and measured the final height H f of the elas-
togranular column when it came to rest. We use the angle of
repose α, commonly defined as the angle that a quasi-statically
heaped pile of grains makes with the ground26, to account for
the friction between grains, as well as any slightly non-spherical
geometrical features. In the case that the grains are made from an
ideal, cohesion-less Coulomb material, this angle is related to the
coefficient of friction by α = φ = arctan µ, where φ is the angle of
internal friction and µ is the coefficient of static sliding friction28.
This assumption is not perfect – in reality α is a complicated func-
tion of the rolling and sliding friction, gradation, shape, etc. of
the particles26,29,30. There are in fact many definitions and ways
to measure the shear strength and frictional properties of granu-
lar materials, which may be applicable to different particle sizes,
shapes, gradations, and loading scenarios26,31. However, since
our grains have a comparably high sphericity and are of uniform
size and shape, and further since they are under a self-load on a

flat surface, we believe that the angle of repose is a sufficient and
appropriate metric to estimate the role of friction and geometry
in this work.

We use the angle of repose α, commonly defined as the an-
gle that a quasi-statically heaped pile of grains makes with the
ground26, to account for the friction between grains, as well
as any slightly non-spherical geometrical features. In the case
that the grains are made from an ideal, cohesion-less Coulomb
material, this angle is related to the coefficient of friction by
α = φ = arctan µ, where φ is the angle of internal friction and
µ is the coefficient of static sliding friction28. While this assump-
tion is not perfect, and there has been substantial work dedicated
to understanding the exact relation between α and µ 26,29,30, we
believe this is a sufficient metric to estimate the role of friction
and geometry in this work.

Intuition would suggest that if the grains are approximately
spherical, Sc would be on the order of the grain diameter d, and
that Sc will increase with the grain–grain friction. However, the
strings are flexible, in addition to being able to translate and ro-
tate, and as such we find that if the friction between the grains
is low, the grains tend to push the string out of the way and es-
cape even when Si < d (Figure 2a, (i)). In the limit of large α, we
find that grains will tend to collocate into stable arrangements
between strings (Figure 2a (iii)), allowing Sc to reach as high as
1.5d. We plot Sc/d vs α for our experiments with string in Fig-
ure 2c (circles).

For the same range of granular material properties, we also
investigated the opposite limit – where the strings are replaced
with rigid acrylic rings of the same diameter and thickness (Figure
2c, squares). We found that Sc for these experiments followed
a similar trend in α, and was always higher than experiments
using strings. We attribute the difference between the behavior
of columns made with string and with acrylic to the negligible
bending rigidity of the string, which is noted in Figure 2a (ii) –
the grains do not bend acrylic rings much, and as such the grains
can be stable even when they only overlap with the rings slightly.
On the other hand when the loops are flexible, the grains tend to
bend them out of the way, thereby providing a means for escape.
One might expect that if the grains are perfectly frictionless they
may slip between the flexible strings no matter how small the
spacing is, whereas no rigid grain can move between acrylic loops
which are spaced less than the grain diameter.

2.2 Numerical Simulations

We next investigated the influence of bending rigidity of the con-
fining loops on the stability of the columns. Experimentally it
is difficult to vary the bending rigidity of the confining loops
without changing their material and geometric properties. To
complement our experimental data, we repeated the experiments
in the Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS) using hard (Young’s Modulus Eg = 109 Pa, Pois-
sons ratio ν = 0.4, coefficient of restitution (e) = 0.35) spheres
(diameter d=1.15 cm). We use tangential and rolling stiffnesses
Kt = 4Eg/2(2− ν)(1+ ν), Kr = 0.1Kt and rolling damping coeffi-
cient γr = 132–34. We varied the sliding friction coefficient µs from
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Fig. 2 (a) A schematic of our experiment. We build columns inside of
an acrylic slip-cast mold to a height Hi, then quasi-statically remove the
mold and measure H f . The critical spacing Sc is defined as the mini-
mum spacing such that the column does not reduce in height (rigorously
defined in Appendix A). (b) Edges of columns made from (i) Marbles
(α = 0) and string, (ii) Ceramic (α ∼ 30) and acrylic rings, and (iii) Ce-
ramic and string. White lines are added to draw the eye to the loops (c)
Sc vs α for experiments (strings– circles, acrylic – squares) and simula-
tions (diamonds). Data is colored by the bending rigidity of the loops
(∼ Eh3) divided by the density of the grains B/ρ (Pa · m6/kg). The
yellow data point has B/ρ ∼ 30×10−4 but we have cut off the colorbar
for visualization.

0.1-0.55 and we took the rolling friction coefficient µr = µs
32–34.

To make confining loops we simulate many small spheres (Fig-
ure 4h) with nearest-neighbor potentials

U = Y (r− r0)
2 +B(1+ cos(θ)) (1)

Which includes a stretching term, a harmonic function of the
distance between adjacent loop particles r and the equilibrium
distance r0, and a bending term, which is a function of the an-
gle between groups of three respective loop particles θ . If we
take the stretching modulus Y = Elπh/8 and the bending modu-
lus B = Elπh3/64 where El is the Young’s modulus of the loops
and h is the thickness of the confining loop, we will recover the
formula for the energy of a cylindrical elastic loop (Appendix B).
We fix the stretching rigidity and vary the bending rigidity of the
loops in simulations (Figure 2c, diamonds). We will note that, in
addition to enabling us to systematically vary the bending rigidity
of the loops, the simulations were complementary to our experi-
ments in that they allowed us to study an experimentally inacces-
sible range of α, specifically α ∈ (1,10)∪ (16,26), for which were
unable to find grains in our target diameter range, and enabled a
systematic study of the dependance of the bending of the loops on
each experimental parameter, thereby helping to justify a scaling

law for the system (see Figure 4).

3 Analysis
These experiments and simulations so far indicate that the critical
spacing at which columns stand up is a function of the angle of
repose α of the grains and the bending rigidity B of the confining
loops. To understand how these factors play a role, we will con-
sider a reduced-order model of the grain arrangement at the edge
of a column (which takes into account the possible contributions
of grain-grain friction, grain-loop friction, and loop bending) and
find the conditions for local stability. This simplification will allow
us to establish some guidance on what combination of material
and geometric parameters will enable the emergence of a column
that can bear its own weight.

Consider an arrangement of three grains near the edge of a
column, one interior grain contacting two exterior grains both of
which contact the confining loops (Figure 3a). We will assume
that the grains are spherical and monodisperse, and we note that
since we have illustrated a 2 dimensional lateral cross section of a
3 dimensional scenario, the exterior grains may vertically overlap
with one another. In the absence of the exterior grains, the in-
terior grain would escape the column radially, and as such there
must be an outward radial force acting on the interior grain which
is balanced by the exterior grains. Consequently, there must be a
force acting inwards on the exterior grains from the confining
loops – to understand the role of grain-grain friction we will first
assume that this force results from a hoop stress, that is, it acts
radially inwards. We illustrate the outward radial force as Fr and
the inward hoop force as Fh.

Fig. 3 (a) A schematic of our mathematical model. An interior grain is
subject to an outward radial force but held in place by two exterior grains
which contact the loops. According to the Coulomb constraint, for the
grain-grain contact point to be stable, the angle between the centers
of the interior and exterior grains can be at most α, so the maximum
stable distance between loops Sc = 2d sinα + 2yc. (b) We denote y f

c as
the maximum stable height of the loops with respect to the grains due
to frictional stability, which can be found with a similar constraint as
above. (c) (i) An elastic rod loaded with a force P will bend a distance ỹ
proportional to the ratio of the applied force and the bending modulus.
(ii) The radial force from the interior grains threatens to bend the loops
out of the way. (iii) We denote yB

c = d/2− ỹ as the maximum stable
height of the loops with respect to the grains due to the bending rigidity
of the loops.

From here, we can determine whether the contact point be-

Journal Name, [year], [vol.],1–8 | 3

Page 3 of 8 Soft Matter



tween the interior and exterior grains will be stable or will slip
based on their relative positions. Using the familiar Coulomb con-
straint, we can say that the contact will be stable if µFh,n ≥ Fh,t

where Fh,n and Fh,t are the components of the hoop force that are
normal and tangential, respectively, to the tangent line of contact
between the spheres, illustrated in Figure 3a. This provides an up-
per bound for the angle θ between the horizontal and the vector
which points from the centers of the interior and exterior grains –
we can say α = arctan µ ≥ arctanFh,t/Fh,n = arctanFh sinθ/Fh cosθ =

θ . Therefore the maximum distance between the centers of the
exterior grains is 2d sinα.

The only further unknown is the maximum vertical distance
between the loops and the centers of the exterior grains. To find
this we will separate out the influence of the friction from the
influence of the bending rigidity – one could imagine that if the
loops had negligible bending rigidity, but there was a high de-
gree of friction between the grains and the loops, the loops may
constrain the grains because the contact point between the loops
and the grains does not slip. Alternatively, in the case of infinitely
slippery grains and loops, if the loops were stiff, the grain-loop
contact point may slip but the loops may not bend out of the
way enough for the grains to escape. We will call y f

c the maxi-
mum critical height of the loops due to frictional stability, and yB

c
the maximum critical height of the loops due to bending rigid-
ity. We will then find two versions of the largest stable spacing,
S f

c = 2d sinα+2y f
c and SB

c = 2d sinα+2yB
c . The actual critical spac-

ing will be the overall largest stable spacing, and therefore is the
larger of the two – Sc/d = max(S f

c /d,SB
c /d)

We start with y f
c . If we still consider the hoop force acting

between the exterior grains and the loops, and we assume that
the grain-grain coefficient of friction is the same as the grain-loop
coefficient of friction, we find ourselves with an almost identical
constraint as before – the maximum value of the angle between
the horizontal and the vector pointing between the centers of the
grains and the loops is α and we find that y f

c = d
2 sinα

Now, to find yB
c we must consider the force which acts to bend

the loop out of the way. We will set aside the grain-loop friction
and relax the hoop-force assumption, such that now there is a
vertical force between the grains and the loops. When a force P
acts on an Euler–Bernoulli beam with a cylindrical cross-section
h, length L, bending modulus B, and clamped edges, it will bend
with a maximum amplitude

ỹ =
PL3

192Bh
(2)

Illustrated in Figure 3c (i). If the loop is to constrain a grain,
then it must not bend out of the way so much as to clear the top
of the grain (Figure 3c (ii)). We can therefore take the height of
the top of the grain d/2 and subtract the bending of the loop ỹ to
find the maximum height of the loop such that it will not bend
out of the way of the particle, yB

c = d/2− ỹ illustrated in Figure 3c
(iii). To put yB

c in terms of the variables of our problem, we will
assume that the force on each loop is due to the hydrostatic pres-
sure from the grains, which will be φrl pρgD at a depth D, density
ρ, and random loose packing fraction φrl p ∼ 0.55. The area asso-
ciated to each loop is 2πRSc where R is the radius of a column.

10−1 100
10−1

100

1

H/H0

ỹ
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Fig. 4 (a) We fix α ∼ 17deg and measure the change in ỹ as we indi-
vidually vary the height of the columns, (b) radius of the columns, (c)
diameter of the particles and (d) thickness of the loops in simulations.
We normalize each input variable and ỹ by the values in the original sim-
ulations (H0,R0,d0,h0, ỹ0). The black guide lines have the slopes from
our mathematical model: 1, 4, 0, and -1 respectively, and the blue lines
indicate the range of the parameters in experiment. (e) Two images
from our simulations, and a 3 dimensional graph of a ring selected from
each. The z-axis is scaled up to emphasize the curvature of the ring.
The bending length L of the rings is a function of both R and d. We ig-
nored the d contribution, which is why we overestimate the dependance
of ỹ at high R and underestimate at low d. (f) Comparison between
Stheory

c /d = max(3sinα, 2sinα+1
1+2βhe

) and our experimental values of Sc. We
color by the inverse of the hydroelastic scale, 1/βhe and fill based on
whether experiments are in a friction controlled or bending controlled
region of (α,β ) space. The yellow data point has 1/β ∼ 150 but we have
cut off the colorbar for visualization. Error bars are taken from Figure 2
and do not include the error in x. In the inset we show the data from Fig-
ure 2c with our analytical results plotted. The thicker line represents S f

c

and the thinner lines represent SB
c for different βhe. The dotted sections

represent when SB
c is below S f

c .

Therefore the average force on each loop is P∼ φrl pρg(H/2)2πRSc

where H is the height of a column. Depending on how the force
is distributed on each loop, the bending length L will either scale
with the total length of the loop ∼ R or on the fluctuations in
the force applied to the loop ∼ d. We find qualitatively from our
simulation data that, in the range of d/R that we study, most of
the force on a given loop can be attributed to a small number of
grains, which implies that L will be limited by R. This gives the
result
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yB
c =

d
2
− φrl pπ

192

(
ρgHRSc

Bh/R3

)
(3)

Where we have expressed the second term as a ratio between
the hydrostatic force on the loops and their bending rigidity. We
will separate Sc from this second term and wrap the rest of the
term into a hydroelastic scale, βhe =

φrl pπ

192

(
ρgHR
Bh/R3

)
.

We note that in our experiments and simulations so far the only
variables which have changed significantly are Sc, ρ, and B. To
further test our scalings of ỹ in the variables that we had not yet
varied, we performed some additional simulations, the results of
which are shown in Figure 4. We note that when d/R is small, ỹ
starts to scale with d and the R dependence reduces. This occurs
because as the number of contacts with the loop increases, the
force fluctuations start to limit the bending of the loops, and the
bending wavelength shortens (Figure 4e). But, within our exper-
imental range (marked in blue), our scalings seem appropriate.

We can now plug in our values of y f
c and yB

c to find the critical
spacing. Rearranging, we find that

S f
c /d = 3sinα

SB
c /d =

2sinα +1
1+2βhe

(4)

The expected stability is therefore set by the maximum of these
two values, one which is solely dependent on the friction (α)
and a second that is dependent on both friction and the bending
rigidity of the loops (α and βhe where βhe ∝ B−1, see Equation 3).
We plot Sc/d against our theoretical finding in Figure 4f and find
good agreement between our experiments and the behavior de-
rived from our simplified model, indicating that this model pro-
vides good intuition for the interactions at play. This reduced
order model describes the minimum conditions necessary for a
column of loops encased by a finite number of elastic loops to
retain its shape when placed in a gravitational field. However,
the simplifications in the model make it difficult to comment on
the stability of the resulting equilibrium shapes. Indeed, these
columns may be fragile to eccentric loading, shear, or bending,
and may be sensitive to defects and imperfections which are ef-
fectively averaged over by our inherent assumptions. These are
important considerations left to future work, however we reiter-
ate that, once these structures are jammed in response to uniaxial
loading, they are capable of bearing significant loads (Figure 1).

4 Adaptable Forms
Now finally we ask the question: what happens when we pre-
pare columns with Si > Sc? When constructed on flat ground, the
columns become encompassed by a pile of the grains which es-
cape, as shown in Figure 1a. This pile obscures the final state of
the loops. If instead, we set the columns on a pedestal that is
the same diameter as the diameter of the columns, the escaping
grains fall away and we can observe the dynamics of the loops.

The evolution of the average spacing of strings S for various
columns with Si > Sc is shown in Figure 5b. Remarkably, as the
columns settle, S→ Sc. In other words, a string will fall until the
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Fig. 5 (a) (i) Snapshots of an experiment with ceramic grains where
columns are built with an initial height of 33cm and Si ∼ 3.6Sc. (ii) The
final state of the columns for different runs of the experiment shown in
(i). As grains escape between the strings, the columns shrink until they
end up at a H f which depends on the number of spacings NS (which
includes the spacing between the bottom (top) of the column and the
bottom (top) string). (b) Left: Height of columns made from ceramic
grains as the slip cast-mold is removed. We normalize the height by
the product ScNS. If each spacing was exactly Sc this value would be 1.
Right: We find S f at multiple points around the circumference of the
cylinder and plot the average (blue circles) and median (red diamonds)
value, normalized by Sc, for different α. (c) We can use these ideas to
make structures that are stable in compression and can be dismantled by
a simple user input.

spacing between it and the string below it (or the ground) is, on
average, equal to Sc, irrespective of the initial spacing. The result
is a shorter column with a final spacing S f = Sc. A striking ex-
ample of this phenomenon is shown in Figure 5a. This behavior
emphasizes the robustness of a Sc which is impervious to dynami-
cal effects, and indicates the possibility that this technology could
be used to construct collapse-mitigating structures.

Another interesting feature of these aggregate structures is that
there is no adhesion between respective elements. This allows
them to respond in drastically different ways to slightly different
inputs, and quickly and easily change shape. One could imagine
building stable elastogranular structures that could handle large
compressive loads, but then be shortened or demolished in sec-
onds with the appropriate input. One example of such a structure
is shown in Figure 5c. We 3-d printed a plastic (ABS P430) he-
lix which we filled with rocks to form a column. This column
was stable in compression, however when the helix was uncoiled,
which could easily be done by hand, it collapsed layer-by-layer,
allowing for some control over its final height.
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5 Conclusions
In this work, we set out to understand how elastic rods constrain
and jam granular matter. We have found that the elastogranular
interaction in this regime is predictable and robust, allowing us
to quickly and reliably form structure which can bear significant
load (although the limits of this load, and the intricacies of the
mechanical response of the columns to compression is beyond our
current scope). The stability of these structures depends on the
size and frictional properties of the grains, as well as flexibility
of the rods. We have so far only considered external loops of
elastic, although it has been shown that internal elastic rods are
also sufficient to form structure from granular material22. We
expect that this will be related to the mechanics which govern the
knotting of ropes35,36 and, similar to the jamming of chains of
beads37,38 could be understood through a similar mathematical
framework as governs the entanglement of polymers39.

Conflicts of interest
There are no conflicts to declare.

Appendix A: critical spacing
To find the critical spacing for both experiments and simulation,
we build columns with a fixed initial height Hi and vary the num-
ber of strings with equal spacings Si between them. We linearly
fit the data for which H f < Hi and extrapolate to find the point
where H f = γHi. We use γ = 0.95 for experiments and γ = 0.9 for
simulations.

The reason that we use a tolerance factor γ which is less than 1
is because we found that, in practice, when we removed the slip-
cast mold, the grains in the columns had a tendency to settle, and
even if Si << Sc some of the grains from the top of the columns
would dislodge, shortening the column slightly. We chose γ em-
pirically as the fraction of Hi that most columns tended to surpass
when Si << Sc.
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Fig. 6 To find the critical spacing we plot the final height of the columns
vs the number of strings, which is linear when Si > Sc (filled circles) based
on the data presented in Figure 5. We fit this data and find Sc as the
spacing at which H f > γHi where γ is an empirical tolerance factor close
to 1. The error on the linear fit gives us the error in Sc.

Appendix B: simulation of loops
We would like to replicate the physics of a thin cylindrical loop
with Young’s modulus E, circumference l, and cross sectional di-
ameter h (Figure 7a). We will connect particles of diameter h in a
loop (Figure 7b) with the following potentials.

To add a stretching rigidity to the loop we will apply a har-
monic “Bond” between adjacent particles in the beam using the
LAMMPS bond_style harmonic pair potential. We define an
equilibrium distance between adjacent particles, or equilibrium
Bond length r0 and calculate the energy of a Bond between parti-
cle i and particle j which has a Bond length ri j as

Us = Y (ri j− r0)
2 = Y (∆ri j)

2 (5)

Where we define ∆ri j to be the change from equilibrium of the
Bond length. The force on the particles are as such F = dUs/dq =

2Y ∆ri j. In all of the simulations above, r0 is equal to the diameters
of the particles h, that is, the potential acts to keep the particles of
the beam just in contact. This is not necessary, one could imagine
a beam made up of more spherical particles with some neigh-
bor overlap, or fewer spherical particles with a larger distance
between each pair.

We take the definition of the Young’s modulus E = σ/ε =

(F/A)/(∆l/l0) where A is the cross sectional area of the loops
π(h/2)2. If we statically compress or stretch a beam, the force
on the ends will be equal to the force between any adjacent parti-
cle, which we found above to be F = 2Y ∆r (we have dropped the
subscript of r because the Bond lengths will all be the same). The
strain of the whole loop ∆l/l0 will be equal to the strain of each
Bond ∆r/r0 so we have

E =
F/A
∆l/l0

=
2Y ∆r

π(h/2)2
h

∆r
= Y

8
πh

=⇒ Y =
π

8
Eh (6)

Where we have used the fact that r0 = h.
To derive the pair potential needed to induce the correct bend-

ing rigidity in our LAMMPS beams we will consider first a contin-
uous beam (Figure 7c inset, left). We will bend the beam and find
the resultant bending energy, and we will use that as the target
energy for a discrete beam bent in the same orientation.

For a continuous elastic beam with a moment I, the energy due
to bending is

Uc
b =

EI
2

∫
κ

2ds (7)

Where κ is the curvature of the beam, and we have used the su-
perscript c to indicate that the beam is continuous. To achieve an
energy of bending in LAMMPS we will use what is called an “An-
gle.” A LAMMPS Angle is like a Bond (which we used in the pre-
vious section on the stretching potential) except instead of con-
sidering the interaction between two particles, each Angle applies
a potential based on the relative positions of three particles. The
specific Angle potential that we will use is angle_style cosine
which applies a potential

Ud
b = B(1+ cosθi jk) (8)
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Where θi jk is the angle between the three particles (Figure 7c
inset, right) and we have used the superscript d to indicate that
the beam is discrete. We will bend both the continuous and the
discrete beams to a radius of curvature R such that for both beams
κ = 1/R everywhere (Figure 7c, inset). The energy in a chunk of
the continuous beam of width h will be

Uc
b =

EI
2R2

∫
ds =

EI
2R2 h =

Eπh5

128R2 (9)
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Fig. 7 (a) Theoretical predictions for the shape of a loop of circumference
l loaded with a force F at two points opposite one another. (b) Results
of a LAMMPS simulation of the setup in (a). (c) Non-dimensionalized
Force Fl2/EI vs displacement ∆/l for a theoretical Euler-Bernoulli loop
and a loop simulated in LAMMPS. In the inset we illustrate two beams
bent with a radius of curvature R – (left) a continuous cylindrical beam
of diameter h, and (right) a discrete cylindrical beam made up of particles
of diameter h. The energy of bending of the discrete beam will depend
on the angle θ between each triplet of particles.

Where we have taken the moment of the cylindrical beam I =
πh4/64. In the discrete case, in a chunk of width h in the bulk
of the beam there is one particle (since the particles have width
h). The energy assigned to that particle because of the bending
of the beam can be found by summing up the contributions of
each of the Angles that it is a part of. There are three particles
in each Angle, so to each constituent particle we will assign one
third of the energy in that Angle. Furthermore each particle is a
part of three angles, so the energy in each particle in the column
due to bending, and therefore the energy in a chunk of the beam
of width h is 3 ∗ (1/3)B(1+ cosθ) = B(1+ cosθ) where we have
used the fact that the entire beam is bent to the same curvature
so each angle θi jk between all sets of particles is the same.

The only thing that is left is to connect (1+ cosθ) to the radius
of curvature R. We will do this geometrically referring to the

angles and lengths defined in Figure 7c inset, right. By the law of
cosines, we have that

h2 = 2R2−2R2 cosφ = 2R2(1− cosφ) (10)

Since the interior angles of a triangle must sum to 180 degrees,
we have that φ = 180+θ/2+θ/2 =⇒ θ = 180−φ so 1+ cosθ =
h2

2R2 . Setting the energies equal we have

Ub =
Bh2

2R2 =
Eπh5

128R2 =⇒ B =
Eπh3

64
(11)

Thus the total energy of the loops is

U =
π

8
Eh∑(ri j− r0)

2 +
Eπh3

64 ∑(1+ cos(θi jk)) (12)

To validate this result we simulate a loop compressed by two
point forces and plot the distance between the points ∆ as the
force on the loop increases (Figure 7). We find good agreement
between the simulation and the theoretical prediction.
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