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Effect of Random Fiber Network on the Bubble Growth in Gelatin 
Hydrogel 

Fuad Hasan,a KAH Al Mahmud, a Md Ishak Khan a, Wonmo Kang b and Ashfaq Adnan *a 

In hydrodynamics, the event of dynamic bubble growth in pure liquid under tensile pressure is known as cavitation. The 

same event can also be observed in soft materials (e.g., elastomer, hydrogel). However, for soft materials, the bubble/cavity 

growth is either defined as cavitation if the bubble growth is elastic and reversible or as fracture if the cavity growth is by 

material failure and irreversible. In any way, the bubble growth can cause damage to soft materials (e.g., tissue) by inducing 

high strain and strain-rate deformation. Additionally, a high-strength pressure wave is generated upon the collapse of the 

bubble. Therefore, it is crucial to identify the critical condition of spontaneous bubble growth in soft materials. Experimental 

and theoretical observations have agreed that the onset of bubble growth in soft materials requires higher tensile pressure 

than pure water. The extra tensile pressure is required since the cavitating bubble needs to overcome the elastic and surface 

energy in soft materials. In this manuscript, we developed two models to study and quantify the extra tensile pressure for 

different gelatin concentrations. Both the models are then compared with the existing cavitation onset criteria of rubber-

like materials. The validation is done with the experimental results of threshold tensile pressure for different gelatin 

concentrations. Both models can moderately predict the extra tensile pressure within the intermediate range of gelatin 

concentrations (3-7% [w/v]). For low concentration (~1%), the network's non-affinity plays a significant role and must be 

incorporated. On the other hand, for higher concentrations (~10%), the entropic deformation dominates, and strain energy 

formulation is not adequate.

Introduction 

Cavitation is considered as one of the main driving factors that 

can potentially cause soft tissue damage1–3. The phenomenon 

has been studied for medical treatments4–10, cavitation 

rheology11–19, and recently, it has been linked to the Traumatic 

Brain Injury (TBI)20–29. The blast wave or impact-induced 

acceleration causes the intracranial pressure to drop, leading to 

cavitation in the brain22–24,27–31. A cavitating bubble can damage 

the surrounding materials by imposing high strain rate 

deformation and secondary shockwave upon collapse3. 

Therefore, it is crucial to understand the onset criteria of 

cavitation in soft biomaterials.  

Recent studies on cavitation in soft biomaterials are based on 

the numerous pioneering works on hyperelastic elastomers 

(e.g., rubber)32–35. The cavitation onset criterion for a rubber 

block under quasistatic triaxial tension is defined as the cavity 

pressure (𝑃𝑐) with a critical value of 5𝐺 2⁄  (𝐺 is the shear 

modulus for small strain)36,37. The criterion is based on the 

incompressible Neo-Hookean material model and applicable to 

nuclei radius ranging from 0.5 𝜇𝑚 to 1𝑚𝑚. The radius range is 

only for rubber like material with higher elastic modulus and 

fracture toughness than typical biomaterials38. Gent discussed 

the limitation of the onset criterion in his cautionary tale and 

suggested, i) for smaller nuclei surface energy might dominate 

the cavity growth, ii) at large deformation, elastomers do not 

follow the simple kinetic theory of rubber-like elasticity, and iii) 

a fracture based approach based on Griffith’s fracture 

criterion39 might explain the higher cavity pressure for smaller 

nuclei40. The cavity pressure was estimated to be 9𝐺 for 0.5 𝜇𝑚 

nuclei and even more for much smaller nuclei when fracture 

energy is considered41. More realistic material models have also 

been introduced with an energy limiter to study cavitation in 

rubber42,43. However, Lopez-Pamies argued that cavitation 

needs to be investigated as dynamic deformation since inertia 

and viscosity play a significant role in bubble dynamics and 

material nonlinearity44–46. He also pointed out that the 

agreement between theoretical and experimental observations 

is poor and suggested that the microscopic mechanism of 

rubber fracture needs to be incorporated for further study47. 

Indeed, all the references mentioned above did not consider the 

heterogeneity posed by the rubber microstructure. The 

argument raises the question of the application of the cavitation 

criterion of rubber to biomaterials. The inherent microstructure 

of hydrogel and rubber are quite different. The random fiber 

network (RFN) of rubber is modeled as flexible fibers having 

entropic deformation48. In contrast, soft biomaterials (e.g., 

gelatin hydrogel) have a network of semi-flexible fibers 

exhibiting enthalpy dominant deformation49. Moreover, studies 
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involved with cavitation in rubber generally consider the 

presence of a vacuous cavity47. Typical soft biomaterials are 

biphasic, having a solid phase of RFN and a liquid phase of 

water50. In soft materials, bubble nuclei are formed within the 

liquid phase as phase change phenomena between liquid and 

vapor. Therefore, the cavitating bubbles contain vapor and non-

condensable gas in biomaterials51.  

Recent studies of cavitation in biologically relevant materials 

(e.g., polyacrylamide, agar and gelatin hydrogel) are primarily 

focused on material characterization using cavitation rheology 

or medical treatment using acoustic cavitation52. However, the 

spontaneous formation of bubble nuclei (homogeneous 

nucleation) under the dynamic loading conditions typical of TBI 

differs from recent cavitation studies in hydrogels. For example, 

experimental procedures related to cavitation rheology utilize a 

needle or focused laser pulse on creating the initial cavity in 

Needle Induced Cavitation (NIC) or Laser Induced Cavitation 

(LIC) techniques, respectively53. In NIC, air or water is injected 

at a quasistatic loading rate (~10−2𝑠−1) until unstable bubble 

growth occurs. The surrounding medium remain in atmospheric 

pressure condition, and critical cavity pressure is measured as 

the bubble fluid pressure (𝑃𝑐 = 2𝑆 𝑅0⁄ + 5𝐺 2⁄ , where 𝑆 is the 

surface tension and 𝑅0 is the initial void size)13,54. Typical 

diameter of the needles (200-250 𝜇𝑚) is at least two order of 

magnitude larger than the length scale of the microstructure 

(e.g., fiber length ~1 𝜇𝑚) of relevant materials. Therefore, the 

effect of the microstructure is not inherently included in NIC 

studies. Instead bubble growth is modeled as either elastic 

deformation or fracture mechanism in homogeneous 

continuum medium. On the other hand, LIC uses high-intensity 

optical field to ionize molecules and create a plasma filled cavity 

with high pressure and temperature12. The subsequent 

cavitation occurs at high loading rate (100 𝑡𝑜 3,000 𝑚/𝑠). High-

speed camera is used to capture the bubble wall motion. A 

modified Rayleigh-Plesset equation with added linear/nonlinear 

elasticity term is then incorporated with the time evolution of 

the bubble wall and material characterization is done (e.g., 

elastic modulus and viscosity). In summary, cavitation rheology 

focuses on material characterization by either controlling the 

cavity pressure or tracking the bubble wall motion. In both 

cases, the cavity formation is forced and do not address material 

heterogeneity.  

In line with that, Acoustic Induced Cavitation (AIC) has 

applications in drug delivery, therapeutic treatment, diagnosis 

and lithotripsy55–57. AIC uses high frequency mechanical 

vibration with large pressure pulse to cavitate bubble in 

biomaterials. The significant difference of the loading condition 

typical of TBI is that the bubble growth and collapse experience 

one period of tension unlike high frequency driven bubble 

dynamics in AIC58. Recently, a novel drop-tower system is used 

to study the impact induced cavitation in gelatin59. The gel 

concentrations were varied from 1% to 7.5% [w/v] to have 

mechanical properties relevant to soft tissues. The loading 

condition (e.g., acceleration) was typical of TBI. It was observed 

that the threshold tensile pressure (𝑃𝑇) required to cause 

cavitation in pure water and 1% [w/v] gel is 119 𝑘𝑃𝑎 and 

189 𝑘𝑃𝑎, respectively. Apart from that, threshold tensile 

pressure increased as a function of gel concentrations. 

Evidently, soft biomaterials tend to withstand more tensile load 

before the inception of cavitation. The increased tensile load is 

thought to be the effects of increased surface tension, elasticity 

and presence of non-spherical bubble nuclei within the gel 

RFN59. In our previous study, we explored the nano bubble and 

gelatin RFN interaction using the molecular dynamic (MD) 

simulations60. The bubble dynamics of a pre-existing 5 𝑛𝑚 

vacuous cavity in water surrounded by gelatin RFN is simulated 

under tri-axial tension. The threshold tensile pressure is 

compared with system containing pure water molecule and no 

gelatin RFN. The MD simulations revealed that the additional 

pressure is contributed by the water-gel interfacial tension, 

surface tension of the solution and the bending stiffness of 

gelatin fibers. However, nano bubbles require tensile pressure 

in the order of Megapascal to grow. In the TBI related cavitation 

study the observed critical pressure is in the range of 

kilopascal22–24. Clearly, large bubble nuclei (~1𝜇𝑚) are present 

in the real case scenario which cannot be captured by MD 

simulations. These studies mentioned above have led us to 

systematically study the threshold tensile pressure of cavitation 

in soft materials. Here, by soft materials we refer to a material 

system that constitutes 90% or more water and up to 10% [w/v] 

elastic fiber networks. While our study is applicable to any soft 

biomaterials, we have considered gelatin gel as the model 

material in this study.  

In this manuscript, we have postulated that the threshold 

tensile pressure (𝑃𝑇) is associated with two consecutive works 

done by the bubble: i) a portion of the tensile energy is spent on 

activating the bubble nuclei (nucleation pressure, 𝑃𝑛𝑢𝑐), and ii) 

the rest of the energy is spent on overcoming the surface and 

elastic energy (extra tensile pressure, ∆𝑃𝑇). At first, we have 

studied the microstructure of the gel system using Scanning 

Electron Microscopy (SEM). Although the mean pore size is a 

function of the gel concentrations, the observations showed a 

large pore size distribution for each gel concentration. These 

water-filled pores are considered as the possible bubble nuclei 

sites. Since the initial bubble radius dominates the nucleation 

pressure, the pore size needs to be estimated. From the drop-

tower experiments, we have observed that pure water cavitates 

at 120 𝑘𝑃𝑎, which corresponds to the initial bubble radius of 

1.2 𝜇𝑚59. Since there is no elastic contribution in pure water, 

the threshold tensile pressure is solely nucleation pressure. For 

low gel concentration, there exist enough large pores to 

accommodate bubble nuclei in the order of ~1.2 𝜇𝑚. However, 

mean pore size decreases monotonically with increasing gel 

concentration. Therefore, both mean pore size and surface 

tension variation from gelatin solution to gelatin-gel are 

considered to give a comprehensive understanding of 

nucleation pressure in different gel concentrations.  

Then, we have developed a novel bubble-RFN interaction model 

to estimate the extra tensile pressure. The model is named the 

network failure model. This approach allowed us to study the 

effects of microstructure on bubble growth. As mentioned 

earlier, the bubble needs to overcome the elastic energy 

imparted by the gel network. The elastic contribution comes 

from the strain energy stored in the network due to the bubble 
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growth. Our proposed model correlates bubble growth to 

network strain energy by considering fiber stretching, bending, 

and crosslink torsional energy. At quasistatic loading conditions, 

the gel network is said to fail via crosslink detachment. 

However, at the moderately high loading, the gel network fails 

via fiber scission at the fiber’s ultimate failure strain61. Since the 

bubble grows unboundedly after certain growth, the critical 

condition is identified as the nearest fiber scission indicating 

microscopic fracture in the network failure model. The 

geometric (e.g., fiber length and diameter) and mechanical 

properties (e.g., fiber’s elastic modulus, crosslink torsional 

constant) of the gel network are required to quantify the 

network strain energy until fibers rupture. Since swollen 

hydrogels have fibers that are a couple of orders larger in length 

than the fibers of rubber, we have developed a theoretical 

model of fiber length based on the work of Marmorat62. The 

SEM images of the microstructure are then used to validate the 

fiber length. However, it isn't easy to quantify the mechanical 

properties of the gel network. The gelatin network structure 

itself is very complex63–65, and the topology depends on many 

factors, e.g., source of gelatin (bovine, porcine, etc.), 

manufacturing process, and sample preparation50,66–69. There 

are three approaches to studying the mechanics of the RFN70,71: 

Single fiber mechanics72,73, unit cell model74–77, and 3-

dimensional (3D) random network model78–88. However, 

modeling 3D network requires substantial computational 

effort; therefore, we have adopted the unit cell modeling 

approach. We have seen successful implementation of the unit 

cell modeling approach in rubber elasticity with flexible fibers. 

A 3-chain89,90, 4-chain91,92, and 8-chain93,94 models are the most 

frequently adopted unit cell models. Recently the 8-chain model 

of Arruda and Boyce (1993) has been modified for semi-flexible 

fibers and used to describe mechanics of fibrin network and 

mussel byssal threads95,96. Cryogenic-temperature scanning 

electron microscopy (cryo-SEM) observation shows that gelatin 

fibers form a d-periodic hierarchical structure similar to collagen 

fibril and connected via triple-helical gelatin strand at the 

crosslink62. Due to the collagen and gelatin network similarity, 

we have used the unit cell proposed by Susilo et al. (2010), who 

studied the micromechanics of collagen-based extra-cellular 

matrix (ECM)77. From the experimental stress-strain data of 

different gel concentrations, we have extrapolated the 

mechanical properties of the gelatin networks using the unit cell 

model. The same unit cell is used to develop the bubble-RFN 

interaction model. 

In the recent trend, the bubble or cavity growth is modeled as 

either cavitation or fracture, respectively53. The event is 

identified as cavitation if the deformation is elastic and 

reversible33,35,97,98. On the other hand, it is defined as fracture if 

the growth is via material failure and is irreversible13,38,47,54,99,100. 

The transition from cavitation to fracture depends on the initial 

void size and the polymer volume fraction54. Incorporating both 

elastic and fracture energy into the bubble growth model 

revealed that the growth is simultaneously driven by cavitation 

and fracture101. As both mechanisms can be achieved at similar 

critical cavity pressure, it is evident that the fracture criterion is 

often reached during the cavitation. Therefore, finally, we have 

developed a continuum scale fracture-based model for more 

realistic non-linear material (e.g., Ogden material model102). 

The critical energy release rate (𝐺𝑐) is used as a fracture 

criterion considering gel as a homogeneous medium in the 

macroscale. Both fracture-based and network failure models 

are then compared with the experimental observations of the 

drop-tower tests.   

The present manuscript is organized as follows. First, we have 

defined the nucleation pressure and the extra tensile pressure. 

Then, we have studied the microstructure of the gelatin gels. 

The geometric properties of the network are evaluated from the 

SEM observations. The mechanical properties of the network 

are extracted using the unit cell model and gel stress-strain 

data. In the following two sections, the network failure model 

and fracture-based model are developed, respectively. The 

formulation for the extra tensile pressure from these two 

models is presented. In the result section, we have compared 

the models and discussed their validity. All findings and 

limitations are summarized in the conclusion section. 

Cavitation Threshold Tensile Pressure (𝑷𝑻) 

The homogeneous nucleation theory states that atoms' random 

thermal motion spontaneously creates energetic particles. 

These particles leave the liquid phase and vaporize, thus form 

nucleation sites58. Church (2002) showed that the required 

energy for the nucleation increases with no bound at 

atmospheric pressure condition (𝑃𝑎𝑡𝑚) and nuclei immediately 

collapse103. A liquid subjected to negative (tensile) pressure, 

however, becomes metastable, meaning the required energy is 

finite for spontaneous nucleation to occur, and it depends on 

the strength of the tensile pressure, surface tension, and 

temperature. 

As described by Herbertz (1988), the nucleation energy (𝑊𝑛𝑢𝑐) 

required to form a nucleus under tension consists of three work 

terms104: i) 𝑊𝑐, the work to create the cavity under far-field 

tensile pressure (𝑃∞), ii) 𝑊𝑖, the work needed to establish the 

interface having surface tension (𝑆), and iii) 𝑊𝑣, the energy 

attained by the formation of the vapor phase at vapor pressure 

(𝑃𝑣) (see Fig. 1a), 

𝑊𝑛𝑢𝑐 = 𝑊𝑐 + 𝑊𝑖 − 𝑊𝑣  

           = 4𝜋𝑟2𝑆 +
4

3
𝜋𝑟3(𝑃∞ − 𝑃𝑣) (1) 

Eq. (1) implies that for a given tensile pressure (𝑃∞ = 𝑃𝑛𝑢𝑐) 

there exists maximum nucleation energy, 

𝑊𝑛𝑢𝑐,𝑚𝑎𝑥 (𝑎𝑡 𝑑𝑊𝑛𝑢𝑐 𝑑𝑟⁄ = 0), which is required to form the 

bubble of the critical radius, 𝑟 = 𝑅0. Fig. 2 shows the energy 

necessary for different far-field pressure. For any positive 

(compressive) pressure, the required energy is unbounded. 

However, for negative pressure, if the available energy is less 

than that of maximum energy (𝑊𝑛𝑢𝑐,𝑚𝑎𝑥), then the bubble will 

have a smaller radius than the critical radius (𝑅0) and will 

eventually collapse following the left-hand side of the curve. On 

the other hand, the bubble will grow and cavitate if the radius 

is bigger than the critical value. For a simple homogenous liquid, 
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the tensile pressure will suffice to cavitate, given that the 

condition is met as described above. The tensile strength of the 

liquid is defined as ∆𝑃 = (𝑃𝑣 − 𝑃𝑛𝑢𝑐). From Eq. (1), the critical 

energy of nucleation can be found from the tensile strength of 

the liquid considering the critical tensile pressure (𝑃∞ = 𝑃𝑛𝑢𝑐) 

and saturation pressure of the bubble content, 

𝑊𝑛𝑢𝑐,𝑚𝑎𝑥 = 𝑊𝑐𝑟𝑖𝑐 = 4𝜋𝑅𝑜
2𝑆 +

4

3
𝜋𝑅𝑜

3∆𝑃 (2) 

Now in the presence of the RFN, the required tensile pressure 

will be significantly higher than that of pure liquid, considering 

the same bubble nucleus to grow from the critical radius (𝑅0) 

(see Fig. 3). Therefore, the threshold tensile pressure for 

hydrogel is defined as, 

𝑃𝑇 = 𝑃𝑛𝑢𝑐 + Δ𝑃𝑇 (3) 

In the above equation, extra tensile pressure (Δ𝑃𝑇) arises due 

to the bubble growth in the random fiber network and surface 

energy 59.  

To the best of our knowledge, until now, only Kang et al. (2018) 

reported the cavitation threshold tensile pressure (𝑃𝑇) for 

different concentrations (𝐶% [𝑤/𝑣]) of gelatin gel and reported 

here in Fig. 4 from ref 59. In their work, Knox gelatin is solved 

with water in weight to volume [w/v] ratio to prepare 1%, 2.5%, 

5%, and 7.5% gelatin gels. In Fig. 4, the green dotted line 

indicates a 58.8% increase in threshold tension from water to 

1% gelatin. The Blue dotted line is fitted with a nonlinear least 

square method (𝑅2 = 0.93) to show the increasing trend with 

gelatin concentration. From Eq. (3), it is apparent that we need 

to identify the contribution of 𝑃𝑛𝑢𝑐  and ∆𝑃𝑇, respectively.  

Nucleation Pressure 

Carey (1992) considered a system where a bubble of a radius 𝑅0 

is in a bulk liquid under tension (𝑃𝑛𝑢𝑐) 105.  His formulation 

satisfies both mechanical and thermodynamic equilibrium for 

that system to be stable. At the thermodynamic equilibrium, 

both the vapor and the liquid phase will have the same chemical 

potential (𝜇𝑖), 

𝜇𝑙 = 𝜇𝑣 (4) 

Where subscripts 𝑙 and 𝑣 are for the liquid and vapor phase, 

respectively. Now, we can use the Gibbs-Duhem relation (𝑑𝜇𝑖 =

−𝑠𝑑𝑇 + 𝑣𝑑𝑃) for both vapor and liquid phase, where 𝜇𝑖 is the 

chemical potential of the 𝑖𝑡ℎ phase, 𝑠 is specific entropy, 𝑇 is 

temperature, 𝑣𝑖 is the specific volume of the 𝑖𝑡ℎ phase, and 𝑃 is 

pressure. Integrating the Gibbs-Duhem relation from saturation 

condition to any arbitrary pressure at a constant temperature 

(𝑇∞), 

Fig. 1 Bubble nucleus in pure liquid (a) and in a gel (b). In pure liquid, the bubble 

pressure is in mechanical equilibrium with far-field pressure and surface tension 

(a). When a bubble starts to grow in the fiber network (in gel), it needs to 

overcome the resistance, requiring extra energy to cavitate (b). 

 

Fig. 2 Nucleation energy as a function of nuclei radius for a given pressure 

(Eq. (1)). The critical energy, critical radius, and nucleation pressure are 

indicated at each curve's peak (Eq. (2)).

Fig. 3 A typical pressure profile for the gelatin sample is shown for the drop tower experiment of Kang et al. (2018). (a) Starting from the atmospheric condition, 

the corresponding RFN-bubble interaction is depicted as (b) pressure drops to nucleation pressure (𝑃𝑛𝑢𝑐) and a bubble nucleaus of radius 𝑅0forms in the water 

phase; (c) followed by the further pressure drops to the threshold tensile pressure (𝑃𝑇) when unstable bubble growth is initiated via network failure.  
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𝜇𝑖 − 𝜇𝑖𝑠𝑎𝑡
= ∫ 𝑣𝑖𝑑𝑃

𝑃

𝑃𝑠𝑎𝑡(𝑇∞)

 (5) 

Considering bubble content as an ideal gas (𝑣𝑣 = 𝑅𝑣𝑇∞ 𝑃⁄ ), 

where 𝑅𝑣 is a specific gas constant for vapor, the chemical 

potential for the vapor phase from the saturation condition to 

bubble vapor pressure (𝑃𝑣) using Eq. (5) is,  

𝜇𝑣 = 𝜇𝑣𝑠𝑎𝑡
+ 𝑅𝑣𝑇∞𝑙𝑛 [

𝑃𝑣

𝑃𝑠𝑎𝑡(𝑇∞)
] (6) 

Similarly, for the incompressible liquid phase (𝑣𝑙 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

the chemical potential from the saturation condition to 

arbitrary tensile pressure (𝑃𝑛𝑢𝑐) using Eq. (5) is, 

𝜇𝑙 = 𝜇𝑙𝑠𝑎𝑡
+ 𝑣𝑙 [𝑃𝑛𝑢𝑐 − 𝑃𝑠𝑎𝑡(𝑇∞)] (7) 

Now substituting Eq. (6) and Eq. (7) into Eq. (4) and 
considering thermodynamic equilibrium at the saturation 
condition as well (𝜇𝑙𝑠𝑎𝑡

= 𝜇𝑣𝑠𝑎𝑡
) we get, 

𝑃𝑣 = 𝑃𝑠𝑎𝑡(𝑇∞)𝑒𝑥𝑝 {
𝑣𝑙[𝑃𝑛𝑢𝑐 − 𝑃𝑠𝑎𝑡(𝑇∞)]

𝑅𝑣𝑇∞
} (8) 

The above equation is based on the thermodynamic 

equilibrium. Considering bubble only contains saturated vapor 

and no noncondensable gas, then mechanical equilibrium at the 

formation of a bubble in the pure liquid requires, 

𝑃𝑣 = 𝑃𝑛𝑢𝑐 +
2𝑆

𝑅𝑜
 (9) 

We can combine both thermodynamic equilibrium (Eq. (8)) and 

mechanical equilibrium (Eq. (9)) to get the desired correlation. 

Substituting Eq. (9) into Eq. (8), and after reorganizing we get, 

𝑅0 =
2𝑆

𝑃𝑠𝑎𝑡(𝑇∞) 𝑒𝑥𝑝{𝑣𝑙[𝑃𝑛𝑢𝑐 − 𝑃𝑠𝑎𝑡(𝑇∞)] 𝑅𝑣𝑇∞⁄ } − 𝑃𝑛𝑢𝑐
 (10) 

Fig. 5 plots Eq. (10) for the different surface tension of gelatin 

concentration. Data from the water-vapor saturation table is 

used for the other parameters at temperature, 𝑇∞ = 20𝑜𝐶. 

Kang et al. (2018) reported that the mean tensile pressure for 

water was 120𝑘𝑃𝑎, which corresponds to a critical radius of 

1.2 𝜇𝑚 (Fig. 5). Even for the same critical radius to cavitate in 

the gel system without considering the elastic contribution, the 

tensile nucleation pressure would be higher due to increasing 

surface energy (𝑊𝑖) to overcome (horizontal dashed line in Fig. 

5). However, the pore size within the RFN of the gel system 

varies with the concentration of gel, and the effect of the 

microstructure on the critical nuclei radius will be discussed in 

subsequent sections. 

Extra Tensile Pressure 

Considering the bubble only contains saturated vapor and no 

noncondensable gas, the mechanical equilibrium at forming a 

bubble in a pure liquid is given in Eq. (9).  Where we assumed 

that 𝑅𝑜 is the reference configuration with the stress-free 

surrounding medium, hence there is no elastic contribution in 

Eq. (9). However, when a bubble starts to grow, strain energy is 

stored in the network. At the current configuration, the pseudo-

mechanical equilibrium is established at the onset of cavitation 

in a gel as pressure further drops from 𝑃𝑛𝑢𝑐  to 𝑃𝑇 (see Fig. 3), 

𝑃𝑣 (
𝑅𝑜

𝑅
)
3𝑘

= 𝛥𝑃𝑇 +
2𝑆

𝑅
+ 𝑃𝑅𝐹𝑁 (11) 

Where, 𝑃𝑅𝐹𝑁  is the pressure contribution from the strain energy 

density stored in the network until the bubble stretch ratio 

(𝜆𝐵 = 𝑅 𝑅𝑜⁄ ) reaches a critical value. In the above equation, we 

have considered vapor as an ideal gas with isothermal 

polytropic expansion (𝑘=1). Therefore, the left-hand side 

represents the bubble pressure change as it grows. In terms of 

the bubble stretch ratio, Eq. (11) can be written for the extra 

tensile pressure as, 

𝛥𝑃𝑇 = 𝑃𝑣 (
1

𝜆𝐵
)
3

−
2𝑆

𝑅𝑜𝜆𝐵
− 𝑃𝑅𝐹𝑁 (12) 

In summary, Eq. (3) defines the threshold tensile pressure, Eq. 

(10) correlates critical void size and nucleation pressure, and Eq 

Fig. 4 Experimental observation of the threshold tensile pressure for 

different concentrations of gelatin gel 59. C=0 corresponds to pure water. 

The vertical error bar indicates the standard deviation. 

Fig. 5 Critical bubble radius as a function of the nucleation pressure from Eq. (10). 

The surface tension value is taken from Ref. 59 for the gelatin gel. 
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(12) gives extra tensile pressure in terms of network 

contribution and surface energy.  

Experimental Observations of Hydrogel 
Microstructure 

Gelatin Gels Preparation 

Samples are prepared with ASTM grade II standard deionized 

water followed by the procedure given in ref.59. We have 

prepared 3 %, 5%, and 7% [w/v] edible grade (Knox Original 

Gelatin, unflavoured, Kraft Foods, Northfield, IL) gelatin 

samples. The gelatin solution is mixed at 60𝑜𝐶, 100 rpm for 30 

min on a stir plate. This heated mixing step is essential for 

obtaining a homogeneously mixed solution and erasing thermal 

memory in the gelatin. Next, 4ml of the pre-mixed solution is 

pipetted into individual cuvettes and cured at 4𝑜𝐶 for 3 hours. 

After that, we have cut cuvettes to take out the cured sample 

and immediately drop the sample in a liquid nitrogen bath at 

−210𝑜𝐶 to freeze the water content. Just after freezing, the 

samples were transferred to a drying chamber where 

temperature and pressure were maintained at water 

sublimation temperature (−60𝑜𝐶) and pressure (8 mTorr) for 

24 hours for complete removal of liquid water. The freeze-dried 

sample is preserved in an airtight bottle to perform the SEM 

analysis for imaging (see Fig. S1 to Fig. S3).  We have coated the 

samples with silver in the Compact Research Coater (CRC) 100 

sputtering system before SEM/FIB analysis. Sectional SEM/FIB 

high-resolution image at 0.2-micron thickness was conducted in 

FEI Strata 400 Dual Beam FIB imaging setup (see Fig. S4). We 

have used 5KV power for imaging at 20000 magnification. 

Mesh and Pore Size 

Marmorat et al. (2016) used the cryo-SEM imaging technique to 

observe the gelatin supramolecular structure62. They showed 

that gelatin fibers are connected via the triple-helical gelatin 

strand at the crosslink. However, in low crosslink density, the 

distance between the crosslinks is large to allow the strands’ 

natural tendency to recoil into fibrils (Fig. 6). Those gelatin fibrils 

showed a well-known banded pattern with a periodicity of 

64 𝑛𝑚 similar to the collagen fibril106. The theory of 

determining the mesh size, 𝜉0 = (𝑘𝑏𝑇∞/𝐺)1/3 (where, 𝑘𝑏 is the 

Boltzmann constant) based on the rubber elasticity107 

underestimated the mesh size observed by Marmorat et al. 

(2016). MacKintosh et al. (1995) identified that the semi-flexible 

network shows increased rigidity due to its secondary structure 

between the crosslinks and must be taken into consideration to 

determine the mesh size108. Considering the network consists of 

effective spring where effective spring constant is 𝑘𝑒𝑓, then the 

small strain shear modulus is related to the mesh size as62, 

𝜉0 =
𝑘𝑒𝑓

𝐺
 (13) 

For small strain, the rigidity arises from the straightening of 𝛼 

angle of the gelatin strand at the crosslink. However, Gelatin 

fibril will deform as well for large strain, and the large 

deformation of the fibril will be considered in later sections for 

the bubble growth. From Fig. 6, for any force (𝐹) applied to the 

crosslink with effective spring constant (𝑘𝑒𝑓) will have two 

components; i) 𝐹1 will stretch the gelatin strand with stretching 

spring constant 𝑘1, and ii) torque 𝜏 will act to change angle 𝛼 

with angular deformation constant 𝑘𝛼. Treloar (1960) 

calculated the 𝑘𝑒𝑓 for polymeric chain and will be adopted 

here109, 

1

𝑘𝑒𝑓
=

𝛿𝐿

𝐹
= 𝑛 [

𝑐𝑜𝑠2(𝛼/2)

𝑘1
+

𝑙𝑝
2𝑠𝑖𝑛2(𝛼/2)

𝑘𝛼
] (14) 

In the above equation, 𝑛 = 𝑙𝑒𝑓 𝑙𝑝⁄ , is the amount of zigzag, 

which is defined as the ratio of the effective length of the gelatin 

strand (𝑙𝑒𝑓) at the crosslink and the persistence length of the 

gelatin strand (𝑙𝑝). The cryo-SEM observation showed that the 

statistical average crosslink angle is 〈𝛼〉 ≅ 120𝑜, hence 

〈𝑠𝑖𝑛2 (
𝛼

2
)〉  =  0.75 62. Considering crosslink deformation 

dominated by 𝑘𝛼 for small strain and for an inextensible gelatin 

strand (𝑘1 ≫ 𝑘𝛼), we can drop the first term in Eq. (14), 

𝑘𝑒𝑓 =
𝑘𝛼

𝑛𝑙𝑝
2 〈𝑠𝑖𝑛2 (

𝛼
2)〉

 
(15) 

From Treloar (1960) and Marmorat (2016), the angular 

deformation constant is related to the persistence length and 

length of the bond along the polymer backbone (𝑙0) as 𝑘𝛼 =

𝑘𝐵𝑇∞𝑙𝑝 𝑙0⁄  62,109. Therefore, the effective spring constant is, 

𝑘𝑒𝑓 =
4𝑘𝐵𝑇∞

𝑙0𝑙𝑒𝑓 〈𝑠𝑖𝑛2 (
𝛼
2)〉

 (16) 

There exist two limiting cases for the effective length (𝑙𝑒𝑓) of the 

gelatin strand (Fig. 6). For high-density crosslink, the gelatin 

strand will not be able to recoil to form a superstructure. 

Therefore, fibers will be made of gelatin strand only, and the 

effective length will be, 𝑙𝑒𝑓 → 𝜉0 2⁄ . On the other hand, for low-

density crosslinks, fibers will have enough strands to recoil, and 

gelatin fibril with superstructure will form. Hence, the minimum 

gelatin strand effective length at the crosslink, which 

straightens in the small strain, will be reduced. In that case, 

since the theoretical minimum length would be two persistence 

length to form the crosslink bend, the effective length would be, 

𝑙𝑒𝑓 → 2𝑙𝑝. From Eq. (13) and Eq. (16), 

Fig. 6 Typical crosslink of the gelatin fiber network. Individual fibers (think blue 

line) are crosslinked via the gelatin strand (thin blue line). 
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𝜉0 = √
8𝑘𝐵𝑇∞

𝐺𝑙0 〈𝑠𝑖𝑛2 (
𝛼
2)〉

 𝑓𝑜𝑟 𝑙𝑒𝑓 → 𝜉0 2⁄  (17) 

𝜉0 =
2𝑘𝐵𝑇∞

𝐺𝑙0𝑙𝑝 〈𝑠𝑖𝑛2 (
𝛼
2)〉

 𝑓𝑜𝑟 𝑙𝑒𝑓 → 2𝑙𝑝 (18) 

Eq. (17) and Eq. (18) is the theoretical minimum and maximum 

limit of the fiber length, respectively 62. The small strain shear 

modulus is measured for 5, 7, and 14% [w/v] of Knox gelatin gels 

using a piezoelectric cantilever measurement technique and 

reported in Fig. 7a from the ref.110. The black dashed line shows 

a linear fit with 𝑅2 = 0.99. The shear modulus value is used in 

Eq. (17) and Eq. (18), and the mesh size is plotted in Fig. 7b. The 

arithmetic mean of one C-C bond and two C-N bonds is used as 

the bond length along the polymer backbone (𝑙0 = 1.4 Å) and 

persistence length (𝑙𝑝 = 2.7 𝑛𝑚) for gelatin strand is used, 

respectively from the ref. 111 and 112. The theory is validated by 

observing the SEM image of 3 different concentrations of 

gelatin gels. The SEM images are given in Fig. 7c, and the 

measurement of the mesh sizes of 3, 5, and 7% [w/v] gelatin 

gels are plotted in Fig. 7b and compared with Eq. (17) and Eq. 

(18). It seems the limiting case for Eq. (18) is valid, which means 

gelatin fibrils with the supramolecular structure are formed, 

and the gelatin strands connect the crosslinks. 

The pore size is then measured using the Diameterj plugin with 

Fiji (Imagej2) software 113,114. Each gel sample is cut with 0.2-

micron thickness. We took images of 8 cuts for each gel 

concentration. The SEM image is first converted to an 8-bit 

binary image and then segmented using 16 different algorithms 

provided by the Diameterj. Therefore, a total of 8*16=128 

images are averaged for each gel concentrations. Fig. 8 shows 

an 8-bit SEM image, segmented image, and pore size 

measurement for 3% gel as an example. The detailed procedure 

is described in the supplemental document. 

Fig. 9 shows the pore size (𝐴𝑝), and since ImageJ fits the pore 

size in an ellipse, we have shown the minor axis length (𝐿𝑀𝐴) of 

the pores in Fig. 10. As we have postulated in the previous 

section, a bubble nucleus of the critical radius (𝑅0) must be 

accommodated within a pore to cavitate under the tensile 

nucleation pressure (𝑃𝑛𝑢𝑐). The maximum size of a sphere that 

can fit in an ellipse must have a radius that is half of the minor 

axis length. Therefore, in Eq. (10), we will use 𝑅0 → 𝐿𝑀𝐴 2⁄  for 

gel system to compute 𝑃𝑛𝑢𝑐. 

Unit Cell Model and Mechanical Properties of Fibril 

Since 𝑙𝑒𝑓 → 2𝑙𝑝 ≪ 𝜉0, we will assume that the crosslink to 

crosslink fiber is consists of the gelatin fibril only. From now on, 

we will use gelatin fibril length and mesh size interchangeably. 

To construct the gelatin network, we will replace the 

contribution of the gelatin strand with torsional spring at the 

crosslink with effective torsional spring constant, 𝐾𝑡 (Fig. 12). 

Fig. 7 (a) Shear modulus, (b) fiber length observed from the SEM images and theoretical model (Eq. (17) and (18)) fit, and (c) SEM images of different 

gel concentrations. The vertical red error bar indicates the standard deviation. 
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Since gelatin triple-helical strands self-assemble into the 

secondary supramolecular structure as collagen fibril, which is 

modeled as semi-flexible fiber, we can model each gelatin fibril 

as such82. We used the word fibril for gelatin fiber to be 

consistent with the definition of the hierarchical structure of 

collagen micro-fibril, fibril, and fiber115. A semi-flexible fibril is 

defined such that its thermal persistence length is comparable 

to the fibril length, 𝐿𝑃 𝜉0⁄ ~1. The persistence length of the 

gelatin fibril can be defined as the ratio between the bending 

rigidity and thermal energy, 𝐿𝑃 = 𝐸𝑓𝐼𝑓 𝑘𝐵𝑇∞⁄ , where 𝐸𝑓 is the 

fibril Young’s modulus and 𝐼𝑓 = 𝜋𝑑𝑓
4 64⁄  is the area moment of 

inertia of the fibril, respectively. The material and geometric 

properties we need to compute the strain energy of the 

network are the fibril Young’s modulus (𝐸𝑓), crosslink torsional 

spring constant (𝐾𝑡), fibril length (𝜉0), and diameter of the fibril 

(𝑑𝑓). Considering the gelatin fibril as elastic beam which resists 

stretching and bending, and crosslink as torsional spring, the 

strain energy of the network for any given configuration is 

defined as 82, 

𝑈 = 𝑈𝑆 + 𝑈𝐵 + 𝑈𝑇  (19a) 

= ∑(∫ 𝐹𝑓𝑑𝛥𝜉0

𝛥𝜉0

0

)

𝑖

𝑁𝑠

𝑖=1

+ ∑(∫
𝑀2

2𝐸𝑓𝐼𝑓
𝑑𝑥𝑓

𝜉0

0

)

𝑖

𝑁𝑏

𝑖=1

+ ∑(𝐾𝑡

𝛥𝜃𝑡
2

2
)

𝑗

𝑁𝑡

𝑗=1

 (19b) 

In Eq. (19b), 𝑁𝑠 and 𝑁𝑏 are the number of fibrils that contribute 

to the stretching strain energy (𝑈𝑆) and bending strain energy 

(𝑈𝐵), respectively. Crosslink torsional strain energy (𝑈𝑇) is due 

to the 𝑁𝑡 number of crosslinks having rotational angles 𝜃𝑡. The 

difference between the current and reference configuration is 

indicated by Δ, and 𝐴𝑓 = 𝜋𝑑𝑓
2 4⁄  is the cross-sectional area of 

the fibrils. The stretching force is defined as, 𝐹𝑓 =

𝐸𝑓𝐴𝑓(exp(𝐵𝑓𝜀𝑓) − 1)/𝐵𝑓, where 𝐵𝑓 is a material parameter, 

and the Green strain (𝜀𝑓) is calculated using the fibril stretching 

ratio as, 𝜀𝑓 = (𝜆𝑓
2 − 1)/2 116. 𝑀 is the non-uniform (fibril 

lengthwise) transverse moment on the fibril due to bending (𝑥𝑓 

is the fibril local longitudinal coordinate defined in Fig. 17). 

Incorporating the bubble growth ratio (𝜆𝐵) into Eq. (19), we can 

compute the strain energy of the network. Ultimately, we will 

assume that the network failure strain energy is the work done 

by 𝑃𝑅𝐹𝑁. In the next sub-section, we will adopt a unit cell model 

to find fibril material and geometric properties. Then we will 

incorporate the bubble growth into Eq. (19).  

In the unit cell model, we will fit the macroscale stress-strain 

data to the unit cell's microstructural deformation. For large 

strain, gelatin gel is proposed to behave like incompressible 

hyperelastic Ogden material117. The strain energy density 

function for the first order Ogden material in terms of principal 

stretches of gel (𝜆𝐺𝑖) in three coordinate directions (𝑖 = 1,2,3) 

is, 

𝑊𝐺 =
𝜇𝐺

𝛽
(𝜆𝐺1

𝛽
+ 𝜆𝐺2

𝛽
+ 𝜆𝐺3

𝛽
− 3) (20) 

Fig. 8 8-bit image of the SEM image of 3% gel (top left). Segmentation is done in 

two steps (top right and bottom left). Pore count and size measurement are 

shown (bottom right). 

Fig. 9 Pore area size was measured by observing the SEM image of 

different gel concentrations. (Vertical red error bar indicates the 

standard deviation) 

Fig. 10 Minor axis length of the pore area. (Vertical red error bar indicates the 

standard deviation) 
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Where 𝜇𝐺  and 𝛽 are material properties. Particularly 𝛽 is the 

strain hardening parameter, and for gelatin, 𝛽 is reported from 

ref 117 (plotted in Fig. 11a). The small strain shear modulus is 

defined as, 𝐺 = 𝜇𝐺𝛽 2⁄ , and given in Fig. 7a. For uniaxial 

tension, the deformation gradient tensor 𝑭𝑮 is, 

𝑭𝑮 = [

𝜆𝐺1 0 0
0 𝜆𝐺2 0
0 0 𝜆𝐺3

] (21) 

The incompressibility condition is met when det(𝑭𝑮) =

𝜆𝐺1𝜆𝐺2𝜆𝐺3 = 1. For uniaxial tension in direction 1, let 𝜆𝐺1 = 𝜆𝐺  

and 𝜆𝐺2 = 𝜆𝐺3 = 𝜆𝐺
∗ , then from incompressibility condition, 

𝜆𝐺
∗ = 1 √𝜆𝐺⁄ . The three principal values of the Cauchy stress 

(𝑻𝑮) is defined as, 

𝑇𝐺𝑖 = −𝑝̃ + 𝜆𝐺𝑖

𝜕𝑊𝐺

𝜕𝜆𝐺𝑖
 (22) 

Where 𝑝̃ is the pseudo-pressure term that is determined for 

uniaxial tension by setting, 𝑇𝐺2 = 𝑇𝐺3 = 0. The experimental 

data reported in ref 117 is for the first Piola-Kirchhoff (nominal) 

stress, which is defined as, 𝑷𝑮 = 𝑑𝑒𝑡(𝑭𝑮)𝑻𝑮(𝑭𝑮
𝑇)−1. 

Therefore, the first Piola-Kirchhoff stress in direction 1 is 

(plotted in Fig. 11b), 

𝑃𝐺1 =
2𝐺

𝛽
(𝜆𝐺

(𝛽−1)
− 𝜆𝐺

(−
𝛽
2
−1)

) (23) 

The three-dimensional microstructure of the gel system is 

represented by the unit cell in Fig. 12a. The proposed unit cell 

assumes isotropic microstructure, and the angles are set to be 

𝜓 = 45∘and 𝜙 = 35.26∘ for the unit cell to be symmetric in all 

principal coordinate directions77. The other two geometric 

properties are fibril diameter (𝑑𝑓) and length (𝜉0). The initial 

dimensions of the unit cell in three coordinate directions are, 

𝐿1,0 = 2𝜉0(1 + 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓) (24a) 

𝐿2,0 = 2𝜉0(1 + 𝑠𝑖𝑛𝜙) (24b) 

𝐿3,0 = 2𝜉0(1 + 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓) (24c) 

Previously, we have assumed that the small strain is due to the 

strengthening of the crosslink angles. Therefore, oblique fibrils 

Fig. 12 (a) A representative unit cell of the random fiber network of gelatin gel. (b) Uniaxial stretching until fibers align in the stretch direction due to the crosslink rotation. 

Fig. 11 (a) Strain hardening parameter (𝛽) for gelatin from uniaxial testing117. (b) The First Piola-Kirchhoff stress of gelatin gel as a function of the 

gel stretch (Eq. (23)). 
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are aligned parallel to direction 1 before fibril level stretch (𝜆𝑓) 

imposed on the fibrils (Fig. 12b). The dimension of the unit cell 

when fibril alignment occurs are, 

𝐿1,𝜙𝜓 = 4𝜉0 (25a) 

𝐿2,𝜙𝜓 = 2𝜉0 (25b) 

𝐿3,𝜙𝜓 = 2𝜉0 (25c) 

The gel stretch is defined as, 

𝜆𝐺 =
𝐿1

𝐿1,0
 (26) 

In the current configuration, the dimension of the unit cell in 

direction 1 is 𝐿1. The gel stretch at the fibril alignment is, 

𝜆𝐺,𝑎𝑙𝑖𝑔𝑛 =
𝐿1,𝜙𝜓

𝐿1,0
 (27) 

Since fibril stretch occurs after fibril alignment, the fibril stretch 

is defined as, 

𝜆𝑓 =
𝐿1

𝐿1,𝜙𝜓
=

𝜆𝐺

𝜆𝐺,𝑎𝑙𝑖𝑔𝑛
 𝑓𝑜𝑟 𝜆𝐺 ≥ 𝜆𝐺,𝑎𝑙𝑖𝑔𝑛 (28) 

The first Piola-Kirchhoff stress is defined as the force per initial 

unit area. Therefore, the force on the unit cell (𝐹𝑈𝐶) is, 

𝑃𝐺1 =
𝐹𝑈𝐶

𝐿2,0𝐿3,0
 (29) 

From Fig. 13a, the force on the fibril (𝐹𝑓) is one-fourth of the 

force on the unit cell, 𝐹𝑓 = 𝐹𝑈𝐶 4⁄ . From Eq. (19b), we can 

decompose the stored strain energy of the RFN as crosslink 

deformation and fiber stretching (Fig. 13a and 13b), 

𝑊𝐺(𝜆𝐺)𝑉𝑈 = 

𝑈𝑇 = ∑ 𝐾𝑡

𝑁𝑡=16

𝑗=1

Δ𝜃𝑡
2

2
 𝑓𝑜𝑟 𝜆𝐺 ≤ 𝜆𝐺,𝑎𝑙𝑖𝑔𝑛 (30a) 

𝑈𝑆 = ∑ (∫ 𝐹𝑓𝑑Δ𝜉0

Δ𝜉0

0

)

𝑖

𝑁𝑠=4

𝑖=1

− 𝑈𝑇(𝜆𝐺,𝑎𝑙𝑖𝑔𝑛) 𝑓𝑜𝑟 𝜆𝐺 > 𝜆𝐺,𝑎𝑙𝑖𝑔𝑛 (30b) 

Where unit cell volume is 𝑉𝑈 = 𝐿1,0𝐿2,0𝐿3,0. Due to the 

symmetry, only one oblique fibril is shown in Fig. 13. The strain 

energy in Eq. (30a) is due to the rotation of the 16 crosslinks 

(𝑁𝑡 = 16) until 𝜆𝐺,𝑎𝑙𝑖𝑔𝑛, followed by four fibrils  (𝑁𝑠 = 4) 

stretching until gel failure stretch, 𝜆𝐺
𝑢 (Fig. 13). 𝐾𝑡 and 𝐸𝑓, 

𝑑𝑓and 𝐵𝑓 will be computed from Eq. (30a) and (30b) using 

nonlinear regression analysis, respectively. 60% strain (𝜆𝐺
𝑢 =

1.6) is taken to be the failure criterion for the gelatin gels 

reported in ref. 117. A similar failure strain is reported for 

collagen gels as well 82,118. Therefore, the fibril level stretch is 

computed from Eq. (28), which is 𝜆𝑓 = 1.26. Collagen fibril yield 

strain and ultimate failure strain are reported to vary between 

10-32% and 35-45% strain, respectively 119. Baumberger et al. 

(2006) observed that the fiber network failed by crosslink 

disentanglement at a low deformation rate and suggested that 

a higher strain rate network fails due to individual fiber scission 
61. Therefore, in the uniaxial testing at the quasi-static 

stretching, we can conclude that gel fails via crosslink failure, 

Fig. 13 (a) one oblique fiber is shown at the beginning of the uniaxial tension. The strain 

energy stored until the fibers align in the stretching direction is due to the crosslink's 

rotational strain energy. (b) fibers alignment is completed, and further stretching of the 

fiber stores energy due to stretching only. 

Fig. 14 (a) Nonlinear material parameter, and (b) diameter of the fibers are shown for different gel concentrations. 
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and fiber does not attain its failure strain. However, bubble 

growth imposes high strain rate deformation in the surrounding 

medium, and we will assume that fiber failure strain (35-45%) is 

the primary failure mechanism for bubble growth. 

There are several studies where collagen fiber properties are 

measured by uniaxial stress-strain testing. However, we have 

not found any material property for gelatin fibril to the best of 

our knowledge. Therefore, the unit cell model is developed, 

which can be utilized to estimate the gelatin fibril properties as 

the model can relate gel level properties to fibril level properties 

in close form. Since gelatin fibril and collagen fibril are similar in 

their supramolecular structure, we can use collagen fibril 

properties as a guideline. Susilo et al. (2010) have summarized 

the literature on collagen properties in detail, and readers are 

referred to that for further reading 77. We have found that the 

collagen fiber properties vary in a wide range of magnitude. One 

of the main reasons for this wide range is the hierarchical 

structure of collagen fiber (e.g., microfibril, fibril, and fiber). 

Diameter is one of the parameters that can distinguish the 

collagen fibril from the collagen fiber. Collagen fibril is said to 

have a diameter ranging from 20 nm to 400 nm, while collagen 

fiber may have a diameter greater than 400 nm 120–122. Fig. 14 

plotted the gelatin fibril diameter for different concentrations 

using the unit cell model. The diameter range varies from 31 to 

58 nm and well within the discussed range given above. The 

decreasing trend of the diameter is because the crosslink 

density increases with increasing concentration; therefore, 

there are fewer gelatin strands to recoil to form thicker fibrils. 

Cryo-SEM observation of increasing crosslink density showed a 

similar trend 62. 

The range mentioned above for collagen fibril diameter (20 to 

400 nm) corresponds to fibril Young’s modulus from 32 MPa to 

11.5 GPa 123–125. For collagen fiber (𝑑𝑓 > 400𝑛𝑚) the modulus 

range is given to vary between 1.8 MPa to 1.2 GPa 77. Fig. 15 

plotted the Young’s modulus of gelatin fibril for different 

concentration of gelatin gel by utilizing the unit cell model and 

gel level material properties as described above. The Young’s 

modulus range is shown to be within 400 MPa to 1.15 GPa and 

falls within the collagen fibril modulus range. The fibril 

parameters will be used in the next sub-section to quantify the 

network strain energy due to bubble growth. 

Extra Tensile Pressure, ∆𝑷𝑻: Network Failure 
Model 

Network Strain Energy due to the Bubble Growth 

The network strain energy formulation shown in Eq. (19b) can 

be utilized if we can establish correlations between the bubble 

growth ratio (𝜆𝐵) and three strain energy parameters, i.e. ∆𝜉𝜊, 

𝑀 and Δ𝜃𝑡. However, Eq. (19b) is the superposition of three 

different modes of deformations (e.g., stretching, bending, and 

torsion). We will correlate the bubble growth to each mode of 

deformation separately. In doing so, a unit cell of the gelatin 

network is shown in Fig. 16a, enclosing a bubble of radius 𝑅0. 

Considering in a strain-free reference configuration, we assume 

the bubble center lies at the origin of a spherical coordinate 

whose radius is 𝑅0. In the current configuration at the time 𝑡, 

the bubble radius is 𝑅(𝑡). Any material points initially at 𝒙𝟎 =

𝜌0𝒆𝜌 will be at 𝒙 = 𝜌𝒆𝜌 in the current configuration. The 

deformation gradient tensor of the surrounding medium due to 

bubble growth is 51,  

𝑭𝑩 =

[
 
 
 
 
 
𝜕𝜌

𝜕𝜌0
0 0

0
𝜌

𝜌0
0

0 0
𝜌

𝜌0]
 
 
 
 
 

 (31) 

The condition of incompressibility of the medium requires that 
det(𝑭𝑩) = 1. Therefore, from Eq. (31), the radial stretch 

is, 
𝜕𝜌

𝜕𝜌0
= (

𝜌0

𝜌
)2. Since 𝜌0 < 𝜌 while bubble grows, the radial 

stretch decreases monotonically as a function of radial distance. 
Hence, in Fig. 16b, we have shown that all the oblique and end 
fibrils will experience buckling (only one corner is shown due to 
the ease of representation) except the fibril in the cubic portion 

Fig. 15 (a) Young’s modulus of the fiber, and (b) crosslink torsional constant of the network as shown for different gel concentrations. 
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of the unit cell. However, the buckling of semi-flexible filament 
is entropy dominant 49. Since the strain energy formulation in 
Eq. (19b) assumes the negligible entropic contribution, we will 
only consider the cubic portion of the unit cell that will 
contribute to the strain energy, and buckled fibrils are omitted. 
Fibril Stretching Strain Energy 

In Fig. 16b, we have shown only the mode-I (stretching) 

deformation of the cubic cell. At the reference configuration, 

the initial volume of the liquid phase within the cubic cell is 

(from Fig. 16a), 

𝑉0 = 𝜉0
3 −

4

3
𝜋𝑅0

3 (32) 

Now, after an infinitesimal time increment, the bubble grows to 

𝑅(𝑡) and displaces the surrounding liquid, which eventually 

interacts with the network and increases the fiber length to 

𝜉0 + ∆𝜉0. The volume of the surrounding liquid within the 

displaced cubic cell is. 

𝑉 = (𝜉0 + ∆𝜉0)
3 −

4

3
𝜋𝑅3 (33) 

Assuming incompressibility of the liquid phase (𝑉0 = 𝑉), we can 

equate Eq. (32) and Eq. (33) to establish the correlation 

between the incremental fibril length, ∆𝜉0 and the bubble 

extension ratio, 𝜆𝐵 as, 

∆𝜉0 =
4

9

𝜋𝑅0
3

𝜉0
2 (𝜆𝐵

3 − 1) (34) 

The failure criterion for Eq. (34) is set to be, ∆𝜉0
𝑢 = 𝜉0(𝜆𝑓

𝑢 − 1). 

The fibril failure stretch (𝜆𝑓
𝑢) is varied between 1.35 to 1.45, as 

discussed in the previous section. 
Fibril Bending and Crosslink Torsional Strain Energy 

Since the liquid phase is displaced radially outward in all 

directions, we can simplify the fibrils' bending shape and the 

crosslink rotation. From Fig. 17a, looking upon a cross-sectional 

view of the cubic cell cutting by the A-A plane, we can 

superimpose a circle of radius, 𝑅𝐴𝐴 = √3𝜉0 2⁄  on the fibril 

deformation due to bending. Geometric similarity requires that 

on the A-A plane, the fractional area of the bubble growth 

(green shade) is related to the area (𝐴2) under the bent fibril 

(Fig. 17b). A deflection function (𝑦(𝑥𝑓)) is assumed for the fibril 

considering a simply supported beam with a constant 

distributed load per unit length (𝑞) with local fibril coordinate 

system (𝑥𝑓, 𝑦𝑓) is defined as well (Fig. 17c). The moment on the 

fibril is then defined as, 

𝑀 = 𝐸𝑓𝐼𝑓
𝑑2𝑦

𝑑𝑥𝑓
2

=
𝑞𝑥𝑓

2
(𝑥𝑓 − 𝜉0) (35) 

The first derivative of the deflection function evaluated at either 

end of the fibril (𝑥𝑓 = 0 𝑜𝑟 𝜉0) gives, 

𝛥𝜃𝑡 =
𝑞𝜉0

3

24𝐸𝑓𝐼𝑓
 (36) 

Since the area under the deflected fibril is, 

𝐴2 = ∫ 𝑦𝑑𝑥𝑓

𝜉0

0

= 0.207𝜋𝑅𝑜
2(𝜆𝐵

2 − 1) (37) 

Therefore, the distributed load on the fibril can be related to the 

bubble growth as, 

Fig. 16 (a) Bubble nucleus enclosed by the unit cell. (b) bubble growth causing fibril 

stretching (cubic part) and buckling (oblique fibril). 

Fig. 17 (a) a diagonal plane (A-A) is shown on which fibril bending occurs due to the bubble growth. (b) and (c) projection on the A-A plane showing 

geometric relation of bubble growth area and fiber bending. 
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𝑞 =
24.84𝜋

𝜉𝑜
5 𝐸𝑓𝐼𝑓𝑅𝑜

2(𝜆𝐵
2 − 1) (38) 

Eq. (34), (35), (36), and (38) will be used with Eq. (19b) to 

compute the network strain energy due to bubble growth until 

fibrils failed at 𝜆𝑓
𝑢. 

Extra Tensile Pressure 

Now that we have formulated the strain energy stored in the 

network due to the bubble growth, we can define the pressure 

contribution from the strain energy per unit volume as, 

𝑃𝑅𝐹𝑁 =
𝑈𝑐𝑟𝑖𝑐

∆𝑉𝑐𝑟𝑖𝑐
 (39) 

In the above equation,  𝑈𝑐𝑟𝑖𝑐 = 𝑈(𝜆𝑓
𝑢) from Eq. (19). ∆𝑉𝑐𝑟𝑖𝑐 =

𝑉𝑈 − 𝑉𝐵
𝑢 is the difference between the volume of the unit cell 

and the volume of the growing bubble. The bubble volume is 

defined as, 

𝑉𝐵 =
4

3
𝜋𝑅𝑜

3(𝜆𝐵
3 − 1) (40) 

At the critical condition, 𝑉𝐵
𝑢 = 𝑉𝐵(𝜆𝐵

𝑢). The fibril failure stretch, 

and bubble failure stretch are related through Eq. (34) as, 

𝜆𝑓
𝑢 = 1 +

4

9

𝜋𝑅𝑜
3

𝜉𝑜
3 (𝜆𝐵

𝑢3
− 1) (41) 

Therefore, from Eq. (12), the extra tensile pressure is, 

𝛥𝑃𝑇 = 𝑃𝑣 (
1

𝜆𝐵
𝑢)

3

−
2𝑆

𝑅𝑜𝜆𝐵
𝑢 −

𝑈𝑐𝑟𝑖𝑐

∆𝑉𝑐𝑟𝑖𝑐
 (42) 

In the next section, we will develop the necessary formulation 

to quantify the extra tensile pressure based on the fracture 

theory. 

Extra Tensile Pressure, ∆𝑷𝑻: Fracture Model 

In the previous section, we have formulated the extra tensile 

pressure criteria based on the failure of the RFN of the gel 

system. This section will use the well-known Griffith’s criterion 

for gelatin fracture due to bubble growth, considering gel as the 

homogeneous hyperelastic Ogden material. We know that 

elastic materials can store energy when deformed and return to 

their reference configuration by spending that stored energy 

upon withdrawal of the loading. However, there is a limit on the 

stored energy beyond which fracture initiates and materials fail. 

Griffith’s theorem states that a crack will propagate when 

surface energy is exceeded by the energy released due to new 

crack growth 13,126. The critical energy release rate (𝐺𝑐) is the 

material property that is used as the criterion for the material 

to resist fracture. Wire cutting tests are done to estimate 𝐺𝑐 for 

gelatin gel and reported in Fig. 18 from ref. 61,117,127. 

Several authors have modified the Rayleigh-Plesset equation of 

bubble dynamics for viscoelastic materials. The elastic term is 

added for linear Hookean, nonlinear Neo-Hookean, and strain 

hardening Fung models 1,51,128. They have provided the 

procedure in detail, and readers are referred to them for further 

study. However, in this manuscript, we will develop the elastic 

contribution for the Ogden material model. 

From Eq. (31), the deformation gradient tensor of the 

surrounding medium in spherical coordinate direction (𝑖 =

𝜌, 𝜃, 𝜑) is, 

𝑭𝑩 = [

𝜆𝐵,𝜌𝜌 0 0

0 𝜆𝐵,𝜃𝜃 0

0 0 𝜆𝐵,𝜑𝜑

] =

[
 
 
 
 
 
𝜕𝜌

𝜕𝜌0
0 0

0
𝜌

𝜌0
0

0 0
𝜌

𝜌0]
 
 
 
 
 

 (43) 

The incompressibility condition is applicable here as well, which 

requires, 

𝜕𝜌

𝜕𝜌0
= (

𝜌0

𝜌
)
2

 (44) 

Integrating the above equation and setting boundary condition 

at the bubble wall, 𝜌 = 𝑅(𝑡) we get the reference coordinate in 

terms of the current coordinate of the material point, 

𝜌0 = (𝜌3 − 𝑅(𝑡)3 + 𝑅0
3)

1
3 (45) 

From Eq. (22), the Cauchy stress tensor is, 

𝑻𝑮 =

[
 
 
 
 
 
 −𝑝̃ +

2𝐺

𝛽
(
𝜌0

𝜌
)

2𝛽

0 0

0 −𝑝̃ +
2𝐺

𝛽
(
𝜌

𝜌0

)
𝛽

0

0 0 −𝑝̃ +
2𝐺

𝛽
(
𝜌

𝜌0

)
𝛽

]
 
 
 
 
 
 

 (46) 

In the above equation, we used 𝜆𝐵,𝑖 from Eq. (43) for the partial 

derivative of the strain energy density function. The pseudo-

pressure term (𝑝̃) in Eq. (22) and Eq. (46) is related to the 

hydrostatic pressure (𝑝) as 1,51, 

Fig. 18 Critical energy release rate as a function of the gelatin concentration. 
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𝑝 = −
𝑇𝐺,𝜌𝜌 + 𝑇𝐺,𝜃𝜃 + 𝑇𝐺,𝜙𝜙

3
  

= 𝑝̃ −
2𝐺

3𝛽
[(

𝜌0

𝜌
)
2𝛽

+ 2(
𝜌

𝜌0
)
𝛽

] (47) 

Finally, the elastic contribution to the bubble dynamics is found 

by integrating the momentum equation from the bubble wall, 

𝜌 = 𝑅(𝑡) to 𝜌 → ∞ 1,51,58,128, 

Σ = ∫ −[
2𝑇𝐺,𝜌𝜌 − 𝑇𝐺,𝜃𝜃 − 𝑇𝐺,𝜙𝜙

𝜌
] 𝑑𝜌

∞

𝑅(𝑡)

  

= ∫ −
4𝐺

𝛽
[
𝜌0

2𝛽

𝜌2𝛽+1
−

𝜌𝛽−1

𝜌0
𝛽

] 𝑑𝜌
∞

𝑅(𝑡)

 (48) 

Setting 𝛾 = 𝜌 𝜌0⁄  and using Eq. (45), we get,  

𝑑𝛾 = (
1

𝜌0
−

𝜌3

𝜌0
4)𝑑𝜌 (49) 

Considering, 𝜆𝐵,𝜃𝜃 = 𝜆𝐵,𝜑𝜑 = 𝜆𝐵 = 𝑅 𝑅0⁄ , Eq. (48) becomes, 

𝛴 = ∫ −
1

𝜆𝐵

4𝐺

𝛽
[𝛾−(2𝛽+1) (

1 − 𝛾3𝛽

1 − 𝛾3
)] 𝑑𝛾 (50) 

The above equation is integrated numerically using the 

quadrature theorem. The stored strain energy due to the elastic 

contribution is 1,38, 

𝑈𝛴 = ∫ 4𝜋𝛴𝜌2
𝑅

𝑅0

𝑑𝜌 (51) 

The energy release rate per unit crack area is defined as 

∂UΣ ∂𝐴𝑐⁄ , where 𝐴𝑐 = 𝜋𝑅2 is the crack area. Applying Griffith’s 

criterion of fracture on the energy release rate we get, 

−(
𝜕𝑈𝛴

𝜕𝐴𝑐
) ≥ 2𝑅0𝑓(𝜆𝐵) (52) 

Where 𝑓(𝜆𝐵) is (using two dummy variables (𝜁, 𝑎𝑛𝑑 𝜂)), 

𝑓(𝜆𝐵) = 𝜆𝐵
4 𝜕

𝜕𝜁
(𝜁−3 ∫ 𝛴𝜂2𝑑𝜂

𝜁

1

)|
𝜁=𝜆𝐵

 (53) 

At the critical condition, bubble fracture stretch is defined as, 

𝜆𝐵
𝑢 = 𝑅𝑢 𝑅0⁄ . Therefore, Eq. (50) can be numerically integrated 

until the fracture stretch by setting 𝑓(𝜆𝐵
𝑢) = 𝐺𝑐 2𝑅0⁄  to find 

𝜆𝐵
𝑢. We can then use Eq. (51) to find the total fracture energy 

at failure, 

𝑈𝛴𝑐𝑟𝑖𝑐 = ∫ 4𝜋𝛴𝜌2
𝑅𝑢

𝑅0

𝑑𝜌 (54) 

Therefore, the extra tensile pressure can be defined in terms of 

the total fracture energy per unit volume of the bubble growth 

as, 

∆𝑃𝑇 =
𝑈𝛴𝑐𝑟𝑖𝑐

𝑉𝐵
𝑢  (55) 

Results and Discussion 

Random Fiber Network 

In developing the strain energy-based criterion for the onset of 

cavitation in soft materials, we have estimated the fibril and the 

network properties (𝐸𝑓, 𝑑𝑓, 𝐵𝑓 , 𝑎𝑛𝑑 𝐾𝑡) from the gel level 

properties (𝐺 𝑎𝑛𝑑 𝛽) of the gelatin gels. The network's strain 

energy formulation considers fibrils as an elastic beam, and they 

store energy by stretching and bending. This elastic beam model 

is justified since the fibril's persistence length is much higher 

than the mesh size. Fig. 19 shows the fibril thermal persistence 

length and how it compares to the mesh size. Collagen fibers, 

having mesh size in the micrometer range (~2𝜇𝑚) and thermal 

persistence length in the millimeter range (~10𝑚𝑚), are often 

modeled as the elastic beam 82,83. 𝐿𝑃 𝜉𝑜⁄ < 2/𝜋3/2 and 

𝐿𝑃 𝜉𝑜⁄ ≫ 1 correspond to flexible and rigid rod type fibers, 

respectively 49. A flexible fiber’s elastic response is due to the 

decrease in entropic conformation, and rigid rod-type fibers are 

modeled as beam theory. In between, there lies the definition 

of the semi-flexible fibers (𝐿𝑃 𝜉𝑜⁄ ~1) which shows elastic 

response by both stretching and bending. At low concentration 

and lower molecular weight, a semi-flexible fiber network 

shows nonaffine deformation, and fiber response is mainly due 

to bending. As concentration increases, the network tends to 

show more affine deformation dominated by fiber stretching 87. 

In the crosslinked network such as gelatin hydrogel, the 

geometric persistence length is comparable to the mesh size, 

and fibers are considered semi-flexible.   

Using Eq. (19), the network's strain energy for different gel 

concentrations is plotted in Fig. 20. To quantify the contribution 

of different modes of deformation, the critical values (see Eq. 

(39)) are reported for the initial bubble radius of 1.2𝜇𝑚 and 

fiber failure strain is taken to be 40% (𝜆𝑓
𝑢 = 1.40). The total 

critical strain energy (𝑈𝑐𝑟𝑖𝑐) is due to the stretching (𝑈𝑆) of the 

fibers, since both bending energy of the fiber (𝑈𝐵) and crosslink 

rotational energy (𝑈𝑇) are few orders of magnitude lower than 

the stretching energy. Although the bending energy 

Fig. 19 The persistence length of the gelatin fibers is plotted on the left axis, based 

on the geometric (𝑑𝑓) and mechanical (𝐸𝑓) properties reported in Fig. 14 and Fig. 

15, respectively. The ratio between the persistence length and mesh size (Fig. 7b) 

is plotted on the right axis. Both are shown as a function of the gel concentration. 
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contribution increases slightly for low concentration, the 

network deformation is mainly affine and stretching dominant. 

Nucleation Pressure and Initial Bubble Radius 

Fig. 21 plots the critical bubble size as a function of the gelatin 

gel concentration. The navy blue dotted line depicts the 

maximum bubble size that can be inscribed in the cubic portion 

of the unit cell model, which is half of the diagonal of the side 

face of the cube (𝑅𝑜 = 𝜉𝑜 √2⁄ ). However, the network's SEM 

image observation indicates a much smaller mean pore size with 

a high standard deviation for low concentration (see Fig. 9 and 

10). The maximum bubble size that can be formed within the 

network is then limited by the pore size (turquoise dotted line) 

and defined as half of the pores' minor axis length (𝑅𝑜 =

𝐿𝑀𝐴 2⁄ ). The nucleation formation energy in pure liquid 

corresponds to the critical nuclei size (𝑅𝑜~1.2 𝜇𝑚) from 

experimental observation 59, and shown as the horizontal cobalt 

blue dotted line.  

A random fiber network, having a large distribution of pore size, 

may have enough large pores where nucleation formation 

energy will only depend on the surface energy (2𝑆 𝑅⁄ ). 

However, the surface tension (𝑆) value depends on various 

factors, such as the gel states (solution or gel), temperature, 

interface curvature, liquid inter-molecule affinity in the 

presence of the gelatin network 105,129,130. In Fig. 22a, we have 

shown the surface tension of gelatin gel, both in solution and 

gel states, and compared it with water surface tension 

(𝑆𝑤𝑎𝑡𝑒𝑟~72𝑚𝑁/𝑚) 59,131,132. In the solution state, surface 

tension (𝑆𝑠𝑜𝑙) drops compared to the pure water while increases 

in the gel state (𝑆𝑔𝑒𝑙). The gelation process, however, starts by 

nonspecific hydrophobic interaction and the secondary 

supramolecular fibril forms 65. As the network topology reaches 

Fig. 20 The strain energy of the network due to the bubble growth from Eq. 

(19) corresponds to 𝑅𝑜 = 1.2𝜇𝑚 and 𝜆𝑓
𝑢 = 1.40. 

Fig. 21 Critical bubble radius based on the unit cell model and pore size 

from the SEM image. 

Fig. 22 (a) The surface tension of gelatin gel in solution and gel states. (b) Nucleation energy required for different bubble sizes and gelatin 

concentration compared to pure liquid (i.e., water). 
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rigidity percolation, more triple helical morphology starts to 

form. In the triple helical configuration, the nonpolar residues 

are arranged away from the water molecules. The polar 

molecules preferentially arrange outward of the tropocollagen. 

Therefore, as time passes during the gelation process the net 

attractive force between collagen and water molecules 

increases, thus the surface tension of the gel increases in the gel 

state 133. However, gelation process is a chemically dynamic 

equilibrium state and never ends. The coexistence of the free-

floating gelatin monomers (𝛼-chain) and the network is a typical 

condition in the gel system. Therefore, we have considered both 

surface tension (solution and gel) as the maximum and 

minimum limit for the nucleation. In Fig. 22b, we have plotted 

the nucleation pressure (Eq. (10)) for varying critical nucleation 

radius and represented as a function of the gel concentration. 

The vertical bars correspond to the maximum and minimum 

surface tension. While nucleation pressure for water is 119kPa 

for 𝑅𝑜~1.2 𝜇𝑚, it varies from 142 to 133 kPa for 1% to 10% of 

gelatin. Considering there exists enough large pore size in the 

network comparing to the critical bubble size that of water, we 

will assume this nucleation energy as the base case. 

Threshold Tensile Pressure 

In this section, we have summarized the extra tensile pressure 

(Δ𝑃𝑇) and the critical tensile pressure (𝑃𝑇). Results from both 

the strain energy-based criteria (network failure model) and the 

fracture-based criteria are presented. For the network failure 

model, the critical condition is set to the fibril failure stretch (𝜆𝑓
𝑢) 

and varied between 35 to 45% strain. Bubble failure stretch (𝜆𝐵
𝑢) 

is used for the fracture-based model and set to 𝑓(𝜆𝐵
𝑢) =

𝐺𝑐 2𝑅0⁄ . Two cases are considered for both models, i) critical 

bubble radius is kept fixed for all gel concentration, and ii) 

varied based on the unit cell maximum (𝑅𝑜 = 𝜉𝑜 √2⁄ ), and pore 

size maximum (𝑅𝑜 = 𝐿𝑀𝐴 2⁄ ). Results are compared with the 

theoretical range of rubber materials (Δ𝑃𝑇{𝑚𝑎𝑥,𝑚𝑖𝑛} =

{9𝐺, 5𝐺/2}) and experimental data from the drop-tower tests. 

The vertical bars are used for the results from the network 

failure model to indicate the maximum and minimum case 

corresponds to (𝑆𝑔𝑒𝑙  𝑎𝑛𝑑 𝜆𝑓
𝑢 = 1.45) and (𝑆𝑠𝑜𝑙  𝑎𝑛𝑑 𝜆𝑓

𝑢 =

1.35), respectively. 

Fig. 23 and Fig. 24 show the extra tensile pressure for case (i) 

and case (ii) described in the previous paragraph, respectively. 

Both the model predicts extra tensile pressure within the 

theoretical range for the given gel concentration. For low 

concentration, Δ𝑃𝑇 does not depend on the critical radius but 

varies in a wide range for higher gel concentration. 9𝐺 curve 

well predicts at the low concentration and overestimates as the 

concentration increases. 5𝐺/2 curve does not predict the extra 

tensile pressure at the low concentration as experimental 

observation suggests11. The network failure model coincides 

with the theoretical maximum curve for the low concentration. 

As the concentration increases, the fiber length (𝜉𝑜) and the 

unit cell volume decrease (see Fig. 7b). It is evident from Fig. 23a 

that for the same bubble radius, as the concentration increases, 

the slope of the Δ𝑃𝑇 tends to reduce. The fiber failure strain is 

reached earlier, and less and less strain energy is required for 

the bubble to grow unconditionally. The slope reaches an 

asymptote for higher concentration (C > 5% for 𝑅𝑜 = 1.6 𝜇𝑚 

and C > 10% for 𝑅𝑜 = 0.8 𝜇𝑚).  

Since the gel critical energy release rate linearly increases with 

the gel concentration for the fracture model, Fig. 23b shows an 

increasing trend for Δ𝑃𝑇. In the fracture model, material 

heterogeneity due to the microstructure is not considered. It is 

reflected in Fig. 23b as the extra tensile pressure (Δ𝑃𝑇) 

significantly depends on 𝐺𝑐 and rather slightly over 𝑅𝑜. 

Fig. 24 plotted the extra tensile pressure for case (ii), where 𝑅𝑜 

is a function of gel concentration. Two values of 𝑅𝑜 are 

considered as mentioned earlier. 𝑅𝑜 = 𝐿𝑀𝐴 2⁄  is the lower limit 

of the maximum possible bubble radius based on the pore size 

distribution, and extra tensile pressure coincides with the 

maximum limit given by 9𝐺 curve. As the maximum limit is 

based on smaller bubble nuclei with higher surface energy, 

𝑅𝑜 = 𝐿𝑀𝐴 2⁄  is more conservative and overestimates the critical 

tensile pressure. On the other hand, 𝑅𝑜 = 𝜉𝑜 √2⁄  is based on 

Fig. 23 Extra tensile pressure for fixed critical radius for different gel concentrations. (a) network failure model, and (b) fracture-based 

model.
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the maximum possible bubble size that can fit in the cubic 

portion of the unit cell. 𝑅𝑜 = 𝜉𝑜 √2⁄ , when used in the network 

failure model, predicts the most moderate values of the extra 

tensile pressure. Comparing the network failure model and 

fracture model in Fig. 24a and 24b, both models predict extra 

tensile pressure closely (see the shaded regions in Fig. 24). It 

shows that if 𝑅𝑜 is varied based on the microstructure, then our 

network failure model can predict tensile pressure reasonably 

well.   

Threshold tensile pressure (𝑃𝑇) is plotted and compared with 

the experimental data for the case (i) and (ii) in Fig. 25 and Fig. 

26, respectively. Results from both network failure and 

fracture-based models are shown. In Fig. 25a, the best fit is 

provided by the 𝑅𝑜 = 1.2𝜇𝑚 and can predict the critical tensile 

pressure for a wide range of gel concentrations for both models. 

Our intention is not to force-fit the 𝑅𝑜 value to predict the 

tensile pressure and validate the experimental observation. We 

have considered the range of 𝑅𝑜 (0.8 − 1.6𝜇𝑚) value based on 

the nucleation pressure as discussed in the previous section. 

Although the mean pore size decreases for increasing gel 

concentrations, large pores are also evident from Fig. 9. It is 

probable that due to the presence of large pores, even for a 

highly dense network, the nucleation solely occurs in water. 

Therefore, we can conclude that in a biphasic (e.g., network and 

water) hydrogel, nucleation occurs in the liquid phase, and the 

nucleation pressure for gels is comparable to the nucleation 

pressure of pure water. Fig. 25b shows the threshold tensile 

pressure based on the fracture model. In Fig. 26, for case (ii), 

𝑅𝑜 = 𝜉𝑜 √2⁄  can predict the critical tensile pressure well for the 

gel concentration from 3 to 7%. 𝑅𝑜 = 𝐿𝑀𝐴 2⁄  overestimates the 

critical tensile pressure for both models, as discussed earlier. 

Both network failure model (Fig. 26a) and fracture model (Fig. 

26b) closely predict 𝑃𝑇 when 𝑅𝑜 is based on the microstructure. 

Based on all scenarios (Fig. 25 and 26), the fracture model gives 

Fig. 25 Threshold tensile pressure for fixed critical bubble radius (case (i)) for different gel concentrations. (a) network failure model and (b) the 

fracture model.

Fig. 24 Extra tensile pressure for varying critical radius (a) network failure model and (b) fracture-based model.
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the best prediction when 𝑅𝑜 varies within the range of 0.8 −

1.6𝜇𝑚. This also indicates that bubble growth is a fracture 

phenomenon via material failure, and the effect of 

microstructure is trivial.    

Conclusion 

In this manuscript, we have developed a theoretical framework 

to estimate the critical tensile pressure for cavitation in soft 

materials. Gelatin gel has been used for modeling purposes 

since it has various applications in the biomechanics field. 

Multifunctionality, less toxicity, and less biodegradability are 

the few reasons gelatin gels are being used for tissue 

engineering and tissue mechanics. In the first part of this 

manuscript, we have evaluated the gelatin network topology 

and then estimated the fiber properties by proposing a unit cell 

model. A bubble-network interaction is introduced, and strain 

energy-based failure criteria are then presented based on the 

microstructure. A fracture-based model is developed as well, 

and critical tensile pressure is evaluated for both failure criteria. 

The summary of outcome from this research is as follows, 

1. As we have postulated, the nucleation pressure in gelatin is 

comparable to that of water. A large distribution of the 

pore size is the basis of this hypothesis. There exist enough 

large pores that can activate nucleation sites in the range 

of ~1.2𝜇𝑚.  

2. The critical tensile pressure is well predicted by both 

network failure model and fracture-based model for the 

critical bubble radius, 𝑅𝑜~1.2𝜇𝑚. 

3. Bubble growth is a fracture-driven event via material 

failure. 

4. The effect of the microstructure is trivial. In the macroscale, 

more realistic non-linear material properties and critical 

energy release rate as fracture toughness can reasonably 

predict the critical threshold tensile pressure. 

However, both models underestimate the critical tensile 

pressure for 1% gel. Since the network rigidity percolation 

transition happens at the 1% gelatin, an affine network model 

is not adequate. Just after the network rigidity percolation, 

there exists a nonaffine domain. Nonaffine network elasticity is 

bending-dominated and not considered in our proposed model. 

Nonaffinity is the measure of the heterogeneity of the 

deformation. Including the degree of the nonaffinity into the 

network-model, may improve its prediction for the low 

concentration gels. On the other side of the spectrum, we have 

a high concentration of gelatin gel (~10%). As the thermal 

persistence length decreases with increasing concentration, the 

fibers are more entropic (flexible filament) than enthalpic. Cryo-

SEM image observation showed that the fibers could not recoil 

and form secondary structures at the gelatin's higher 

crosslinked network. Since the crosslink density increases with 

increasing concentration, fibers need to be modeled as 

entropic. Several entropic fiber models are well discussed in the 

literature, such as the Gaussian, inextensible worm-like-chain 

(WLC) model, etc. We have not considered this approach since 

it is beyond the scope of this work. 
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