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Thermodynamic stability versus Kinetic Accessibility:
Pareto Fronts for Programmable Self-Assembly†

Anthony Trubiano and Miranda Holmes-Cerfon

A challenge in designing self-assembling building blocks is to ensure the target state is both ther-
modynamically stable and kinetically accessible. These two objectives are known to be typically in
competition, but it is not known how to simultaneously optimize them. We consider this problem
through the lens of multi-objective optimization theory: we develop a genetic algorithm to compute
the Pareto fronts characterizing the tradeoff between equilibrium probability and folding rate, for
a model system of small polymers of colloids with tunable short-ranged interaction energies. We
use a coarse-grained model for the particles’ dynamics that allows us to efficiently search over pa-
rameters, for systems small enough to be enumerated. For most target states there is a tradeoff
when the number of types of particles is small, with medium-weak bonds favouring fast folding,
and strong bonds favouring high equilibrium probability. The tradeoff disappears when the number
of particle types reaches a value m∗, that is usually much less than the total number of particles.
This general approach of computing Pareto fronts allows one to identify the minimum number of
design parameters to avoid a thermodynamic-kinetic tradeoff. However, we argue, by contrasting
our coarse-grained model’s predictions with those of Brownian dynamics simulations, that particles
with short-ranged isotropic interactions should generically have a tradeoff, and avoiding it in larger
systems will require orientation-dependent interactions.

1 Introduction

Designing novel materials or structures out of mesoscopic build-
ing blocks, such as colloids, is a widespread challenge, with ap-
plications in drug delivery, optical metamaterials, and environ-
ment sensing micro-robots, among others1–6. A fundamental is-
sue is to design the building blocks so the desired target state
is both thermodynamically stable, i.e. it remains near the target
state for long times at finite temperature, and kinetically acces-
sible, i.e. the system self-assembles into the target state over a
reasonable timescale. In general, guaranteeing a target state is
thermodynamically stable does not guarantee it is kinetically ac-
cessible, and vice versa, with these two objectives often working
against each other7–12. Yet, we know from the plethora of suc-
cessfully self-assembling material and biological systems, that it
is possible to achieve both objectives simultaneously given the
right choice of parameters. Consider proteins: while randomly-
designed proteins take astronomically long times to fold into their
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native states13–15, the proteins found in nature fold quickly, a
great many orders of magnitude faster than it would take them
to sample their thermodynamic equilibrium distribution, a phe-
nomenon known as Levinthal’s paradox16,17. The reason why is
said to be that naturally occurring proteins have evolved so their
free energy landscape is “funnel-shaped”, with the folded struc-
ture at the bottom of the funnel and most dynamic pathways lead-
ing downhill, encountering only small free energy barriers along
the way13,18–20.

Inspired by proteins, can we design material systems to sim-
ilarly fold quickly to a deep metastable state? That is, given
a collection of building blocks with various design parameters
(such as interaction energies, concentrations, shapes, etc), can
we choose parameter values so the system achieves both objec-
tives of thermodynamic stability and kinetic accessibility simul-
taneously? This question lies at the heart of most theoretical
studies of programmable self-assembly, but it is a challenge to
optimize two objectives simultaneously. To simplify, earlier stud-
ies of self-assembly considered evaluating measures of thermody-
namic stability and kinetic accessibility as design parameters are
varied along an axis; such studies found there is a narrow range
of parameter values in the observation regions where assembly
may occur, and furthermore that the finite time yield of the target
state is non-monotonic in the binding energy7,9,11. More recent
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studies have considered self-assembly in an optimization frame-
work, by building methods to optimize a single objective mea-
suring progress toward the target state. One such objective is
the partition function, measuring thermodynamic stability; much
progress has been made in understanding how to choose pair
interaction energies between distinct particles to make a target
structure low free energy21–26, motivated partly by the spectacu-
lar self-assembly of DNA-brick based structures27. Adjusting the
concentrations of the components of a target structure can fur-
ther lower its free energy28. Kinetic effects, while harder to study,
have been controlled via nucleation barriers29, geometrical mea-
sures of the ruggedness of the free energy landscape30, or by
maximizing the yield of a target structure at a fixed time31,32,
an approach which couples thermodynamic and kinetic consid-
erations into a single objective. Other measures of kinetics may
be tuned by building automatic differentiation into molecular dy-
namics simulations, which promises to be a powerful tool for op-
timizing design parameters of a self-assembling system33.

In this paper we take an alternative approach: rather than opti-
mizing for a single measure of the success of programmable self-
assembly, we consider the two objectives of thermodynamic sta-
bility and kinetic stability separately, and seek to understand and
ultimately to minimize the tradeoff between these two objectives
as a the design parameters are varied. We focus our examples
on a model system, namely polymers of colloids interacting with
short-ranged isotropic attractive forces, where the design param-
eters are the energies of the attractive interactions. Such particles
can be synthesized experimentally by gluing single-stranded DNA
onto the surfaces of the colloids, and are a promising set of build-
ing blocks for designing new materials34–38. We consider small
collections of colloids, which have been thoroughly studied both
experimentally39,40 and theoretically21,22,41. We coarse-grain
their dynamics to efficiently search over parameters, which al-
lows us to exhaustively characterize their thermodynamic-kinetic
tradeoffs for this coarse-grained system, a pedagogical character-
ization that has not been illustrated before.

We characterize the thermodynamic-kinetic tradeoff for a tar-
get structure by computing its Pareto front, namely the set of val-
ues attained by the objectives such that it is not possible to further
increase both objectives42. The Pareto front is part of the bound-
ary of everything that is achievable by the objective functions as
the design parameters are varied. This curve gives qualitative in-
sight into what sets the tradeoff between thermodynamics and
kinetics for different target structures, and it is useful as a practi-
cal design tool: one should always choose parameter values that
give objective values on this curve, since otherwise one could in-
crease both objectives using different parameters. Furthermore,
the Pareto front allows a user to control the tradeoff between the
objectives, by deciding how many design parameters to vary. As
the number of design parameters increases, the Pareto front nec-
essarily becomes steeper, implying the tradeoff between the objec-
tives becomes less significant. Strikingly, in our examples, there is
a sharp transition where the tradeoff suddenly becomes minimal.
We argue that this is a signature of a “funnel-shaped” landscape.

The transition to a steep Pareto front gives the minimal num-
ber of design parameters to avoid a tradeoff, within the context of

12 bonds 11 bonds 11 bonds 11 bonds

Fig. 1 A system of 7 identical disks that illustrates the tradeoff between
thermodynamic stability and kinetic accessibility. The leftmost, “flower”
cluster, has the highest equilibrium probability when the interactions are
strong, because it has the most bonds. However, the average time to
form the flower increases exponentially with the energy of the interaction,
because most trajectories hit another clusters first43,44.

our coarse-grained dynamical model. Sometimes the same design
parameters also lead to fast folding in Brownian dynamics simu-
lations, and sometimes they don’t. When they don’t, we show it
is because of “chiral traps”, configurations that cannot reach the
target state without breaking a strong bond, but that have the
same bonds as a cluster on the correct folding pathway. We argue
that because of these inevitable chiral traps, particles with short-
ranged isotropic interactions should generically have a tradeoff
between thermodynamics and kinetics; avoiding this tradeoff in
larger systems will require particles with orientation-dependent
interactions.

2 There is a tradeoff between thermody-
namic stability and kinetic accessibility

A simple example that illustrates the tradeoff between thermody-
namic stability and kinetic accessibility for particles with short-
ranged attractive interactions is shown in Figure 143. This figure
shows clusters of 7 disks in the plane, that are are energetic local
minima when the particles interact with a short-ranged, isotropic
pairwise attractive potential. For identical disks, when the bond
energy E is large, then the leftmost, “flower” cluster has the low-
est free energy, because it has 12 bonds whereas the other clusters
have only 11 bonds. Therefore, as E increases, the equilibrium
probability of the flower (when sufficiently confined) approaches
1, making it thermodynamically stable. However, as E increases,
the average time it takes to form the flower increases too, because
most dynamical pathways hit one of 11-bond clusters first43,44,
and breaking a bond to reach the flower happens on a timescale
proportional to eE/kT . Therefore, the flower becomes less kineti-
cally accessible as it becomes more thermodynamically stable.

This tradeoff occurs even when the particles are non-identical.
Consider now a system of 6 spheres which are constrained to stay
in a chain, as a polymer. We add this backbone constraint, partly
to mimic proteins, and partly to obtain a system that does not
evaporate without introducing undesired features like walls. We
assume here and throughout the paper that particles interact with
a pairwise Morse potential, U(r) = E

(
e−2ρ(r−d)−2eρ(r−d)

)
, with

diameter d=1, range parameter ρ=40, and an energy E of the in-
teraction that varies depending on the particle pair. There are two
clusters that are energetic local minima when E is the same for all
pairs, an octahedron and a polytetrahedron (Figure 2(a)). Both
have 12 bonds hence the same potential energy, but their differ-
ing rotational and vibrational entropies imply that when E=12kT ,
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Fig. 2 There is a thermodynamic-kinetic tradeoff to form an octahedron of 6 spheres, but this can be avoided with the right choice of particle types
and parameters. (a) Equilibrium probabilities for low energy clusters of polymers of 6 spheres, the polytetrahedron (left) and octahedron (right), with
different design parameters (bond energies). The bond energies are listed in the adjacent legend, for: identical particles, distinct particles, two types
of particles arranged in an AABAAB configuration (A=red, B=blue). Any unlabeled interactions are 0.1kT . (b) The octahedron forms within minutes
from a linear chain in a Brownian dynamics simulation, when formed from distinct particles with interactions given above. The timescale is estimated
for 1.3 µm colloids40. (c) Competing ground states for the AABAAB chain, showing AA bonds (green), AB bonds (pink), and backbone bonds
(black). (d) The octahedron forms within hours when made from two types of particles (interactions given in purple legend), because of the presence
of kinetic traps. (e) With three types of particles and optimal interactions EAB=EAC=EBC=14kT (all other pairs 0.1kT ), the octahedron forms within
minutes, as for distinct particles. There is no more thermodynamic-kinetic tradeoff.

the octahedron has an equilibrium probability of only 0.0535 –
compare this to the polytetrahedron’s equilibrium probability of
0.9456 (SI Appendix†, Section 1). The remaining probability is
associated with floppy clusters.

Let’s try to make the octahedron have high probability, by let-
ting the particles be distinct. Following the principles of21,23,41,
which claim that optimal assembly occurs when bonds in the tar-
get state are identically strong and other bonds are identically
weak, choose E=14kT for interactions in the target octahedron,
while E=0.1kT for all other interactions. The weak bonds have
non-zero energy, to avoid computational difficulties with exact ze-
ros, and because it is hard to make DNA-coated colloids that have
strictly zero attraction45. With these interactions, the octahedron
has equilibrium probability 0.99995 (Figure 2(a)). It furthermore
assembles quickly, with few kinetic traps: Figure 2(b) shows that
in Brownian dynamics simulations starting from a linear chain,
the octahedron reaches a nearly steady probability of 0.985 after
about 1 minute, where the timescale is estimated for micron-scale
colloids using the experimental parameters in40 (SI Appendix†,
Section 2). The yield is not perfect because the chain sometimes
reaches a floppy state in which existing bonds geometrically block
additional correct bonds from forming. We return to this issue in
Section 5, but for now use these results for six particle types as a
benchmark.

Making all particles distinct with controlled interactions is cur-
rently not feasible for DNA-coated colloids, and furthermore, biol-
ogy tells us we should not require a number of particle types pro-
portional to system size – proteins form tens of thousands of dis-
tinct structures from strings of hundreds to thousands of only 20
types of amino acids. To see if we can make the octahedron from

fewer types of particles, we consider a chain with only two parti-
cles types, A and B, ordered along the chain as AABAAB. The the
target configuration has two AA bonds and five AB bonds. Naively
applying the same principle as before, we set EAA=EAB=14kT and
EBB=0.1kT . The octahedron now has an equilibrium probability
of 0.08. This is still small, because there are two polytetrahe-
dra with the same total number of AA and AB bonds, hence the
same potential energy, but which are favoured entropically (Fig-
ure 2(c)).

As might have been expected, making target bonds strong and
non-target bonds weak is not sufficient to form a target state
when the number of particle types is restricted. However, a bond-
counting argument suggests the octahedron can form if we ad-
ditionally allow bonds with medium strength. The octahedron
has five AB bonds while the competing states only have three
or four, and it has two AA bonds while the competing states
have four or three (Figure 2(c)). By making AB bonds strong
and AA bonds have medium strength, the potential energy of the
octahedron should be lowered compared to the polytetrahedra.
With EAB=14kT , EAA=9kT , the equilibrium probability for the
octahedron is now 0.905 (Figure 2(a)). As EAA,EAB → ∞ with
EAB−EAA→ ∞, the equilibrium probability approaches 1.

Having identified bond energies that give the octahedron high
equilibrium probability, we test whether it forms in a dynamical
simulation. Figure 2(d) shows the octahedron reaches a nearly
steady probability of about 0.9, but only after about 2 hours. Com-
pared to the timescale of 1 minute for distinct particles, this is
significantly slower, more than two orders of magnitude slower.

The octahedron forms slowly because the polytetrahedra are
kinetic traps: as the octahedron’s free energy decreases (by in-
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creasing EAA,EAB), so too does the polytetrahedron’s free energy,
and simultaneously the energy barrier to transition from a poly-
tetrahedron to the octahedron increases. Many trajectories hit a
polytetrahedron before the octahedron, and must break AA bonds
to form the octahedron, which happens slowly. With two types of
particles arranged as AABAAB, it appears there is a tradeoff be-
tween the thermodynamic stability and the kinetic accessibility of
the octahedron.

3 Quantifying the tradeoff between thermo-
dynamic stability and kinetic accessibility
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Fig. 3 Quantifying the tradeoff between equilibrium probability πS and
folding rate τ−1 for a chain of AABAAB spheres. (a,b) Scatter plots
(πS,τ

−1)-values (outcomes) to each of the two rigid clusters, (a) octa-
hedron and (b) polytetrahedron. The octahedron forms the permutation
shown plus one other, while the polytetrahedron forms 12 energetically
equivalent permutations which are lumped together. Blue points are out-
comes evaluated with bond energies EAA,EAB,EBB on a grid, each taking
20 equally spaced values in [0.1,14]. Yellow points are outcomes with
EAA=EAB=EBB, hence correspond to identical particles. Orange points,
on the boundary of the set of outcomes, form the Pareto front, computed
using our genetic algorithm. (c,d) Bond energies along the Pareto fronts
for each cluster, as a function of the equilibrium probability πS.

Can we choose bond energies such that the octahedron forms
quickly yet has high equilibrium probability? And can we further
understand the tradeoff, for this and other systems? We answer
these questions by framing them as a multi-objective optimization
problem: we wish to simultaneously maximize two functions, one
measuring thermodynamic stability and one measuring kinetic ac-
cessibility. Usually it is not possible to maximize both functions at
once, in which case we wish to quantity the tradeoff between the
two.

To proceed, let us measure thermodynamic stability by πS, the
equilibrium probability of all configurations S that correspond to
a target state, such as the octahedron, and let us measure kinetic
accessibility by τ−1, a function we call the rate, where τ is the
mean first passage time (mfpt) from the linear chain to the target
state. The functions πS and τ−1 are our objective functions, or ob-
jectives, the functions we wish to maximize. We have a collection
of design parameters, such as the interaction energies between
particles of different types. The values of the objectives change as
the design parameters vary.

A technical but important issue is evaluating the objectives for

different design parameters. Evaluating these by brute-force sim-
ulation is extremely time-consuming, so we instead construct a
coarse-grained model that lets us efficiently evaluate the objec-
tives for different design parameters. Our model starts by lump-
ing together configurations that share the same adjacency matrix,
and then approximates the dynamics as a Markov chain on the
set of feasible adjacency matrices, including those corresponding
to floppy configurations. The rates of forming a bond are esti-
mated from simulations and are assumed to be independent of
bond energies, and the rates of breaking a bond are set by de-
tailed balance, where the equilibrium probabilities for each node
of the Markov chain (each adjacency matrix) are estimated by a
Monte Carlo sampling procedure with fixed bond energies46 (SI
Appendix†, Section 3). Obtaining the initial rates and equilibrium
probabilities with one set of bond energies is time-consuming,
but once these are calculated we may reweight them for other
energies. Then, calculating πS and τ−1 simply requires solving
a linear algebra problem for each different set of bond energies.
This approach is only feasible for systems small enough that all
the adjacency matrices (including permutations) are possible to
enumerate.

Let’s explore our model for different types of particles. With
one type of particle we may vary the energy E of the common
interaction. Figure 3(a) (yellow dots) shows the rate τ−1 is max-
imized for medium-weak energies, E ≈ 5.2. At this energy πS is
small because the floppy configurations are also probable. As E
increases beyond this value, τ−1 decreases and πS increases, ap-
proaching their limiting values of (πS,τ

−1) = (0.054,0) as E↗ ∞.
The set of achievable (πS,τ

−1)-values, called the set of outcomes,
describes the tradeoff between stability and accessibility for iden-
tical particles.

Now consider a chain of two types of particles arranged along a
chain as AABAAB. We vary the three energies ~E = (EAA,EAB,EBB)

on a grid. Figure 3(a) (blue dots) shows a scatter plot of the out-
comes (πS,τ

−1). These outcomes appear to fill a two-dimensional
region of (πS,τ

−1)-space. This region has expanded well beyond
the outcomes for identical particles, with a maximum rate about
four times higher and a maximum equilibrium probability ap-
proaching 1. Yet, there are still no outcomes that maximize πS

and τ−1 simultaneously. As for identical particles, the parameters
that give the maximum rate, ~E = (3.5,14,1.9) are not all large –
fast folding appears to require some weak bonds. Also as for iden-
tical particles, there are parameters such that πS → 1, but in this
limit τ−1→ 0.

A key observation is that the set of outcomes appears to be
bounded – in between the outcomes with maximum rate, and
maximum equilibrium probability, the outcomes appear to lie on
one side of a curve. This curve, which we have approximated us-
ing an algorithm to be described later (orange points), will play
a key role in our analysis. We argue that if one wishes to design
a self-assembling system, one should choose parameters that give
outcomes on this curve. To see why, suppose one chooses param-
eters that give an outcome away from the curve, in the interior
of the set of outcomes. Then there exist outcomes, to the right
and upward, that have higher equilibrium probability (without
decreasing the rate), higher rate (without decreasing the equilib-
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rium probability), or both. One can continue to vary parameters
to improve either objective until one reaches the boundary of the
set of outcomes, where one can no longer increase both objectives
simultaneously.

In the language of multi-objective optimization, an outcome
such that no objective value can be increased without decreasing
the value of another is called Pareto optimal42. The collection of
all such outcomes is called the Pareto front. The curve that bounds
the set of outcomes in Figure 3(a) is a Pareto front.

The Pareto front is a powerful design tool. With this curve in
hand, a designer can choose an outcome that weights the objec-
tives according to their interests, and then read off the parameter
values (bond energies) that give this outcome. For example, a de-
signer who wishes to obtain at least 50% equilibrium yield, might
choose parameters that give the maximum τ subject to πS > 0.5 so
the system also assembles as quickly as possible; a designer with
a limited time budget might choose parameters that give a value
of τ comparable to their desired timescale, ensuring the system
is likely to reach the target state but also has the best probability
of remaining at it. This approach of providing a set of optimal
values, which is common in design problems that consider multi-
ple objectives (e.g. building a product that has high quality but
is not too costly, creating a cancer radiation treatment plan that
is effective but safe, designing airfoils that are energy efficient
while minimizing sound pressure)42, is agnostic to which objec-
tive function is better than the other; it allows different designers
to place different levels of importance on the objectives.

4 Pareto fronts for a collection of examples
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Fig. 4 Pareto fronts for polymers of 6 spheres with m particle types: m=1
(blue), m=2 (orange), m=3 (yellow), m=6 (purple), for the octahedron
(left) and polytetrahedron (right). The octahedron’s Pareto front with
m=3 types is a single point, implying there is no thermodynamic-kinetic
tradeoff. The polytetrahedron’s Pareto front with m=2 types is essentially
vertical, implying the same. The optimal particle labels are AABAAB and
ABCABC for the octahedron, and ABAABB for the polytetrahedron.

Since the Pareto front describes the fundamental tradeoff be-
tween thermodynamic stability and kinetic accessibility as the
bond energies are varied, we turn our attention to computing this
curve for systems described by our coarse-grained model. We
compute the Pareto front using a genetic algorithm.

The genetic algorithm works as follows. We initialize a popula-
tion of P members with bond energies sampled randomly from a
uniform distribution on [0.1,EM ], where EM = 12−14 depending
on the system. At each step of the algorithm, we evaluate the
objectives πS,τ

−1 for each member and then use these outcomes

to compare members. We say member X is dominated by member
Y if member Y has larger values in each objective than member
X. We sort the members by the number of dominating members,
from least to greatest, and use this list to construct the next gener-
ation. All non-dominated members, those dominated by no other
members, are carried to the next generation. The rest of the popu-
lation dies, and is replaced by offspring. The offspring are created
by choosing two random parents, from the top p% of the current
generation, and choosing the child’s parameters by randomly as-
signing them from each parent. There is also an r% chance the
child undergoes mutation for any given parameter, meaning that
parameter is re-sampled from the original distribution. We used
r = 10 and p in the range [30,50]. We repeat this procedure for
each generation until one of two end conditions is met: either
the iteration limit is reached, or all members are non-dominated
(Appendix, Section 4).

This algorithm also allows us to consider different particle la-
belings, e.g. AABBAA, ABBBBA, BAAAAA, etc, by allowing parti-
cle type to be an inheritable parameter in our genetic algorithm,
assuming a fixed number m of types. During mating, the type
of particle i in the child configuration is chosen randomly from
the two parents. If it mutates, the types is sampled uniformly
from the collection of m types. This adds a negligible amount of
computation per iteration, at the cost of increasing the number of
iterations until convergence.

4.1 Octahedron and polytetrahedron

The Pareto front for the AABAAB octahedron is shown in Figure
3(a) (orange points). This curve lies on the boundary of the set
of outcomes, verifying the algorithm is working correctly. From
the members on the Pareto front one obtains a parameterization
of the bond energies as a function of either objective. Figure 3(c)
shows the bond energies as a function of πS. The strong bond EAB

is constant at the maximum value, the weak bond EBB fluctuates
near the minimum value, and EAA increases smoothly along the
Pareto front, from a medium-small value where the rate τ−1 is
highest, to a larger value where the equilibrium probability πS is
highest.

We repeated this calculation for the AABAAB polytetrahedron
(Figure 3(b)). The Pareto front is a union of two curves, one
nearly horizontal and one nearly vertical. Each curve favors a
different permutation of the polytetrahedron with different num-
bers of AA, AB bonds. The Pareto front does not extend down
to τ−1→ 0 (when EBB is bounded) because as EAA increases, the
equilibrium probability begins to decrease as the particles become
identical. A notable difference from the octahedron is that the
polytetrahedron’s Pareto front is much steeper. This means the
tradeoff between thermodynamic stability and kinetic accessibil-
ity is smaller, since a steeper slope means the system can still
achieve a high rate without sacrificing much equilibrium proba-
bility.

How can we design a system so its Pareto front is steep? So far
we have fixed the particle labels, but allowing them to vary gives
greater design flexibility. Figure 4 shows the Pareto fronts for the
octahedron and polytetrahedron when particle label is included
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Fig. 5 Free energy diagrams for the self-assembly of 6 spheres with identical particles with interaction energy 8kT (left) and three particle types
with Pareto optimal interactions for an octahedron (right). The optimal interactions lead to a diagram that appears qualitatively to be “funnelled.”
The vertical positions of the nodes are proportional to the state’s free energy. Node coloring denotes the number of non-trivial bonds; the chain in
white, one additional bond for each color of the rainbow, and black for ground states. Edge width is proportional to the absolute net transition rate,
|Qi j −Q ji|, where Q is the transition matrix. Edge color denotes the preferred transition direction: blue for forming a bond, and red for breaking a
bond.

as a design parameter, for various numbers of types m. With 2
types, the octahedron’s optimal labeling is the AABAAB that we
have been considering and its Pareto front has a shallow slope.
With 3 types, however, the Pareto front is a single point – equilib-
rium probability and rate are maximized simultaneously. There
is no thermodynamic-kinetic tradeoff – we have found a system
with a funnelled energy landscape. To make this analogy with
funnelled landscapes more explicit, Figure 5 shows a free energy
diagram over the coarse-grained states. We see that for identical
particles, the landscape is entirely downhill, with most probabil-
ity flowing into the global free-energy minimum, the polytetra-
hedron. For three particle types with the Pareto optimal parame-
ters, all probability flows into the octahedron, which now lies at
the bottom of the funnel, while probability only flows out of the
polytetrahedron; it is no longer a kinetic trap.

To check if this optimization works outside the assumptions
of our coarse-grained model, we performed Brownian dynamics
simulations of chains of 6 spheres using the optimal ordering AB-
CABC and optimal bond energies found by the algorithm. Figure
2(e) shows the octahedron forms with high probability in just
over 1 minute. This result is comparable to our earlier Brownian
dynamics simulation with distinct particles, showing that we can
achieve the same assembly efficiency using three types of particles
as with six types.

4.2 Polymers of disks

Figure 6 shows the Pareto fronts for all rigid clusters formed from
chains of 6 & 7 discs, optimized over particle labels for a variety
of types m. There are many things to observe about these curves.

They all have a critical value m=m∗ for which the Pareto front
becomes essentially vertical. This is perhaps our most striking ob-
servation. In Figure 6, m∗=2 for (b,c,d,e) and m∗=3 for (a,f,g).
Although the Pareto front does not always collapse to a single
point, as it did for the octahedron, when it is very steep the trade-
off between thermodynamic stability and kinetic accessibility has
been eliminated: a target state may have equilibrium probability
close to 1, and still fold rapidly. We suggest that a steep Pareto
front is a signature of a funnelled energy landscape.

Some clusters can fold faster when the number of types is in-
creased beyond m∗ For example, it appears that the chevron can
fold slightly faster with m=3, even though it has m∗=2. We con-
firmed this observation by Brownian dynamics simulation, where
we observe a 20% reduction in the mean first passage time by
using m=3 instead of m=2 (See Figure 3(a) in the SI Appendix†).

Pareto fronts can be discontinuous. For example, see Figure 6(g),
m=2,3. Each continuous fragment of the Pareto front is associated
with different optimal particle labels.

Shallow-sloped Pareto fronts have medium-weak bonds where
folding is fastest, and strong bonds where free energy is lowest. For
m = 2 types, shallow Pareto fronts occur in Figure 6(a,f,g) and for
the octahedron, Figure 4(a). For all of these, as πS increases, the
strongest bond remains constant while a weaker bond increases
in strength, from a small (but not the smallest) value, to close
to the maximum value. This case bears comparing with proteins,
which are known to be marginally stable, i.e. with energies just
low enough to be stable but not as low as could be possible47.
The reasons for proteins’ marginal stability are not fully known;
one speculation is that it aids proteins’ functionality, by giving
them some flexibility and also allowing them to be easily taken
apart; another is that it is a result of neutral evolution, which
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Fig. 6 Pareto fronts for all rigid clusters of 6 and 7 disks, with varying number of particle types m. The target states include all permutations of
a given cluster. For each target states we calculate the Pareto front for distinct particles (purple) to determine an upper bound on τ−1. Then, we
increase m until the assembly is as efficient as having distinct particles. Pareto fronts for distinct particles are shifted rightwards so they do not overlap
other Pareto fronts. Cluster plots show which permutation generate the Pareto front. In some cases, several permutations with approximately equal
probability generate the front, indicated by ‘+c’, where c+1 is the total number of permutations. Below each Pareto front there is a parameterization
of the 2-type Pareto front in terms of the three bond energies. Dotted data indicates the Pareto front is insensitive to the given interaction, for
example a BB interaction in a system with only one B-type particle.

favours native structures that can be folded by the most amino
acid sequences47. Our results suggest that weaker bonds could
also help proteins fold more quickly, by minimizing the effect of
kinetic traps.

Steeply-sloped Pareto fronts favor (slightly) weaker bonds where
free energy is lowest. For m=2 types, steep Pareto fronts occur in
Figure 6(b,c,d,e) and for the polytetrahedron, Figure 4(b). For
most of these examples, the strong bond is still constant but the
weaker bond decreases slightly as πS increases. We suggest three
possible explanations. The first is an effect of permutation lump-
ing. When computing the mfpt to a target, all permutations are
considered, even if some have vanishingly small equilibrium prob-
ability due to the presence of a weak bond. Since the mfpt cal-

culation only considers hitting a target state, and not staying in
it, including these unlikely permutations can slightly enhance the
rate. We tested this hypothesis using the chevron (Figure 6(b))
as an example. If we restrict the target state to the 2-type per-
mutation shown in the figure, the Pareto front reduces to a single
point, supporting the hypothesis. However, the same is not true
for the triangle (Figure 6(a)); we still find a near-vertical front
when restricting the target to the three particle type permutation
shown in the figure. A second possibility is that adding auxiliary
weak bonds can increase the rate of forming a target, even if that
bond is not present in the target state. We could not find numeri-
cal evidence for this possibility (SI Appendix†, Section 6). A third
is that this observation is a numerical artifact, since we compute
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only an approximation to the true Pareto front.

4.3 Lattice polymer
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Fig. 7 Pareto fronts for two maximally bonded configurations of a lattice
polymer. The information plotted is the same as in Figure 6.

As a final example we compute Pareto fronts for lattice poly-
mers formed from a chain of 8 particles (SI Appendix†, Section
7). Figure 7 shows Pareto fronts for two different target states,
each with a fixed permutation. For both target structures, the
best folding is achieved at m=3, where the Pareto front is indis-
tinguishable from the Pareto front for m=8. Many of the qualita-
tive features of these fronts are the same the same as for disks,
but a notable exception is the Pareto front for Figure 7(a) does
not become nearly vertical, even for distinct particles (although
the slope near πS=1 approaches ∞.) We believe the absence of
a nearly-vertical Pareto front is because our lattice model allows
two bonds to form at once, so it captures some of the kinetic traps
that get averaged out by our coarse-grained continuum model, an
issue we discuss later.

4.4 Pareto Front Sensitivity
How sensitive are the Pareto fronts to the underlying assumptions
of the model, such as the initial condition, estimation of free ener-
gies, model for transition rates, choice of pair potential and bond
cutoff, neglect of hydrodynamic interactions, etc? We computed
Pareto fronts for a small collection of examples under two types
of perturbations: one which alters the transition rates, and an-
other which considers different initial conditions (SI Appendix,
Section 5.) Figure 8 shows that while the numerical values of the
rates along the Pareto fronts do change, their qualitative shape
does not, and, remarkably, the bond parameterizations along the
Pareto fronts appear insensitive to any of these perturbations.
These findings suggest that the Pareto optimal interactions are
mainly a function of the system’s connectivity network, i.e. its
topology, rather than its detailed kinetics.

Such a finding implies that strategies that attempt to minimize
the number of accessible pathways to mis-folded states, such as

was done for a minimal, 3-level toy model of self-assembly9, may
successfully avoid kinetic traps, without detailed knowledge of
the folding kinetics.
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Fig. 8 Top Row: Pareto fronts and non-trivial bond energy parame-
terizations (AA interaction) for the octahedron state with two particle
types, for various 1-bond starting states. With the exception of the lin-
ear chain, all starting states are sampled from the equilibrium measure in
that state. Starting with a mis-folded bond has nearly no effect, as the
bond can quickly break, while starting in a loop increases the maximum
rate, as this bond is the slowest in the assembly process. Bottom Row:
Pareto fronts and parameterizations (AB interaction) for the two particle
type triangle after perturbing model parameters. Exit rates out of coarse
grained states are perturbed by adding Gaussian noise with standard de-
viation 20% of each state’s rate (σ = 0.2/τi.) Probabilities are perturbed
by making each transition out of a state equally likely.

5 Chiral traps: the problem with short-
ranged isotropic interactions

We encountered a problem when we tested whether the design
parameters found by our genetic algorithm, lead to fast folding
in Brownian dynamics simulations. Sometimes the Brownian dy-
namics simulations agreed with our predictions of fast folding,
but sometimes the simulations got stuck in kinetic traps. For ex-
ample, Figure 9 shows Brownian dynamics simulations of a trian-
gle with 3 particle types and interactions found by the algorithm
to have no tradeoff. The yield stagnates at about 0.5; it will even-
tually reach 1 but only over a much longer timescale. The other
50% of the trajectories are stuck in a floppy state, which requires
breaking a strong bond to leave. This floppy state has the same
adjacency matrix as a floppy state which is on the folding pathway
to the triangle. Our coarse-grained model does not distinguish
clusters with the same adjacency matrix: it lumps the kinetic trap
and the on-pathway cluster into the same state, effectively al-
lowing the system to tunnel between the two configurations, and
thereby removing the energy barrier for leaving the trap. This
problem occurs even for distinct particles: the kinetic trap always
exists for the original, continuous system, even if it is removed in
our coarse-grained model.

This problem also occurs for the octahedron, although more
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3 Types

6 Types

Fig. 9 Chiral traps preven efficient assembly. Left: Brownian dynamics
simulations of polymers of 6 disks, with 3 types (ABCBAC) and 6 types.
The yield stagnates at about 0.5 in both cases, because half the trajec-
tories get stuck in a kinetic trap (dashed line), which requires breaking
a strong bond to form the triangle. The kinetic trap has the same adja-
cency matrix as an on-pathway cluster (dotted line), so it is impossible
to remove this trap using short-ranged isotropic interactions. All yields
were calculated from 400 trajectories initialized as a linear chain. The
three-type chain had energies EAA=EAC=12kT , while the 6-type chain
set all target energies to 12kT ; all other interactions were 0.1kT . Right:
The floppy kinetic trap for the octahedron, with the strong AB and AC
bonds in green and pink respectively, and backbone bonds in black. This
cluster has the same adjacency matrix as a cluster where the frontmost
yellow and blue particles are interchanged, which can then form strong
blue-yellow bonds with their neighbours.

mildly; about 1-2% of the trajectories got stuck in a floppy trap
with the same adjacency matrix as an on-pathway cluster, shown
in Figure 9. This same floppy trap has been observed experimen-
tally in DNA coated colloids assembling from a gas, with interac-
tion energies similar to the ones we identified as optimal48.

We call such kinetic traps chiral traps, because there is no way
to distinguish them from on-pathway clusters given only the ma-
trix of particle contacts. Chiral traps pose a fundamental problem
for self-assembly or folding using short-ranged isotropic interac-
tions. There is no way to remove these traps using interactions
that do not depend on particle orientation, even if particles are
all distinct. Indeed, such traps have been observed in simulations
of dozens of distinct particles22.

Yet, all is not lost – the success of our coarse-grained model in
finding vertical Pareto fronts, suggests that were the chiral traps
to be removed, or distinguished from their on-pathway counter-
parts, one could achieve fast, reliable assembly. One way to do
this is with particles with patchy interactions49–52. It could be
that patchy particles have qualitatively similar Pareto fronts as
with our coarse-grained model. This idea is supported by com-
putational studies that observe high fidelity yields of icosahedra
using patchy particles8; yield reductions were due primarily to
aggregation effects, which are not present in our system, instead
of mis-folding effects. We also remark that the coarse-grained
model is successful within the context of its own assumptions.
Figure 9 shows that simulating a chain of distinct particles, gives
the same yield curve as a chain with 3 particle types. Therefore,
the model can identify when assembly is as efficient with m parti-
cle types as it is with distinct particles.

6 Extension to Larger Systems
So far we have computed Pareto fronts for systems whose state
space can be fully enumerated, and we furthermore lumped states
sharing the same adjacency matrices so that states can be easily
identified53. This allowed us to efficiently evaluate measures of
thermodynamic stability and kinetic accessibility, but it will not
be feasible for larger systems whose state spaces cannot be fully
enumerated.

A straightforward idea for handling non-enumerable systems
would be to simulate them, and estimate the objectives from an
ensemble of trajectories. We do not expect this to be feasible –
first, because computing a Pareto front requires evaluating the
objectives thousands of times, and second because many of the
parameter values of interest lead to extremely slow rates of fold-
ing, which also imply very long simulation times. However, there
is flexibility in choosing the objectives; other functions might be
just as (or more) informative, yet possible to evaluate cheaply and
accurately by simulation.

We have tentatively explored a selection of other objectives.
One idea that appears promising, is to replace πS with ps, an
average energy barrier for leaving the state, and τ−1 with kA,
a measure of the energy of mis-folded bonds when a trajectory
first becomes trapped (see SI Appendix†, Section 8 for details).
These objectives may be estimated reasonably efficiently from an
ensemble of trajectories. Figure 10(a) shows that for a lattice
polymer of size N = 8, the Pareto front computed for these new
objectives, gives bond energies that lie mostly on the Pareto front
for the original objectives. This shows the parameterization of the
Pareto front is relatively unchanged by this change of objectives, a
promising result. We then ran our genetic algorithm for a lattice
polymer of size N = 16, a system big enough that enumeration
is impossible, and obtained converged Pareto optimal parameters
(SI Appendix†, Section 8.) However, for both lattice polymers, the
Pareto optimal parameters do not give a good yield of the target
structure: Figure 10(b) shows that the finite time target structure
yield is significantly eroded by the presence of chiral traps. Since
chiral traps contain no mis-folded bonds, they do not contribute
to kA, and thus are undetected by our sampling. By inspection,
we see these trap states could also be eliminated by introducing
directional bonds.

7 Discussion
We computed Pareto fronts describing the tradeoff between equi-
librium probability and rate of folding, for small polymers of
spheres and disks with programmable interaction energies. We
showed that a genetic algorithm can compute these Pareto fronts,
and can handle the discrete optimization problem of determin-
ing particle labels. This approach makes no assumptions on the
intrinsic timescales of the assembly (in contrast to approaches
which optimize yield at a fixed a final time), allowing the as-
sembly timescales to emerge naturally through our optimization
algorithm, and, it can identify collections of optimal parameters
in a high-dimensional parameter space.

A key approximation that let us efficiently evaluate the equi-
librium probability and rate of folding, was to first construct
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Fig. 10 (a) Mapping of the Pareto front for the N = 8 particle rect-
angle state on a lattice in the original objectives (πS,τ

−1) (solid blue
curve) to the new objectives (pS,kA) (solid red curve), computed with
the coarse-grained model. The genetic algorithm was then applied to the
new objectives by sampling, using P = 100, p = 0.25, T = 500, ttrap = 300
(see SI Appendix†, Section 8 for details), 200 generations, and 500 sam-
ples to estimate averages. The non-dominated portion of the population
is shown as unfilled red circles. The parameters for the red circles were
extracted, and plugged into the coarse-grained model to evaluate the
original objectives (blue circles), which can be seen to still lay mostly
on the original Pareto front. (b) Yields of the target state and most
common kinetic trap, estimating using 5000 samples, for the two N = 8
ground states at T = 5000, as well as a square of N = 16 particles at
T = 50000, using the Pareto optimal parameters from sampling. Solid
white lines denote the backbone, and dashed white lines denote bonds
with E = 12kT . Note that the contact matrix for the trapped states are
consistent with the target state, showing the kinetic traps are chiral traps.

a coarse-grained model which approximates the dynamics as a
Markov chain on the set of adjacency matrices. The main limi-
tation of this approximation is that it removes some kinetic traps
for isotropic particles that sometimes prevent a real system from
assembling efficiently. We believe other possible limitations are
negligible – indeed, we found the design parameters on the Pareto
front are remarkably insensitive even to large perturbations.

We exhaustively calculated the Pareto fronts for the ground
states of small polymers with every possible number of types of
particles, for this coarse-grained dynamical model. Apart from
being useful as a design tools, these Pareto fronts give qualitative
insight into what determines the thermodynamic-kinetic trade-
off. A striking observation was that for nearly all target states,
there was a critical number m∗ of particle types, less than the to-
tal number of particles, that led to a vertical or point-like Pareto
front. When this happens there is no tradeoff; one may choose
interactions such that the polymer folds rapidly to a low-energy
target state.

Our philosophical approach to calculating Pareto fronts is not
limited to polymers of spherical particles, but could be adapted to
handle particles assembling from a gas, particles with orientation-
dependent interactions, particles with different shapes, etc; ad-
ditional objectives could also be considered, resulting in Pareto
fronts that are hypersurfaces with dimension one less than the
number of objectives. Our technical approach to coarse-graining
the configuration space, however, is limited to systems small
enough that one can enumerate all the possible ways to put par-
ticles in contact. The main challenge in extending our results will
be to efficiently evaluate measures of thermodynamic stability

and kinetic accessibility, in systems where this enumeration is no
longer feasible. We tinkered with other objectives, which seemed
promising when evaluated for small lattice polymers, however we
were discouraged by the increasing number of chiral traps that
occur for larger lattice polymers, which prevent the system from
ever folding efficiently. Any further work in this direction must
consider non-isotropic interactions.

We were motivated by the puzzling success of protein folding,
and suggest that a steep Pareto front is a signature of a “fun-
nelled” energy landscape. This funnel metaphor has proven in-
valuable in studying how proteins navigate their complex energy
landscape to efficiently fold into their native states, but it has not
yet found use as a practical design tool in materials science. Fram-
ing the design problem in the language of multi-objective opti-
mization, as we have done, and building upon existing tools to
address the tradeoffs between objectives, may provide an alterna-
tive method to design complex self-assembling systems given re-
alistic experimental constraints. A fascinating question would be
to understand how the critical number m∗ of particle types grows
with system size or target structure complexity. Information the-
ory54,55 combined with statistical mechanics considerations may
give additional insight into this question. Will this number always
be less than 20, as for proteins?
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