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Droplet detachment and pinch-off of bidisperse partic-
ulate suspensions
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When a droplet is generated, the ligament connecting the drop to the nozzle thins down and
eventually pinches off. Adding solid particles to the liquid phase leads to a more complex dynamic,
notably by increasing the shear viscosity. Moreover, it introduces an additional length scale to the
system, the diameter of the particles, which eventually becomes comparable to the diameter of
the ligament. In this paper, we experimentally investigate the thinning and pinch-off of drops of
suspensions with two different sizes of particles. We characterize the thinning for different particle
size ratios and different proportions of small particles. Long before the pinch-off, the thinning rate
is that of an equivalent liquid whose viscosity is that of the suspension. Later, when the ligament
thickness approaches the size of the large particles, the thinning accelerates and leads to an early
pinch-off. We explain how the bidisperse particle size distribution lowers the viscosity by making
the packing more efficient, which speeds up the thinning. This result can be used to predict the
dynamics of droplet formation with bidisperse suspensions.

1 Introduction
The generation of droplets of suspension, i.e., a fluid containing
a solid dispersed phase, is present in many printing processes.1,2

For example, bio-printing frequently requires the inclusion of cells
or biomaterials in a liquid matrix.3,4 The generation of suspen-
sion droplets is related to the printability of the fluid, which is in-
fluenced by the nature of the liquid5 and that of the particles.6,7

For a suspension, the formation of drops is first controlled by the
rheological behavior resulting from the presence of the particles.
At first order, the viscosity of the suspension increases with the
solid volume fraction φ .8–10 However, the presence of solid par-
ticles also modifies the pinch-off dynamics,11 in particular when
their size becomes comparable to the length scale of the flow. This
effect is particularly important during the pinch-off of a drop since
the diameter of the ligament becomes vanishingly small.12 Such
a deviation from a continuous-medium behavior has also been
observed during the deposition of thin films of suspensions on
substrates13–15 and in the atomization of suspension sheets.16,17

Various manufacturing processes involve the generation of
drops at different scales.18,19 Many studies have investigated the
pinch-off dynamics of homogeneous Newtonian liquids extruded
from a nozzle to describe and optimize these processes.20 The for-
mation of drops directly at the nozzle is observed in the dripping
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regime when the extrusion speed of the fluid is low enough and is
accompanied by a localized break-up.21 Experiments performed
with homogeneous Newtonian fluids have shown that the thick-
ness of the liquid neck, which connects the drop to the nozzle,
vanishes in a finite time tc.20 Near this pinch-off singularity, the
thinning follows a self-similar dynamic. The relevant length scale
is no longer the nozzle diameter but the thickness of the liquid
neck h(t) at its narrowest point, and the relevant time scale is the
time to the pinch-off tc− t. The mechanisms acting on the liquid
neck, which are captured by the fluid viscosity η , its surface ten-
sion γ, and the inertia through its density ρ, can be summed up as
the Ohnesorge number, Oh = η/

√
ργh. This dimensionless num-

ber represents the ratio of viscous to inertial forces in a capillary
flow. In the inviscid limit of small Oh, dimensional analysis shows
that h(t) ∝ (γ/ρ)1/3 (tc− t)2/3,22,23 whereas in the viscous limit of
large Oh, the neck diameter evolves as h(t) ∝ (γ/η) (tc− t).24

The presence of solid particles dispersed in the fluid complex-
ifies the problem since near the pinch-off the diameter of the
neck becomes comparable to that of the particles. Various stud-
ies on the dynamics of jets and drops of particulate suspensions
have shown that the dripping/jetting transition occurs at lower
flow rates for a particulate suspension than for an equivalent ho-
mogeneous liquid with the same viscosity.11,25 Past experiments
have been performed with suspensions of monodisperse particles.
Hence, the flow was characterized by two length scales: the par-
ticle diameter d and the thickness h(t) of the jet (or neck) at its
narrowest point. These experiments have revealed two regimes: a
continuous regime at early-time and a regime presenting discrete
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effects brought by the discontinuous nature of the solid phase
near the pinch-off.11,26–29 Similar studies on stretched ligaments
of suspensions led to the same conclusions.30–34 In these con-
figurations, it was shown that as long as h(t)� d, the suspen-
sion can be considered as an effective homogeneous Newtonian
fluid whose viscosity is independent of the size of the particles.10

This continuous description fails near the final pinch-off, and the
thinning accelerates. In the case of viscous interstitial fluids and
monodisperse suspensions, it has recently been shown that the
transition to the discrete effects regime occurs at the critical neck
thickness h? ∼ d (φc−φ)−1/3, where φc denotes the maximum
packing fraction.34 Bonnoit et al.26 have also reported that this
discrete effects regime is followed for a short period by a regime
only controlled by the interstitial liquid, identical to the pinch-off
of a drop of pure interstitial liquid. Moreover, for suspensions,
the pinch-off is very localized, whereas for a viscous fluid having
the same viscosity, a long and thin filament is observed until the
drop detaches.11,26

The rheology of particulate suspensions has been extensively
characterized for monodisperse, spherical, neutrally buoyant, and
non-Brownian particles dispersed in a Newtonian liquid.10 At
small particle Reynolds numbers, the suspension exhibits a New-
tonian rheology. The effective shear viscosity η(φ) of the suspen-
sion depends on the interstitial fluid viscosity ηf and on the parti-
cle volume fraction φ but not on the particle diameter d. Different
empirical correlation for η(φ) have been proposed.10,35,36 For in-
stance, the Maron-Pierce model captures experimental measure-
ments reasonably well, while retaining a simple expression:37

η(φ) = ηf(1−φ/φc)
−2, (1)

where φc is the maximum volume fraction for a suspension of
monodisperse spherical particles. Its value depends on the inter-
particles friction coefficient and is typically in the range 0.56 <

φc < 0.64.10 The quantity 1−φ/φc roughly describes the volume
in which each particle is free to move without hindrance from its
neighbors. When φ → φc, this leeway vanishes, and the suspen-
sion jams. Such rheological approaches have been shown to cap-
ture the early thinning of monodisperse suspension thread.26,34

The studies mentioned above all considered monodisperse sus-
pensions where the particles are described by a single length
scale. However, in practical applications, the dispersed phase
often features a broad particle size distribution, and such ideal
descriptions fail to capture the reality. The viscosity of bidis-
perse suspensions is more challenging to describe.38–44 The main
observation is that bidisperse suspensions display a lower vis-
cosity than monodisperse ones for the same volume fraction φ .
This observation is correlated to the increase in the maximum
volume fraction φc.40,41 In order to describe the rheology of
bidisperse suspensions, two additional parameters are required:
the ratio of large to small particle diameters, δ = dL/dS, and
the fraction of the solid volume occupied by the small particles,
ξ =VS/(VS +VL).43

The capillary dynamics of bidisperse suspensions remains elu-
sive. One may intuitively expect that the macroscopic viscosity
will be reduced. However, the free surface may cause the reor-

ganization, filtration, or sorting of the particles of different sizes,
as recently observed for dip-coating.45–47 The pinch-off dynam-
ics and the droplet formation have only been characterized for
monodisperse suspensions, and our understanding and modeling
of the printing of polydisperse suspensions remains limited. In
particular, for a bimodal distribution of particles, the introduc-
tion of the new parameters δ and ξ makes uncertain whether the
models for the pinch-off of monodisperse suspensions hold in the
bidisperse case.

To characterize this configuration, we consider in this study a
model bidisperse suspension and investigate experimentally the
pinch-off and detachment of droplets. In particular, we report
the thinning dynamics of the liquid neck between the drop and
the nozzle. We start with a presentation of our experimental ap-
proach, and we report qualitative observations between different
compositions of particulate suspensions. Then, we quantify the
time evolution of the neck thickness in the different regimes be-
fore pinch-off. Finally, we discuss these results in light of the
rheology of bidisperse suspensions.

2 Experimental Methods
The suspensions consist in different batches of spherical
polystyrene particles (Dynoseeds from Microbeads), with density
ρ = 1054± 4kg.m−3 and diameters 20, 80, 140, and 250 µm.
The particles are dispersed in silicone oil (AP100, Polyphenyl-
methylsiloxane from Sigma-Aldrich) of dynamic viscosity ηf =

120mPa.s and density ρ = 1058kg.m−3 at 20◦C. The interstitial
liquid was chosen to match the density of the particles to limit
sedimentation effects over the duration of the experiments. The
silicone oil perfectly wets the particles, although it was shown
that the contact angle between the particles and the interstitial
liquid does not affect the pinch-off dynamics.34 To separate the
influence of the effective viscosity from the discrete effects of the
particles, we also compare the behavior of the suspensions with
that of a Newtonian fluid having similar macroscopic properties
as the suspension.17,26 Here, we use a more viscous silicone oil
(AP1000, ηAP1000 = 1.28Pa.s at 20◦C), whose viscosity is close
to the viscosity of a monodisperse suspension of volume fraction
φ = 40%.

The particle volume fraction is φ = (VS +VL)/(VS +VL +Vf),
with VS and VL the volume of small and large particles, respec-
tively, and Vf the volume of interstitial liquid. Since we focus on
the role of the bidisperse distribution for a given volume fraction,
we keep it constant at φ = 40%. To characterize the role of the
size distribution, we vary the size ratio of large to small particle
diameters δ = dL/dS and the fraction of the total solid volume
occupied by the small particles ξ =VS/(VS +VL).

The experiments consist of slowly extruding the suspension
from a syringe with a nozzle of outer diameter h0 = 2.75mm
[figure 1(a)]. The formation of the drop and the pinch-off are
recorded with a high-speed camera (Phantom VEO710) at 2,000
fps. The camera is equipped with a macro lens (Nikon 200mm
f/4 AI-s Micro-NIKKOR) and a microscope lens (Mitutoyo X2) so
that the typical resolution in our measurement is 10 µm. The ex-
periments are backlit with a LED panel (Phlox) to clearly see the
contour of the drop and the suspension thread [figure 1(b)]. This
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Fig. 1 (a) Schematic of the experimental method. (b) Picture of the neck of a bidisperse suspension drop containing φ = 40% of particles distributed
as ξ = 20% of small particles (dS = 80 µm) and 1−ξ = 80% of large particles (dL = 250 µm). (c) Thinning dynamics of the neck for the same bidisperse
suspension. The inset shows the dynamics in log scale. The dashed line represents the linear self-similar regimes for capillary-viscous thinning.

2 mm

tc– t = 200 ms 125 ms 100 ms 50 ms 0 ms tc– t = 200 ms 125 ms 100 ms 50 ms 0 ms

tc– t = 100 ms 30 ms 10 ms 5 ms 0.5 ms tc– t = 100 ms 30 ms 10 ms 5 ms 0.5 ms

(a) Pure AP1000 (b) 250 µm

(c) 50% 80 µm & 50% 250 µm (d) 80 µm

Fig. 2 Example of droplet detachment for (a) AP1000 silicone oil (no particles) and for suspensions containing φ = 40% of particles distributed as
follows: (b) 250 µm particles only, corresponding to ξ = 0; (c) half of 80 µm and half of 250 µm particles, corresponding to ξ = 0.5; (d) 80 µm particles
only, i.e., ξ = 1. The corresponding movies are available in Supplemental Materials.
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Fig. 3 Thinning dynamics for the pinch-off of different bidisperse suspensions droplets. The total volume fraction remains constant and equal to
φ = 40%. (a) Different values of the small particle fraction ξ for a bidisperse suspension composed of particles of diameters dS = 20 µm and dL = 80 µm.
The black circles represent the experiment with the AP1000 silicone oil. (b) For a larger fraction of big particles (ξ = 20%) and different bidisperse
suspensions of small and large particle diameters of dS and dL, respectively. (c) Situation with a larger fraction of small particles (ξ = 80%) for different
bidisperse systems.

contour is detected with thresholding methods using the software
ImageJ. Then, a custom Python routine enables us to extract the
minimum thickness of the ligament, h(t), at each time step. Fig-
ure 1(c) reports an example of the time evolution of the minimum
thickness h in the case: dS = 80µm, dL = 250µm, φ = 40% and
ξ = 20%. For each suspension, experiments were repeated five
times and led to reproducible results.

3 Drop formation: thinning and pinch-off
dynamics

We first report the qualitative thinning behavior of a bidisperse
suspension compared to that of monodisperse suspensions con-
taining each size of particles. We also compare the thinning of
these suspensions with the behavior of a silicone oil (AP1000)
having a shear viscosity of the same order of magnitude as
a monodisperse suspension of volume fraction φ = 40%. Fig-
ures 2(a)-(d) shows the thinning process in the case of (a) a vis-
cous silicone oil without particles, (b) a monodisperse suspension
at a volume fraction φ = 40% of 250 µm particles, (c) a bidis-
perse suspension at a volume fraction φ = 40% and where half
of the solid volume of particles is made of 80 µm particles and
the other half of 250 µm particles, corresponding to ξ = 0.5 and
dL/dS = 3.125, and (d) a monodisperse suspension with φ = 40%
of 80 µm particles. These experiments illustrate that the overall
thinning occurs on slightly different time scales between the pure
liquid and the suspensions. The initial thinning, shown in the left
columns of pictures in Figure 2, is controlled by the effective vis-
cosity both for monodisperse and bidisperse suspensions. Since
the silicone oil (AP1000) without particles has a shear viscosity
similar to that of the suspensions, the initial thinning dynamic
is similar. However, a significant difference due to the particles
is the acceleration of the thinning just before the pinch-off (last
two images of each series in Figure 2). We also observe that the
presence of two particle sizes in the bidisperse suspension seems

to play a role in the latest stages of the thinning. Indeed, for
monodisperse suspensions [figures 2(b) and 2(d)] the ligament
goes from a state where it contains particles to a state where it is
only made of fluid. This change in the local composition creates
a local decrease in the viscosity, which accelerates the pinch-off.
Such an effect was previously reported by Bonnoit et al..26 In the
bidisperse case (ξ = 0.5, figure 2c), there is an intermediate stage
where the neck only contains the smallest particles. In summary,
the initial thinning seems to be governed by the effective viscosity
of the suspension, until the neck reaches a characteristic length
comparable to the particle diameter. Under this threshold, the
thinning is accelerated by the particles. A key difference brought
by the bimodal size distribution is that the neck can contain more
than one size of particles.

Figures 3(a)-(c) report the time evolution of the minimum
thickness of the neck h, for suspensions involving different cou-
ples of particle sizes (dS, dL), and different fractions of small par-
ticles ξ . The total solid volume fraction φ is kept constant and
equal to 40% in all the experiments. Note that the evolution of
h is plotted as a function of tc− t. Therefore, the initial thinning
is on the right side of the figures, the pinch-off on the left, and
time elapses from right to left. For a given set of particle sizes
(dS = 20µm, dL = 80µm, δ = dL/dS = 4), we recover that the fi-
nal stage is slightly faster for the larger particles (ξ = 0) than for
the small ones (ξ = 1). In figure 3(a), the yellow curve shows
a suspension made of only 80 µm particles, and the blue curve
of only 20 µm particles. This acceleration becomes noticeable in
the last 100-150 ms before the break-up. The initial thinning for
bidisperse suspensions is also faster than for the monodisperse
suspensions during the entire thinning process and not only the
latest stages. This observation is likely due to the fact that for a
given solid volume fraction, a bidisperse suspension has a lower
viscosity than a monodisperse one.38,43 The influence of the size
ratios δ = dL/dS for a given fraction of small particles ξ is re-
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Fig. 4 Rescaled thinning dynamics. The experiments are the same as those presented in Figure 3(a)-(c). The time is stretched by the viscosity ratio
ηr and shifted by ∆t, so the thinning dynamics of the suspensions overlap with that of the AP1000 oil (black circles) in the region before the accelerated
pinch-off. (a) Varying the fraction of small particles, ξ , for a bidisperse suspension composed of particles of diameters dS = 20 µm and dL = 80 µm
dispersed in AP100 silicone oil. (b) for a larger fraction of big particles (ξ = 20%) and (c) a larger fraction of small particles (ξ = 80%) for different
bidisperse suspensions of small and large particle diameters of dS and dL, respectively.

ported in figure 3(b) for ξ = 0.2 and figure 3(c) for ξ = 0.8. The
thinning rate increases when the size ratio δ increases. This ob-
servation agrees with the qualitative decrease of the viscosity of
the bidisperse suspension when the size ratio increases.43 The
acceleration of the pinch-off in the later stage also seems more
significant when the large particles prevail [figure 3(b)] rather
than when small particles prevail [figure 3(c)]. This stronger ac-
celeration is likely introduced by the size selection of particles in
the ligament connecting the droplet and the nozzle.

In the following, we first consider the initial effective viscosity
regime, to relate the observed macroscopic viscosity to the viscos-
ity of the bidisperse suspensions. We will then consider the accel-
erated thinning regime, influenced by the second size of particles.

4 Thinning dynamics: effective viscous-
fluid regime

We compare the thinning dynamics of the bidisperse suspensions
and of the pure AP1000 silicone oil. The viscosity of this oil,
ηAP1000 = 1.28Pa.s, is close to that of monodisperse suspensions
with a volume fraction φ = 40% of particles dispersed in the
AP100 silicone oil. Its other physical properties – density, sur-
face tension – are of the same order. The effect of the particles on
the thinning is twofold. First, far enough from the final break-up,
the suspension behaves like a homogeneous fluid with an equiv-
alent viscosity η(φ). We define the ratio of the shear viscosity of
the suspension to that of AP1000 as

ηr =
η(φ)

ηAP1000
. (2)

Later, the particles accelerate the detachment of the drop com-
pared to the equivalent fluid regime.11 Similarly to Bonnoit et
al.26 we define the time shift ∆t between the pinch-off of the pure
oil and that of the suspension.

The viscosity ratio ηr and the time shift ∆t can be estimated for
each suspension by adjusting their values to find the best over-
lap with the AP1000 reference.26 Since the typical time scale of

the thinning is proportional to the fluid viscosity, we seek the
values of ηr and ∆t so that the curve h = f [(tc− t)/ηr +∆t] for
a given suspension overlaps as well as possible with the curve
hAP1000 = f (tc − t) for AP1000 oil. This overlap is sought for
in a region far away from the pinch-off, which we define as
0.5mm < h < 2mm, using an iterative bisection method. Starting
at iteration n= 0 with η

(0)
r = 1 and ∆t(0) = 0, we increment η

(n)
r by

one step ∆η , then we compute the average time difference ∆t(n)

between h(n) = f
[
(tc− t)/η

(n)
r +∆t(n−1)

]
and hAP1000 = f (tc− t). If

the mean square deviation between h(n) and hAP1000 increase from
one iteration to the next one, the size of the step ∆η is divided by
two, and the direction of variation of η

(n)
r is switched. Eventually,

η
(n)
r and ∆t(n) converge towards ηr and ∆t. By this mean and using

equation (2), we estimate the experimental value of the viscosity:
ηexp = ηrηAP1000.

Figures 4(a)-(c) report the rescaling for the different bidisperse
suspensions previously reported in figures 3(a)-(c). It shows that
all experiments with suspensions can be rescaled to match the
initial thinning dynamics of the pure AP1000 oil. The deviation
from the AP1000 dynamics occurs at relatively large values of h,
typically a few particle diameters, as observed by Bonnoit et al.26

Using this rescaling, we investigate the effect of the fraction of
small particles ξ on the pinch-off for given sizes of small and large
particles, dS and dL, respectively (figure 4a). The monodisperse
suspension of large particles (ξ = 0, in dark blue) breaks up faster
than the monodisperse suspensions of small particles (ξ = 1, in
yellow), in agreement with the recent study of Château et al.34

The bidisperse suspensions also follow a monotonic trend: as the
composition shifts from the small to the large particles (when ξ

decreases) the pinch-off becomes more and more accelerated. Be-
sides, the more small particles are in the suspension, the later the
thinning dynamics deviates from the reference liquid.

In Figure 4(b), we compare the thinning and pinch-off be-
haviours for different diameter ratios of particle dL/dS at a given
fraction of small particles (ξ = 20%). We still observe a deviation
from the equivalent liquid earlier for the bidisperse suspensions

Journal Name, [year], [vol.],1–10 | 5

Page 5 of 10 Soft Matter



dS= 20 µm | dL= 80 µm
dS= 20 µm | dL= 140 µm

y =
x

0 0.25 0.5 0.75 1 1.25 1.5
0

0.25

0.5

0.75

1

1.25

1.5

ηrheo (Pa.s)

η e
xp
(P
a.
s)

Fig. 5 Comparison between the shear viscosity measured with the
rheometer, ηrheo and the viscosity measured from the pinch-off experi-
ments ηexp, for two bidisperse suspensions and different fractions of small
particles ξ . The dashed line represents ηrheo = ηexp.

containing the biggest large particles: typically around h = 1mm
for the 80–250 µm suspension and h = 0.8mm for the 20–250 µm
suspensions. When the large particles are smaller, this deviation
is observed for smaller neck diameters, for instance, around 0.6
mm for the 20-80 µm bidisperse suspension. More generally, for
a given small particle diameter dS, the larger dL is, the earlier the
deviation from the homogeneous fluid is observed. This behav-
ior can be rationalized by considering that when the thickness of
the neck h becomes comparable to dL, the large particles are pro-
gressively pushed out of the neck by capillary effects. As a result,
the liquid is locally depleted in large particles. For ξ = 20%, the
large particles represent 80% of the solid volume. Therefore, the
local depletion in large particles leads to a smaller particle vol-
ume fraction, typically dropping from φ = 40% to an estimate of
ξ φ = 8%. Such a change in the local volume fraction leads to a
reduction of the local viscosity by almost an order of magnitude
and can explain the sudden acceleration of the thinning at late
times. The overall behavior is similar in the regime dominated by
small particles and reported in Figure 4(c). However, since the
large particles now only constitute 20% of the particle volume
fraction in the bidisperse suspension, their depletion in the neck
does not lead to such a viscosity drop as drastic as in the case with
80% of large particles.

5 Viscosity of the bidisperse suspension
In Figures 4(a)-(c), we assumed that the characteristic time scale
of the thinning process is proportional to the shear viscosity of the
suspension. Thus, we identified the fitting parameter ηr as the
viscosity ratio [equation 2]. In the most general case, the forces
acting on the drop are the surface tension γ, the viscosity, and
inertia. Long before the pinch-off, the nozzle diameter h0 is the
relevant length scale, and the thinning rate ḣ is typically of order
10mm/s. Therefore, the Reynolds number Re = ρh0ḣ/η for the
bidisperse suspensions is of order 3× 10−2, which suggests that
inertia is negligible. In this case, the typical time scale should

vary like ηh0/γ, proportionally to the viscosity. Previous pinch-
off experiments with monodisperse suspensions have shown that
their Trouton’s ratio – which compares the elongational viscosity
to the shear viscosity – is close to that of a Newtonian liquid.26,34

It is therefore relevant to compare the viscosity obtained from
our bidisperse pinch-off experiments, which corresponds to an
elongational flow, to the shear viscosity measured through other
methods.

To compare the values obtained from the pinch-off experi-
ments, ηexp, with the actual shear viscosity of the bidisperse sus-
pensions, we measured the steady-shear viscosity ηrheo indepen-
dently with a rheometer (Anton Paar MCR 92). We used a rough
parallel plate geometry of diameter 25 mm and a gap between the
plates of 1 mm. For the volume fraction considered here, φ = 40%,
the viscosity was found to be nearly shear-independent. Figure 5
reports the shear viscosity measured with the rheometer ηrheo to
the viscosity estimated from the pinch-off experiments ηexp, for
two couples of particle sizes (20 µm/80 µm and 20 µm/140 µm).
The experimental viscosity ηexp is obtained through equation (2):
ηexp = ηr ηAP1000. We obtain a very good agreement between the
viscosity obtained with these two different methods, even though
the viscosity varies depending on the composition of the bidis-
perse suspension. This result suggests that the viscosity of the
suspension can be directly measured by observing the thinning of
the neck. Future studies scanning a large range of volume frac-
tions could confirm this possibility. Moreover, our results imply
that the thinning timescale is proportional to the viscosity, even
though the thinning is not self-similar for the range of Ohnesorge
numbers considered here (2.3 < η/

√
γρh0 < 4.4).

We now consider the variation of the viscosity observed when
varying the values of ξ and δ . Qualitatively, the lower viscosity
of bidisperse suspensions can be explained by the more efficient
packing of spheres of different sizes. In the limit where the large
particles are much bigger than the small ones, the small particles
can sit in the interstices between large particles without increas-
ing the total volume of the packing. Hence, the maximal solid
packing fraction φc of bidisperse suspensions is higher, leading to
a less viscous suspension for a given volume fraction φ .

A variety of models have been developed to predict the value
of φc for a given particle size distribution. In particular, Ouch-
iyama and Tanaka48 developed a model for an arbitrary poly-
disperse distribution. Their approach consists of considering the
local volume fraction around each particle and then averaging it
over the particle size distribution. Gondret and Petit40 adapted
this model to the specific case of a bidisperse distribution. Their
calculations leads to the maximum packing fraction

φc(δ ,ξ ) =

NSd̃S
3
+NLd̃L

3

(NS/Γ)(d̃S +1)3 +NL
(
(d̃L−1)3 +

[
(d̃L +1)3− (d̃L−1)3

]
/Γ
) ,

(3)

where NS and NL are the number fractions of small and large
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Fig. 6 Effective viscosity ηexp estimated from the pinch-off experiments. The dashed lines represent the viscosity predicted by the model. (a) dS = 80 µm,
dL = 140 µm. (b) dS = 80 µm, dL = 250 µm. (c) dS = 20 µm, dL = 140 µm. (d) dS = 20 µm, dL = 250 µm.

particles, respectively, and are given by:

NS =
ξ δ 3

ξ δ 3 +(1−ξ )
and NL =

1−ξ

ξ δ 3 NS, (4)

and where d̃S and d̃L are the reduced sizes given by

d̃S =
ξ δ 3 +(1−ξ )

ξ δ 3 +(1−ξ )δ
and d̃L = δ d̃S. (5)

Finally, Γ denotes the average number of particles in the vicinity
of a given particle:

Γ = 1+
4
13

(8φ0−1)×

NS(d̃S +1)2
(

1− 3
8

1
d̃S +1

)
+NL(d̃L +1)2

(
1− 3

8
1

d̃L +1

)
NS d̃S

3
+NL

(
d̃L

3− (d̃L−1)3
) (6)

where φ0 is the maximum solid fraction in a monodisperse pack-
ing. By fitting equation (1) to the measurements of the viscos-
ity for monodisperse suspensions with various solid fractions, we
measured φ0 = 57.8%±0.3% for all the particles used in this study.
Equation 3 predicts the maximal packing fraction for particles of
comparable sizes and volume fraction. However, if the small par-
ticles are small and few enough to sit between the large ones

without disturbing them, the maximal packing fraction is:40

φc(δ → ∞,ξ → 0) =
φ0

1−ξ
(7)

Equation 7 is the upper limit for the maximal packing fraction, be-
cause the packing cannot be more compact than a packing where
small particles are negligible in size and in number. Hence, if the
value of φc predicted by equation (3) is greater than φ0/(1− ξ ),
then φc is given by equation (7). Once we have computed φc, we
obtain the viscosity of the bidisperse suspension with equation (1)

Figures 6(a)-(d) compare the effective viscosity measured dur-
ing the pinch-off ηexp (symbols) to the theoretical value obtained
using this approach (dashed line). The grey circles represents
the monodisperse cases corresponding to ξ = 0 (only large par-
ticles) and ξ = 1 (only small particles). Our experimental data
show that the viscosity of the bidisperse suspensions is systemat-
ically smaller than that of the monodisperse ones, and that this
difference depends on the ratio of particle size δ = dL/dS. The
larger δ , the more pronounced the drop in viscosity. The value
of the viscosity when generating a droplet can drop as low as
50% for the largest size ratios considered here [Figure 6(d)]. In
the large-particles-dominated regime, there is a very good agree-
ment with the model for the couples of particle sizes that we
tested (80 µm/140 µm and 80 µm/250 µm). In the case of small
size ratios [figures 6(a)-(b)], the model predicts the viscosity dur-
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ing the formation of droplets on the whole range of composition.
The main deviation occurs for large size ratios [figures 6(c)-(d)].
When the fraction of small particles ξ is less than 50%, the model
underestimates the viscosity. Also, the experimental variations
of viscosity are more symmetrical than what the model predicts.
Although the model suggests that the viscosity should be mini-
mum around ξ = 20% for these couples of particles, the mini-
mum for bidisperse suspensions with a large size ratio is around
50%. These discrepancies are especially visible in figures 6(c)-
(d). Since we have shown in Figure 5 that pinch-off experiments
lead to viscosities similar to those obtained with a rheometer, it
seems unlikely that the higher viscosity at low ξ be due to the
neck geometry. It is more likely that the problem arises from our
approach to computing the viscosity since we obtain similar re-
sults with the rheometer.

In the present study, we only consider the effect of the size dis-
tribution on φc, and we keep the same expression for the viscosity
as a function of φ (equation 1) as for a monodisperse suspension.
The issue is that at a large size ratio (dL � dS), and especially
when the large particles dominate (ξ < 50%), the model from
Gondret and Petit predicts a steep rise in φc.40 This is because
the small particles sit between the large ones without disturbing
them. Therefore, the bidisperse packing becomes an overlay of
two separate packings that do not interact with each other. How-
ever, in a suspension, the small particles do interact with the large
ones through lubrication films, whatever their size.

Let us consider the case δ � 1, meaning that the small parti-
cles are very small compared to the large ones. In the limit ξ → 1,
the large particles are dispersed in a suspension of small particles.
Considering that most of the viscous dissipation happens between
small particles because they create stronger velocity gradients, re-
placing small particles with large ones should reduce the viscous
dissipation per unit volume. As shown in Figure 6 this effect is
well captured by the model. In the case ξ → 0, the suspension
is mainly composed of large particles, and viscous dissipation oc-
curs in the interstices in-between. If we replace a small number of
large particles with small ones that will sit in these interstices, two
opposite effects play. On one hand, the polydispersity increases
φc, so that the viscosity should decrease. On the other hand, the
small particles have little space to move between the large parti-
cles. This confinement effect is known to increase the viscosity of
monodisperse suspensions49. Combining these two effects pos-
sibly explains why the measured viscosity is larger than what is
predicted by the model based on the sole maximum packing frac-
tion. Nevertheless, this problem deserves further investigation.

6 Early pinch-off
In addition to decreasing the viscosity in the equivalent fluid
regime, the bimodal particle size distribution acts on the discrete
effects regime near the pinch-off, in which the thinning acceler-
ates. Figure 7 shows the evolution of the time shift ∆t for the
bidisperse suspension of 20 µm and 140 µm particles for various
values of ξ . If we first consider the monodisperse cases (black
circles at ξ = 0 and ξ = 100%), we recover that monodisperse
suspensions of large particles break up earlier than those of small
particles.26,34 Since ∆t is associated with the discrete particulate

Δ
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s)
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Fig. 7 Time shift ∆t between the pinch-off of pure AP1000 oil and that
of bidisperse suspensions (dS = 20 µm and dL = 140 µm), as a function of
the fraction of small particles ξ . The black circles represent the monodis-
perse cases. The dotted line is the best linear fit.

effects in the last stages before the pinch-off, one could expect
that its value is controlled by the small particles only. However,
Figure 7 shows that even a small amount of small particles dis-
persed amongst the large ones is enough to slightly delay the
pinch-off. Moreover, the value of ∆t for intermediate bidisperse
suspensions seems to vary linearly from one monodisperse state
to the other. We observed a similar linear behaviour for the other
four couples of particle sizes considered in this study. Hence, it
suggests that for a bidisperse suspension, ∆t(ξ ,dS,dL) is simply
the volume average of ∆t over the two particles sizes:

∆t(ξ ,dS,dL) = ξ ∆t(dS)+(1−ξ )∆t(dL) (8)

Another interesting feature of the accelerated pinch-off is that
it changes the thinning rate in the final linear regime. In the last
moments before pinch-off, the radius of a viscous liquid thread
successively follows two self-similar regimes, both linear: h =

2vη (tc− t). First, the capillary-viscous regime, described by Eg-
gers:22 vη = 0.0304(γ/ηf). Then, the inertial-viscous regime, de-
scribed by Papageorgiou:24 vη = 0.0709(γ/ηf). For pure AP1000,
we observe a linear trend (black dashed line in figure 3(a)), with
a thinning rate vη of the same order of magnitude as predicted by
Eggers and Papageorgiou. Interestingly, for the suspension shown
in figure 1(c) the thinning rate in the linear regime is twenty times
larger than the value predicted by Eggers,22 and ten times larger
than that predicted by Papageorgiou.24 This result suggests that
in the last instants before pinch-off, although the viscous thread
is devoid of particles, it is still subject to their influence. Never-
theless, these aspects of accelerated pinch-off deserve a further
study, notably considering the local variations of φ and ξ at the
neck.

7 Conclusion
In this study, we have characterized the thinning and pinch-off of
drops of suspensions with a bimodal particle size distribution. We
found that the size of the particles, as well as the relative fraction
of each size, influence both the equivalent fluid regime, where
suspensions can be considered as liquids with a larger effective
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viscosity, and the discrete regime, where particles accelerate the
thinning and the break-up. We demonstrated that the time scale
associated with the thinning was proportional to the suspension
viscosity. We were then able to rescale the thinning dynamic of
each suspension to that of a reference liquid of known viscos-
ity. This method enables a direct measurement of the viscosity
of bidisperse suspensions. Our experiments also reveal how the
composition of bidisperse suspensions influences the late discrete
regime. This regime is characterized by a time shift ∆t between
the pinch-off of the suspension and that of pure silicone oil of
comparable shear viscosity. Our study suggests that for a bidis-
perse suspension, the value of ∆t varies linearly from its value for
the small particles to its value for the large particles. Also, al-
though its scope is limited to bidisperse suspensions, this study
aims towards polydisperse suspensions, a relevant system for in-
dustrial processes. Recent numerical simulations have shown
that the rheology of a polydisperse suspension could be linked
to that of one with a statistically equivalent bidisperse distribu-
tion.43 Moreover, we believe that proper implementation of the
Ouchiyama-Tanaka model48 would extend the prediction of the
viscosity to suspensions with an arbitrary size distribution. Even-
tually, controlling the viscosity drop induced by the polydispersity
could help improving the efficiency of printing methods.
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