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Twisted loxodromes in spindle-shaped polymer nematics

Helen S. Ansell and Randall D. Kamien

We develop an energetic model that captures the twisting behavior of spindle-shaped polymer
microparticles with nematic ordering, which display remarkably different twisting behavior to ordinary
nematics confined to spindles. We have previously developed a geometric model of the twisting, based
on experimental observations, in which we showed that the twist pattern follows loxodrome spirals
[Ansell et. al., Phys. Rev. Lett., 2019, 123, 157801]. In this study, we first consider a spindle-shaped
surface and show that the loxodrome twisting behavior of our system can be captured by the Frank
free energy of the nematic with an additional term constraining the length of the integral curves of
the system. We then extend the ideas of this model to the bulk and explore the parameter space for
which the twisted loxodrome solution is energetically favorable.

1 Introduction
Spontaneous twisting is observed in many liquid crystalline sys-
tems in which the constituents are achiral and the confinement
does not require a twisted configuration.1–11 Such behavior may
be observed in systems for which the relative magnitudes of the
elastic constants of the material make the twist deformations
energetically favorable.4–10,12–14 Examples of such spontaneous
twisting have been observed in achiral nematic molecules con-
fined to cylindrical capillaries7 and droplets with homeotropic an-
choring.8 Twisted bipolar structures in spherical nematic droplets
provide a frequently observed example of this phenomenon.3–6

Theoretical work by Williams13 showed that the twisted bipo-
lar configuration is energetically favorable in spherical bipolar
droplets if the elastic constants of the material satisfy the in-
equality K2 < K1− 0.43K3, where K1, K2 and K3 are respectively
the splay, twist and bend elastic constants of the nematic. More
recently, twisted bipolar structures have also been observed in
elongated spindle-shaped nematic droplets9–11 and polymer liq-
uid crystalline microparticles.15,16

Understanding the behavior of nematics confined to elon-
gated spindle-shaped regions has long created interest due to
the spindle-shaped tactoids that form in lyotropic liquid crystals
as the nematic phase nucleates. These tactoids were first ob-
served by Zocher in the 1920s17 in vanadium pentoxide and have
since been observed in a host of inorganic and biological materi-
als.9,18–26 Tactoids consist of regions of nematic that coexist with
the surrounding isotropic phase. The prevalence of tactoids in
lyotropic systems, as well as bipolar structures in thermotropic
droplets, has inspired many studies aiming to understand the
shape and director field of such systems,10–14,27–35 which de-

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia,
Pennsylvania, 19104, USA; E-mail: kamien@physics.upenn.edu

pends on the interplay between the elasticity, surface tension and
droplet size as well as the effect of applied fields. Small tactoids
often favor elongated shapes to reduce elastic deformations of
the director field, while the almost spherical shape of larger tac-
toids is dominated by the interfacial tension at the tactoid sur-
face. Using scaling arguments, Prinsen and van der Schoot31,32

showed that the director field configuration in a tactoid depends
on its size, with smaller tactoids having a homogeneous director
field while larger tactoids have a quasi-bipolar director field that
becomes exactly bipolar in the infinite volume limit. The same
authors also showed that spindle-shaped bipolar tactoids with
pointed tips have a lower free energy than comparable prolate
spheroidal-shaped tactoids,31 consistent with the spindle shapes
observed experimentally.10,17,19–24,26–28

Inspired by the work of Williams,13 Prinsen and van der Schoot
also investigated twisted bipolar structures in spindle-shaped tac-
toids14 and generalized the Williams inequality to account for
the anisotropic shape of the spindle. They showed that the maxi-
mum value of the twist elastic constant, relative to the splay and
bend constants, at which twisting is preferable decreases as the
tactoids become smaller in volume, and consequently more elon-
gated. The typical values of elastic constants in many lyotropic
systems do not satisfy the requirements for twisting, so these sys-
tems would not be expected to exhibit a twisted bipolar configu-
ration.14 However, twisted bipolar structures have been observed
in lyotropic chromonic liquid crystals,6,9,10 a class of materials in
which the twist elastic constant is significantly smaller than the
splay and bend elastic constants. These materials therefore ap-
pear to satisfy the inequality required for twisting and are indeed
observed to display highly twisted bipolar configurations.

Recently, we investigated the twisting behavior of spindle-
shaped polymer liquid crystalline microparticles16 and developed
a geometric model to describe their twisting behavior. These bipo-
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lar polymer particles were created by polymerizing spherical bipo-
lar nematic droplets containing the reactive mesogen RM257 at
low wt% in a mixture with the non-reactive liquid crystal 5CB. In
this system, the rod-like reactive mesogens join together to form
the polymer backbones. The nematic ordering prior to polymer-
ization is crucial for the behavior of the system and results in
a polymer network that follows the orientation of the bipolar ne-
matic director field. After removing the 5CB, the initially spherical
polymer particles deswell anisotropically in solvents as a result of
the anisotropy of the nematic director field. The particles deswell
in all directions, but more so around their equator than along
the line connecting the two boojum defects. The resulting parti-
cles form elongated spindle shapes that display a twisted bipolar
structure. In our geometric model, we showed that the twisting
behavior of the polymers on the surface was well-described by a
type of spiral called a loxodrome, in which the angle between the
integral curves of the system and the principal directions of the
surface are the same at every point along the curve. Such a twist-
ing structure has been previously assumed in theoretical studies
of twisted bipolar structures13,14 and it has been suggested that
such structures are consistent with observations of other twisted
bipolar systems.3,10,11

While our polymer system displays a twisted bipolar structure
that is well-described by loxodromes, the overall twisting behav-
ior is not consistent with that predicted for spindle-shaped tac-
toids.14 Our system is consistent with the model in that we ob-
serve that smaller volume spindles have a larger aspect ratio.
However, we also observe that larger aspect ratio spindles are
more twisted than those that are closer to spherical, in direct con-
trast with the tactoid model. In this study, we therefore develop
an energetic model that captures the behavior of these twisted
spindle-shaped polymer particles. Given the nematic ordering of
the polymer system, we base our model around the Frank free
energy of the nematic and seek to incorporate additional terms
to capture the polymer behavior. We focus our investigation on
determining the conditions under which the twisted loxodrome
structure that has been previously assumed minimizes the total
free energy. We show that, as was the case in our geometric
model, incorporating a constraint on the length of the integral
curves in our system results in twisted loxodrome solutions that
predict behavior that is consistent with our previous experimental
observations. We also show that the twisted loxodrome solution
is exact only for certain classes of surface of revolution, including
the spindle.

The structure of the remainder of this paper is as follows.
In section 2, we introduce the parameterization of the spindle
shapes and discuss the Frank free energy that will be the starting
point of our model. In section 3 we consider a nematic confined
to a spindle-shaped surface. We show that twisted loxodrome so-
lutions do not minimize the Frank free energy, but that adding an
additional length constraint term allows for an exact twisted lox-
odrome solution if K1 = K3. We show that the loxodrome solution
is a good approximation in cases where the deviation between K1

and K3 is small. In section 4 we consider the conditions on the
shape profile of a surface of revolution for it to support a twisted
loxodrome solution, and show that the most general surface that

supports such a solution is the general torus. In section 5 we then
turn our attention to the bulk and show that, while not exact,
twisted bispherical loxodrome solutions are a good approxima-
tion to the bulk solution. We use this to extend the ideas of our
geometric model to the bulk structure and show that the resulting
model favors twisting for a wider parameter range than expected
in twisted nematic systems that do not have the additional length
constraint.

2 System parameterization and energy
In this study, we consider a nematic system confined within a
spindle-shaped droplet with strong planar anchoring at the sur-
face in which the nematic director field adopts a bipolar config-
uration. We define a spindle as a surface of revolution formed
by revolving a minor arc of a circle about the chord connecting
its endpoints. In line with previous investigations, we take the
director field within the bipolar droplets to follow the symme-
tries of a bispherical director field,12–14,27,28,31 which was shown
by Williams12 to be a good approximation for the numerically
solved director field in the one constant approximation. The in-
ternal bispherical structure can be considered to consist of layered
spindles of the same major axis length and with different minor
axis lengths, arranged so that the tips of all of the spindle layers
coincide at the locations of the two boojum defects.

The structure of the spindles naturally leads us to describe po-
sitions in the system using bispherical coordinates (η ,φ ,ψ), with
corresponding orthonormal unit vectors (êη , êφ , êψ ), which are
shown in fig. 1. These coordinates can be related to Cartesian
coordinates with a common origin through the transformation

(x,y,z) =
1
Z
(sinη cosψ cosφ ,sinη cosψ sinφ ,sinψ), (1)

where Z = 1+ cosη cosψ. In the bispherical coordinate system,
a surface of constant η defines a spindle-shaped surface. The
value of η varies within a spindle between zero along the line
connecting the two boojum defects and a maximum value η0 at
the spindle surface. The aspect ratio u0 of the spindle is u0 = (1+
cosη0)/sinη0 = cot(η0/2), which has a minimum value of one for
a sphere, for which η0 = π/2, and increases as η0 decreases and
the spindle becomes more elongated. The coordinate 0≤ φ < 2π

is the azimuthal angle while ψ represents the polar angle. We
choose the origin of ψ such that it varies between zero at the
equator of the spindle and ±π/2 at the tips.

The free energy of the nematic can be described using the Frank
elastic free energy36

FF =
1
2

∫
dV
[
K1(n∇ ·n)2 +K2(n ·∇×n)2 +K3(n×∇×n)2

]
−K24

∫
dS · [n(∇ ·n)− (n ·∇)n] (2)

where n is the spatially varying nematic director field that has the
property n =−n. The elastic constants K1, K2 and K3 are, respec-
tively, associated with the splay, twist and bend deformations of
the director field within the volume V of the droplet. The K24

term is integrated over the surface S of the droplet and describes
saddle-splay deformations.
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Fig. 1 Schematic slice through the bispherical coordinates system. Black
arcs and dashed gray lines indicate surfaces of constant η, which all pass
through the two poles of the structure. A complete surface of constant
η is formed by revolving one of these arcs about the line connecting the
poles. Positions on each spindle surface (fixed η) are described in terms
of the angle ψ, which varies between 0 at the equator and ±π/2 at the
tips, and φ which is the azimuthal angle.

The elastic constants must satisfy the Ericksen inequalities,37

which require that K1, K2 and K3 are non-negative while K24

must satisfy |K24| ≤ 2min(K1,K2). The sign of K24 changes the
director field curvature preferred by the saddle splay term. Recall
that when the director field is tangent to a surface, positive K24

leads to a configuration in which positive Gaussian curvature is
preferred while negative K24 prefers a saddle configuration. The
saddle configuration is not axially symmetric and is therefore in-
compatible with our expectation that our twisted solutions dis-
play axial symmetry. We therefore expect that solutions within
our system will require positive K24.

Due to the mathematical complexity of the equations required
to describe the behavior of twisted bipolar nematic spindles, sim-
plifications must be made in order to make progress. In the bulk,
the twist angle is expected to increase from zero along the central
axis of the spindle to a maximum value on the surface.13,14 In
the bispherical structure the director field is tangent to surfaces
of constant η . Further assuming that the twist angle, measured
as the angle between the director field and the surface meridian,
is constant on a surface of constant η therefore gives a director
field that depends only on the η coordinate. Using these assump-
tions, the resulting nematic director field has a layered spindle
structure in which the director field on each surface of constant
η follows loxodrome spirals at a twist angle determined by the
value of η . Williams13 used these assumptions when consider-
ing the effect of the values of the bulk elastic constants on the
transition to a twisted state in a bipolar spherical droplet. Follow-
ing on from this, Prinsen and van der Schoot14 used these same
assumptions to consider the conditions for twisting in elongated
spindle-shaped structures as well as director fields for which the
boojum defects are virtual and sit outside of the droplet surface.
The assumption was justified as being due to the expectation that

the twist angle would vary more with η than it would vary with
ψ on a surface of constant η .14

While describing a director field in terms of loxodromes is
mathematically convenient, due to the lack of ψ dependence, it
is not necessarily intuitive that the system would choose to adopt
this twisting structure. Indeed, close to the spindle tips such a
structure creates a region of high twist. In general, loxodromes
are not geodesics of a surface and do not minimize the curva-
ture of the director field. From Clairaut’s relation,38 we can de-
termine that on a spindle surface the only loxodromes that are
also geodesics are those for which the director is parallel to the
meridians of the surface, which gives an untwisted bipolar con-
figuration. We therefore first approach the question of when a
twisted loxodrome solution is favorable in our spindles by consid-
ering the conditions under which the loxodrome twisting pattern
is an exact energy minimum on a spindle-shaped surface.

3 Loxodromes solutions on spindle surfaces
We consider a thin spindle-shaped shell of nematic with the di-
rector field tangent to the surface everywhere and investigate
the conditions under which a twisted loxodrome structure min-
imizes the free energy. We assume the director field follows the
azimuthal symmetry of the surface and is therefore independent
of φ . As such,

n = cosβ (ψ)êψ + sinβ (ψ)êφ (3)

describes a general director field on the surface. Here β (ψ) is the
angle between the director field and the êψ direction on the sur-
face. The nematic symmetry of the system means that β (ψ) and
β (ψ)+π are equivalent while the symmetry of the spindle shape
means that β (ψ) and 2π−β (ψ) are energetically equivalent states
so that left- and right-handed twisting are equally likely. We can
therefore take β (ψ) to be in the range 0 ≤ β (ψ) ≤ π/2 without
loss of generality.

We wish to determine whether or not a twisted loxodrome
structure minimizes the Frank free energy given in eq. (2). We
note that on the spindle surface the twist term is zero. The
loxodrome solution obeys β (ψ) = β0, where β0 is a constant,
and β ′(ψ) = β ′′(ψ) = 0. In the one-constant approximation, in
which K1 = K3, in the limit that the spindle is a perfect sphere
(η0 = π/2), the saddle splay term is zero and loxodrome solu-
tions of arbitrary twist angle minimize the free energy. However,
allowing either K1 6= K3 or η0 6= π/2 removes this solution. In
this case, the only constant angle solutions are β0 = 0,π/2, which
correspond to untwisted configurations with the director parallel
to êψ and êφ respectively. We therefore find that the Frank free
energy alone does not support twisted loxodrome solutions on
spindle-shaped surfaces.

In our geometric model of twisted spindle-shaped polymer par-
ticles with nematic ordering, we showed that the twisting pattern
was well-described by loxodromes.16 In this system, the back-
bones of the polymers are formed by the nematic reactive meso-
gens joining together. As such, we expect that the polymer back-
bones follow the integral curves of the director field. In our ge-
ometric model, we posited that the twisting occurs as a result of
the polymer chains having a fixed length as the spindles deswell.
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We incorporated this into the model by constraining the length
of the integral curves of the system. In the present energetic ap-
proach, we therefore introduce a length constraint term into our
free energy and determine whether this addition allows a twisted
loxodrome solution. A constraint on the length of the integral
curves of the director field takes the form

Fl = γ

(∫
ds− l0

)
(4)

where γ is a Lagrange multiplier, ds is the line element and l0 is the
fixed curve length. A loxodrome of twist angle β0 on the spindle
surface connecting the two tips has length lβ0

= 2η0 cscη0 secβ0.
We seek twisted loxodrome structures that minimize our new

total free energy F = FF +Fl , where the general form of the direc-
tor field is again given by eq. (3). The resulting Euler-Lagrange
equation that β (ψ) must satisfy is

0 = Km sinη0[β
′(ψ)sinψ−β

′′(ψ)cosψ]−K24 cosη0
sin2β (ψ)

Z

+
γ

2π

secβ (ψ) tanβ (ψ)

Z
−∆K sinη0 cosψ

[
β
′(ψ)2 sin2β (ψ)+

[tanψβ
′(ψ)−β

′′(ψ)]cos2β (ψ)+
sec2 ψ sin2β (ψ)

Z

]
, (5)

where we have introduced Km = (K1 + K3)/2 and ∆K = (K1 −
K3)/2. After substituting the conditions for a loxodrome solution
into this expression, the final ∆K term still has ψ dependence. We
therefore find that a twisted loxodrome solution is possible only
if ∆K = 0, which corresponds to the one-constant approximation.
In this case, the loxodrome twist angle satisfies

|cos3
β0|=

γ

4πK24 cosη0
(6)

on a spindle with η0 < π/2. From this expression, we can deduce
that γ and K24 must have the same sign. Given that γ is positive
by construction, we find that K24 must also be positive. This is
consistent with our previous discussion on the expected behavior
of K24 for the spindle.

Whether or not the loxodrome solution is realizable depends
on the interplay between γ, K24 and η0. If γ/K24 > 4π then a
twisted loxodrome solution cannot occur. However, if γ/K24 < 4π

the onset of twisting is determined by a critical value of η0 below
which this solution is physically realizable. In this framework we
would therefore expect that for a system with fixed γ/K24 < 4π,
that there is a critical spindle aspect ratio at which the onset of
twisting occurs. Spindles with aspect ratios smaller than this crit-
ical value (larger η0) will display an untwisted state while those
with larger aspect ratios (smaller η0) can exhibit twisting. The
twist angle on the surface increases with the spindle aspect ra-
tio, which is consistent with our previous observations in twisted
nematic polymer particles.16

This twisted loxodrome solution is energetically favorable over
the untwisted configuration if ∆F = F(β0)−F(0), the difference
in free energy between the twisted loxodrome solution and the
untwisted solution, is negative. We find that ∆F < 0 whenever
the system parameters allow the twisted solution to be possi-

ble, meaning that the loxodrome solution is always energetically
favorable over the untwisted solution. By numerically solving
eq. (5) using the Matlab ODE15s solver39 with ∆K = 0 for a
range of choices of γ/K24 and η0 with boundary conditions set-
ting β ′(0) = 0 and β (0) to a chosen value, we have verified that
the twisted loxodrome solution β (0) = β0 is the global minimum
of the free energy if the choice of parameters allows that solution
to exist.

We now allow the value of ∆K to be nonzero and consider the
effect this has on the solutions of eq. (5). Examining the ∆K
dependent terms in eq. (5), we observe that final term depends
on secψ. While well-behaved at the spindle equator, near to the
spindle tips this term diverges and dominates the entire expres-
sion. Our problem therefore becomes a boundary layer problem
in which we must separately consider solutions near to the equa-
tor and tips of the spindle.

We first consider the outer solution that captures the behavior
near to the equator, where the ∆K-dependent terms do not di-
verge. We capture the key behavior of the system by performing
a regular perturbation expansion in which we seek a solution of
the form β ε (ψ) = β 0(ψ)+ εβ 1(ψ), where ε is a small parameter.
We substitute this solution into eq. (5) and expand in powers of ε.
Gathering the leading order terms, those for which there is no ε

or ∆K dependence, we find that the twisted loxodrome solution in
eq. (6) is a leading order solution, so β 0(ψ) = β0. In order to cal-
culate the first correction term, we identify the small parameter
ε with ∆K/Km and expand the first-order terms in these param-
eters in powers of ψ around ψ = 0. We solve for the correction
β 1(ψ) with boundary conditions β 1(0) = 0 and β 1′(0) = 0, which
respectively enforce that our approximate solution is exact at the
equator and that the correction obeys the up-down symmetry of
the spindle. To leading order in ψ, our perturbation solution is
therefore

β
ε (ψ) = β0−

∆K
Km

ψ2 sin2β0

2(1+ cosη0)
. (7)

From this, we observe that our leading order correction is
quadratic in ψ. If ∆K is positive the correction causes the twist an-
gle to decrease from the value of β0 away from the equator while
a negative ∆K causes the twist angle to increase. Experimentally,
the value of ∆K/Km depends on the material. As an example,
for 5CB ∆K/Km takes a value in the range 0.1-0.14,40,41 which,
as we will demonstrate, can be considered sufficiently small that
our perturbation solution is a reasonable approximation to the
exact solution.

The inner solution captures the behavior near to the spindle
tip, where the divergence of the secψ term forces the sin2β (ψ)

term towards zero. Expanding eq. (5) near to the spindle tips, we
find that the dominant term is

− ∆K sinη0 sin2β (ψ)

± π

2 ∓ψ
, (8)

where the plus and minus respectively correspond to the tips at
±π/2. When |±π/2∓ψ| . |∆K sinη0| this term drives sin2β (ψ)

towards zero. Based on our solution near to the equator, we
would therefore expect that if ∆K > 0 this drives the twist angle
towards zero while if ∆K < 0 the twist angle tends towards π/2.

4 | 1–10Journal Name, [year], [vol.],

Page 4 of 10Soft Matter



(a) (b)

K24/Km
0.1

0.5

1

π
8

π
4

3 π
8

π
2

π
6

π
4

π
3

ψ

β(
ψ
)

K24/Km
0.1

0.5

1

π
8

π
4

3 π
8

π
2

π
6

π
4

π
3

ψ
β(
ψ
)

0 0

β

ψ
β

ψ

Fig. 2 Solutions for the twist angle β (ψ), with β0 = π/4, η0 = π/3 and
γ defined by eq. (6) for (a) ∆K/Km = 0.01 and (b) ∆K/Km =−0.1. Solid
gray lines correspond to numerical solutions for the values of K24 shown in
the plot legend. The dashed line represents an ideal loxodrome solution
while the red curve corresponds to our asymptotic solution β ε (ψ).

However, the γ dependent term in eq. (5) diverges as the twist
angle tends towards π/2. We therefore expect that for ∆K < 0 the
twist angle will initially increase towards π/2 before dropping off
to zero very close to the tips. Given that we are primarily in-
terested in the validity of the twisted loxodrome solution, which
breaks down near to the spindle tip, we do not solve for the full
inner solution and instead turn our attention to determining the
range of validity of the outer solution.

We compare our outer solution to numerical solutions of eq. (5)
with initial conditions β (0) = β0 and β ′(0) = 0, which we expect
due to up-down symmetry of the spindle. We choose the twist an-
gle at the equator β0 = π/4, which maximizes the contribution of
the sin2β0 term in the correction, η0 = π/3, which corresponds to
a spindle with aspect ratio

√
3, and γ from the relation in eq. (6).

We plot the numerical solutions in fig. 2 for (a) ∆K/Km = 0.01 and
(b) ∆K/Km =−0.1. Numerical solutions are plotted for a range of
K24 values along with the ideal loxodrome β0 and our perturba-
tion solution at the equator β ε (ψ). Near to the equator, β ε (ψ)

gives a very good approximation to the numerical solution, with
the smaller magnitude ∆K value giving a good approximation for
a larger range of ψ values. As expected, the solution with ∆K > 0
causes the numerical solution for the twist angle to decrease away
from β0 while ∆K < 0 causes the opposite behavior before all of
the numerical solutions diverge at the tips. We observe that the
numerical solutions are only weakly dependent on the value of
K24, which is consistent with the leading behavior depending on
its value only though β0. When ∆K/Km =−0.1, the numerical so-
lutions are all within 5◦ of the value of β0 up to ψ̃ =ψ/(π/2)= 0.7,
meaning that the twist angle is within this tolerance of the loxo-
drome twist angle over 85% of the surface area. Decreasing the
magnitude of the perturbation ∆K/Km to 0.01 results in the twist
angle being within 5◦ of β0 up to ψ̃ = 0.97 and within 1◦ of β0 up
to ψ̃ = 0.82. We therefore conclude that away from the spindle
tips, the loxodrome solution is a valid approximation for the twist
angle if ∆K/Km is small.

4 Loxodromes on a general surface of revolution

Having established the conditions under which twisted loxo-
dromes are exact or approximate solutions on the spindle sur-
face, we now turn our attention to establishing conditions on the
shape of a surface for it to support such a loxodrome solution.
We consider a general surface of revolution, described in cylin-
drical coordinates (ρ,φ ,z). The surface is formed by revolving its
shape profile ρ(z) > 0 about the z axis. We once again introduce
a general director field

n = cosβ (z)êv + sinβ (z)êφ (9)

that lies tangent to the surface and follows the azimuthal symme-
try of the surface. As before, êφ is a unit vector in the azimuthal
direction while êv is a unit vector tangential to lines of constant
φ , equivalent to êψ in the bispherical coordinates. We again cal-
culate the free energy F = FF +Fl for our surface and minimize
for β (z). A loxodrome solution, β (z) = β0 and β ′(z) = β ′′(z) = 0
leads us to require that

0 =−K24ρ(z)[κν (z)−κφ (z)]sin2β0 +
γ

2π
tanβ0 secβ0

−∆K
[

1
ρ(z)

+ρ(z)(κν (z)−κφ (z))
]

sin2β0. (10)

Here we have introduced κv(z) and κφ (z), the principal curva-
tures of the surface, which depend on ρ(z) and its derivatives.
On the spindle surface, we found an exact twisted loxodrome
solution when ∆K = 0. In this case the coefficient of the K24

term was constant and the loxodrome solution resulted in the
balance of this term with the γ term. Imposing the same condi-
tions here, we therefore need to determine the conditions under
which ρ(z)[κν (z)−κφ (z)] takes on a constant value ξ .

Solving for ξ with the requirement that ρ(z) = ρ(−z), we
first find that cylinders, for which ρ(z) is constant, and coni-
cal surfaces, for which ρ(z) is linear in z satisfy this condition.
The most general shape profile for which ξ is constant satisfies
(ρ ±R1)

2 + z2 = R2
2. This is the equation of a circle of radius R2

centered at (±R1,0) in the (ρ,z) plane. The constants R1 and R2

can be taken to be non-negative without loss of generality. The
constant ξ = R1/R2 > 0 defines the shape profile of the surface
formed by revolving the section with ρ(z) > 0. We note that a
spherical surface, for which ξ = 0, does not support our twisted
loxodrome solution because it causes the K24 term to vanish.

The general shape profile we have derived generates surfaces
of the standard torus, as depicted in fig. 3. If ξ < 1 the circles
forming the shape profile cross the z-axis and generate a spindle
torus. Taking the ρ(z) > 0 arcs of the generating circles, the plus
sign solution generates an apple surface, which corresponds to
the outer surface of the spindle torus, while the minus sign gen-
erates the spindle surface we have previously considered. In both
of these cases the twist angle obeys an equivalent expression to
eq. (6). When ξ > 1, only one of the generating circles lies within
the ρ(z)> 0 region and the resulting surface is a hole torus while
the case ξ = 1 gives the limiting case of a horn torus.

On the spindle and apple surfaces, it is natural for the fixed
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Fig. 3 Schematics of surfaces and cross sections of the general torus.
From left to right: spindle torus, horn torus and hole torus. The black
vertical lines indicate the axis of revolution.

length of the loxodrome to span the range of z values between the
two singularities on the surface. This means that for a fixed length
curve, the twist angle of the loxodrome is uniquely determined
by the value of ξ on the surface. By contrast, for the hole torus,
cylinder and cone there is not a naturally defined range of z values
that the loxodrome should span. For given properties of these
surfaces, a choice of the span of z must be chosen to determine
the loxodrome twist angle. On the hole torus, special choices of
twist angle allow a closed loop to form, which therefore allows a
clear length constraint to be defined.

We now restrict ourselves to spindle-like surfaces and consider
the effect of shape perturbations on the stability of the loxodrome
solution. To do this, we construct a generalized spindle for which
the shape profile is now an arc of an ellipse instead of a circle.
As is the case for the spindle generated from the arc of a circle,
which we refer to as an ideal spindle, the generalized spindle
is symmetric upon reflection in the z-axis and has pointed tips
except in the case of a perfect sphere. The generalized spindle
has aspect ratio u0, defined so that u0 = 1 corresponds to a perfect
sphere and our prolate spindles have u0 > 1. The profile curve has
eccentricity 0≤ e < 1, where e = 0 corresponds to a perfect circle
and e = 1 corresponds to a parabola. A general expression for the
shape profile ρ(z) of the generalized spindle is therefore

ρ(z) =−
u2

0−1+ e2

2(1− e2)
+

√
(1− e2 +u2

0)
2−4(1− e2)z2

2(1− e2)
. (11)

We examine perturbations away from the ideal spindle by treating
e as a small parameter and expanding eq. (10) in powers of e
with ∆K = 0. We introduce a perturbation expansion for the twist
angle β ε (z) = β 0(z)+εβ 1(z), where ε is a again a small parameter
that we identify with e2, the lowest nonzero power of e in our
expansion.

We find that the leading order expression allows for loxo-
dromes of constant angle β0 with the condition

cos3
β0 =

γ(u2
0 +1)

4πK24(u2
0−1)

. (12)

In the ideal spindle, cosη0 ≡ (u2
0−1)/(u2

0+1), so this expression is
equivalent to eq. (6). We calculate the correction term by Taylor
expanding the contributing terms to leading order in z and using
boundary conditions that again set β 1(0) = 0 and β 1′(0) = 0. Our

perturbation solution therefore becomes

β
ε (z) = β0 + e2 K24 sin2β0

Km(1+u2
0)

2 z2. (13)

Given that the constants multiplying e2 result in an expression
that is order one, we find that the correction is quadratically small
in the correction to the constant loxodrome solution. We there-
fore find that the loxodrome solution is stable to small perturba-
tions away from the ideal circle-arc spindle with e = 0.

5 Loxodrome solutions in the bulk

We now turn our attention to bulk twisted structures enclosed
within a spindle-shaped surface parameterized by η = η0. Fol-
lowing prior investigations of bipolar spindles, we take the direc-
tor field inside the spindle to adopt a bispherical configuration
in which the director field is tangential to surfaces of constant η

in the bispherical coordinate system.12,14,27,28,31,32 We consider
only truly bispherical structures in which the boojum defects of
the nematic sit at the spindle tips, which we justify based on the
observed structures of our polymer particles.16 Also in line with
prior investigations,13,14 we assume that in twisted bipolar con-
figurations, the twisting maintains the bispherical structure and
therefore occurs within the local tangent plane to the surface of
constant η upon which any point in the bulk resides.

Starting from these assumptions, Williams13 investigated the
twisting behavior of a nematic confined to a spherical bipolar
droplet with strong planar anchoring by assuming that the twist
angle of the nematic followed loxodromes on surfaces of constant
η and could be parameterized in terms of a function β0(η). Us-
ing the ansatz β0(η) ∝ sinη , which satisfies the key requirements
of the solution, Williams showed that a twisted bipolar config-
uration lowers the Frank free energy of the system if the elastic
constants obey the inequality K3 . 2.32(K1−K2). Prinsen and van
der Schoot14 then used these same assumptions to extended this
inequality to bipolar and quasi-bipolar spindle-shaped systems.

This twisted loxodrome structure does not analytically mini-
mize the Frank free energy of the system. In order to verify the
validity of the loxodrome assumption, we therefore investigate
numerical solutions for the twist angle β (η ,ψ) of a director field
constrained to be tangential to the bispherical structure. We use
the MATLAB PDE ToolboxTM 42 to solve for the twist angle in the
ψ > 0 region of the spindle and determine the ψ < 0 solution
using the inversion symmetry of the spindle. We set the bound-
ary conditions β (0,ψ) = 0, which is required to ensure that no
defects are present along the central axis of revolution, and the
derivative βψ (η ,0) = 0 to ensure the solution obeys the inversion
symmetry of the spindle. We have more freedom with the choice
of the boundary conditions on the spindle surface. Given that we
are interested in the twisted loxodrome structure, we impose that
on the surface the twist pattern follows a loxodrome with chosen
twist angle β0 such that β (η0,ψ) = β0.

Figure 4(a) shows contours of constant twist angle in the nu-
merical solution for β0 = 7π/36 on a spindle with aspect ratio
u0 = 1.6 (η0 = 1.18) in the one-constant approximation, which
appear consistent with a twisted bipolar structure. In fig. 4(b) we
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Fig. 4 (a) Contours of constant β in the numerical solution for the bulk
twist angle β (η ,ψ) for a spindle with size η0 = 1.18 and surface twist
angle β (η0,ψ) = 7π/36. (b) Slices through this solution along surfaces
of constant η. The colored lines show the numerical solutions while the
gray lines indicate the solution β (η ,0), corresponding to the expected
loxodrome twist angle at a given η value.

therefore show how the twist angle of this solution varies with ψ

on surfaces of constant η . In this plot, a loxodrome twist pattern
corresponds to a horizontal line. We observe that the solutions
are very close to being straight lines over much of the range of
ψ. Near to the spindle tips, we observe that the twist angle de-
creases on each of the surfaces, with the most deviation for the
values of η furthest from those at which the boundary conditions
are imposed. The decrease in twist angle near to the tip is likely
due to the system trying to mitigate the large twist energy in this
region. Our results verify that the twisted loxodrome solution is
a good approximation to the internal twist structure.

We analyze the bulk Frank free energy of these numerical so-
lutions for different values of u0, β0 and the ratio of elastic con-
stants K2/K, where K = K1 = K3. As expected, our numerical
results are consistent with the scaling analysis of Prinsen and van
der Schoot.14 That is, at aspect ratios close to one at the smaller
K2/K values there is a minimum in the free energy at a non-zero
twist angle while at higher K2/K values the untwisted configura-
tion minimizes the free energy. At larger u0 values the bound on
K2/K at which twisting is preferred decreases until it reaches zero
at some critical value above which the system remains untwisted.

While our numerical results are consistent with the scaling the-
ory, they do not capture the observed behavior of our twisted
polymer system. In the experimental system, there is a critical as-
pect ratio for the onset of twisting above which the twist angle in-
creases with aspect ratio thereby displaying the opposite trend to
the twisting behavior expected in a system governed by the Frank
free energy alone. As was the case when considering a spindle-
shaped surface, we therefore seek to incorporate additional terms
into the free energy to account for the polymer nature of the sys-
tem under consideration. In line with our results on the spindle
surface and our previous geometric model,16 we once again im-
pose a length constraint term in addition to the Frank free energy.

We take a geometric approach to incorporating the length con-
straint condition and then examine the optimal twist pattern of
the resulting free energy. We now assume that that the twist pat-
tern follows loxodromes on surfaces of constant η , which we jus-
tify using the numerical results presented in fig. 4. In our previ-

ous geometric model of the surface twisting,16 the length of the
meridians of the spindle surface at the critical aspect ratio gave us
the fixed length of the twisted loxodrome curves at larger aspect
ratios (smaller volumes). We extend this idea into the bulk struc-
ture by introducing a reference spindle aspect ratio that is used to
determine the expected length of the loxodromes on each surface
of constant η . We then construct a mapping between the length
of meridians on internal surfaces of constant η enclosed within
the reference aspect ratio spindle and the length of a twisted lox-
odrome on a surface of constant η in a more elongated twisted
spindle.

In order to construct the mapping, we introduce the fractional
distance x along the minor axis of a spindle between its central
axis and outer surface. The surfaces of constant η that form the
bulk structure can therefore all be ascribed an x value. The length
of a meridian on a surface at a given x value in the spindle with
reference aspect ratio u∗ becomes the length of the twisted lox-
odrome at the same x values in the smaller twisted spindle with
aspect ratio u0. If the length of a meridian is lm, the length of a
loxodrome with twist angle β0 is lm secβ0. Our mapping can there-
fore be expressed as lm(u∗,x) = lm(u0,x)secβ0(x), which leads to
the loxodrome twist angle satisfying

cosβ0(x) =
u∗(x2 +u2

0) tan−1 (x/u0)

u0(x2 +u∗2) tan−1(x/u∗)
. (14)

Plots of this expression for a spindle with reference aspect ratio
u∗ = 1.1 are shown in fig. 5 (solid lines) for a range of u0 values.
The expression gives the general behavior we would expect from
the twist angle in that there is no twisting at the center (x = 0)
and the twist angle monotonically increases to a maximum value
on the spindle surface. The relation is also consistent with the ap-
proximate solution β (η) ∝ sinη used in prior investigations,13,14

as shown in the dashed lines in fig. 5 for which the proportion-
ality constant has been chosen to match the twist angle at the
surface. We note that in this mapping we have fixed the major
axis length of the spindle, meaning that changes in aspect ratio
are as a direct result of changes in minor axis length. Setting x= 1
therefore gives the idealized behavior of the geometric model we
developed for our experimental polymer system,16 in which we
had to adapt the model to account for an amount of length reduc-
tion in the major axis due to polymer chain folding.

From our bulk geometric model, we construct a new total bulk
free energy F = Fb +Fl , where Fb is the bulk part of the Frank
free energy. We consider the influence of the saddle-splay energy
on the behavior of the model later in this section. The constraint
term Fl takes the form

Fl =
∫

dηγ(η)[lm(η0,η)secβ0(η)− lm(η∗,η)], (15)

where γ(η) is a Lagrange multiplier that constrains the lengths on
each surface of constant η and we convert x values into η values
in the final spindle using x = tan(η/2)cot(η0/2). The constraint
term ensures that the twist profile is given by the expression
in eq. (14) while γ(η) can be determined by solving the Euler-
Lagrange equations of the free energy.

We explore the behavior of the free energy as a function of the
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Fig. 5 Plots of the expression in eq. (14) showing the predicted loxodrome
twist angle in the bulk spindle for u∗ = 1.1 and a range of u0 values
(solid lines). The dashed lines correspond to the expression β (η) ∝ sin(η)

with the proportionality constant chosen to match the twist angle at the
surface in each case.

twisted spindle aspect ratio u0 > u∗ for different values of u∗ and
K2/K, with a cut off ηmin = 10−6 at the center of the spindle to
prevent the free energy from diverging. We observe that there is
always a single minimum in the free energy at an optimal aspect
ratio ū0, the value of which allows us to classify the expected
behavior of such a system into one of three regimes. The first
case is that the minimum in the free energy occurs when ū0 =

u∗, meaning that the optimal configuration is for the spindle to
remain untwisted. This regime is observed above a particular
value of K2/K that depends on the value of u∗. In the second case,
which occurs when K2/K is below a particular value, the optimal
aspect ratio is ū0 → ∞ meaning that the free energy wants the
system to twist as much as possible. In a real system, the physical
bulk of the material would prevent the system from twisting this
far and would have an effect in determining the optimal aspect
ratio. In the final case there is a minimum in the free energy
at a finite value of ū0, resulting an an optimal aspect ratio and
therefore optimal twist angle in the system. Figure 6 shows the
regions of the K2/K–u∗ parameter space for which the optimal
twist behavior falls into each of these three regimes.

Comparing the twisting behavior of our new free energy that
incorporates the constraint condition to that of the bulk Frank
free energy alone, we observe that including the additional term
results in twisting being favorable over a wider parameter range.
In a spherical bipolar system, Williams13 showed that if K1 =

K3 = K the Frank free energy allows a twisted loxodrome solu-
tion if K2/K < 0.57. Following on from this, Prinsen and van der
Schoot14 showed that this bound is highest for spherical tactoids
and that increasing the aspect ratio decreases the maximum value
of K2/K at which twisting is preferable. By contrast, in our for-
mulation we observe that, while the maximum value of K2/K at
which twisting can occur varies with the reference aspect ratio
u∗, when u∗ = 1.0 twisting can occur up to K2/K . 3.0 and this
value gradually reduces to K2/K . 1.17 when u∗ = 3. In partic-
ular, including the length constraint condition means that in the
one-constant approximation K2/K = 1, we would expect to ob-
serve a twisted configuration in our system.
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Fig. 6 Optimal spindle configurations in the K2/K-u∗ parameter space.
In region I, the untwisted configuration (ū0 → u∗) is optimal while in
region II the spindle twists as much as possible (ū0 → ∞). Region III
is the intermediate region in which the optimal aspect ratio takes on a
value between these two limiting cases. The plotted points indicate the
numerically determined boundaries of each region.

Having considered the influence of the bulk elasticity on the
twisting behavior of our system, we now turn our attention to
the influence of the saddle-splay energy on the optimal spin-
dle structure. The saddle-splay energy is a surface term, and
therefore depends only on the value of the twist angle at the
surface. The expression for the saddle-splay is given by FSS =

−4πK24η0 cotη0 sin2
β0(1), where β0(x) is defined in eq. (14) and

we have chosen the zero-point of the energy such that the saddle-
splay contribution is zero when there is no twisting. We know
that the saddle-splay elastic constant obeys |K24| ≤ 2min(K1,K2).
If we assume the value of K24 is of the same order of magnitude as
the bulk elastic constants, the contribution from the saddle-splay
energy is of the same order of magnitude as the bulk free energy.

Given that we expect K24 to be positive, the saddle-splay energy
favors a highly twisted configuration. We observe that including
the saddle-splay term in our model raises the bound on K2/K at
which the system becomes as twisted as possible (ū0 → ∞). The
bound on K2/K at which the system is able to adopt a twisted
configuration initially decreases as K24/K increases. Above some
critical value of K24/K, the intermediate regime u∗ < ū0 < ∞ no
longer exists and a single curve separates the untwisted and max-
imally twisted regions in the K24/K–K2/K parameter space. Fig-
ure 7 shows the influence of K24/K on the twisting behavior for
a spindle with reference aspect ratio u∗ = 1.1 in which we ob-
serve that the intermediate regime does not exist for K24/K > 0.5.
Across reference aspect ratios explored in the range 1≤ u∗ ≤ 3 we
observe the same general behavior as observed in fig. 7 with the
magnitude of the critical aspect value of K24/K increasing with u∗

up to K24/K = 0.9 at u∗ = 3. We therefore find that the saddle-
splay term does indeed make the twisted structure more prefer-
able within our system.

6 Conclusions
We have investigated the twisting behavior of spindle-shaped sys-
tems with bipolar nematic ordering, with a particular focus on
developing a model of liquid crystalline polymer particles that
display twisting behavior during deswelling. We have demon-
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Fig. 7 Optimal spindle configurations for different values of the saddle-
splay constant K24/K for a spindle with u∗ = 1.1. As in fig. 6, region I
corresponds to the optimal structure being the untwisted configuration
ū0 = u∗, region II corresponds to the optimal structure being ū0 → ∞,
and in region III, which exists only at smaller K24/K values, the opti-
mal structure is between these two limits. The hatched region indicates
parameters not allowed by the Ericksen inequality37.

strated that including a constraint on the length of the integral
curves of the system produces a model that captures the behav-
ior of this system, thereby providing an energetic pathway to the
twisted loxodrome pattern that we previously derived using a ge-
ometric approach.16 It is the inclusion of this length constraint
that results in the model predicting remarkably different behav-
ior to that expected for a typical nematic system that is governed
by the Frank free energy alone.

We demonstrated that an exact twisted loxodrome solution
minimizes our total free energy on a spindle-shaped surface, sub-
ject in the one-constant approximation (K1 = K3). Allowing small
deviations away from this condition, or small perturbations in
the shape-profile of the spindle, leads to solutions for which the
twisted loxodrome is the leading order term and the correction
terms are small. In a bulk bipolar nematic confined to a spindle-
shaped region, we showed that if the twist pattern on the surface
follows loxodromes then the bulk twisting structure is well ap-
proximated by twisted loxodromes on surfaces of constant η . By
developing a geometric model of this twisted structure in which
the loxodrome twist angle on each surface of constant η is de-
termined by a length constraint condition, we have formulated a
model for which twisting behavior is optimal in the system over
a larger parameter range than in a nematic system governed by
the Frank free energy alone. Crucially, the model we developed in
section 5 also captures the shape change and twisting behavior of
the polymer system16 and we look forward to future exploration
of the internal structures of these spindles to test the predicted
model.
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