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ABSTRACT

Membrane bending is an extensively studied problem from both modeling and experimental perspec-
tives because of the wide implications of curvature generation in cell biology. Many of the curvature
generating aspects in membranes can be attributed to interactions between proteins and membranes.
These interactions include protein diffusion and formation of aggregates due to protein-protein inter-
actions in the plane of the membrane. Recently, we developed a model that couples the in-plane flow
of lipids and diffusion of proteins with the out-of-plane bending of the membrane. Building on this
work, here, we focus on the role of explicit aggregation of proteins on the surface of the membrane
in the presence of membrane bending and diffusion. We develop a comprehensive framework that
includes lipid flow, membrane bending, the entropy of protein distribution, along with an explicit
aggregation potential and derive the governing equations for the coupled system. We compare this
framework to the Cahn-Hillard formalism to predict the regimes in which the proteins form patterns
on the membrane. We demonstrate the utility of this model using numerical simulations to predict
how aggregation and diffusion, when coupled with curvature generation, can alter the landscape of
membrane-protein interactions.

1 Introduction

Cellular membranes contain a variety of integral and peripheral proteins whose spatial organization has biophysical
implications for cellular function [1, 2]. In the plane of the membrane, many of these proteins are known to diffuse [3],
induce curvature in the bilayer [4], and aggregate either through protein-specific interactions [5] or due to membrane
curvature [6]. Interactions between proteins can also lead to the formation of protein microdomains depending on the
strength of interaction forces [6, 7]. The ability of these proteins to induce curvature, coupled with the ability of curva-
ture to influence the lateral diffusion-aggregation dynamics, can result in a feedback loop between membrane curvature
and protein density on the surface (Figure 1a) [8–10]. In addition to protein aggregation, in-plane viscous flow of the
lipid molecules has been found to dominate some of the phase-transition kinetics of vesicle shapes [11]. Recently,
we showed that the interaction of membrane bending, protein diffusion, and lipid flow can lead to an aggregation-like
configuration on the membrane under specific conditions [12].

The aggregation of particles in solvents is a well-studied theoretical problem. Flory [13] and Huggins [14] presented
a theoretical formulation for a polymer chain in solution and established the conditions that can lead to its phase
separation from the solvent. In binary alloy systems, there has been significant progress on the modeling of the phase
transition mechanisms starting from the fundamental Ginzburg-Landau energy [15] that models the interaction energy
between the phases as an algebraic expansion in the area fraction of the binary phases around a reference value.
Additionally, there are a number of studies that considered the effect of surface tension in the phase separation of solid
solutions with an elastic field as a function of concentration field of solute [16–18].

While the classical theories were developed for three-dimensional continua, domain formation and phase separation on
two-dimensional surfaces such as lipid bilayers have been of paramount interest recently. The aggregation of proteins
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Figure 1: Schematic of protein aggregation and representation of a membrane surface. (a) Aggregation of trans-
membrane proteins on the membrane can lead to domain formation and curvature generation. Here, we develop a
continuum model that captures these different interactions. (b) Representation of a membrane surface and the surface
coordinates. r is the position vector, a1 and a2 are the tangent basis vectors, n is the unit surface normal.

on the membrane surface can be viewed as an example of a binary system with lipids and proteins as two phases
in a two-dimensional curvilinear space. For example, a recent modeling study showed that in a reaction-diffusion
system, a pair of activator and inhibitor molecules can lead to an aggregation instability in a specific parameter space,
and this instability governs the pattern formation of proteins on membranes [19]. There are many models in the
literature that investigate various aspects of phase separation on surfaces. Gera and Salac [10] numerically solved a
Cahn-Hilliard system for aggregation-diffusion on a closed torus and observed the temporal evolution of the formation
of the aggregation patches. In this case, the surface geometry was fixed. In a subsequent study, they analyzed the
effect of bulk shear flow on the dynamics of the density distribution of species on a deformable vesicle, where the
material properties are dependent on the species concentration [20]. Nitschke et al. [8] modeled aggregation-diffusion
of a two-phase mixture on a spherical surface with in-plane viscous flow, and presented numerical results on pattern
formation between the two phases and its strong interplay with the surface flow. The relative interactions between the
proteins on the cellular membrane can lead to phase segregation and form protein domains depending on the strength
of interaction forces compared to the entropy of mixing [7]. Such aggregation phenomena have been modeled as a
polymerization reaction with a very weak free energy of polymerization [7].

Coupling these aggregation phenomena on the membrane surface with membrane deformation is a difficult mathe-
matical and computational problem. Reynwar et al. [6] modeled the interaction between proteins with the help of an
inter-particle energy and showed that curvature alone can lead to aggregation of these protein particles. A majority
of the aggregation studies in the continuum realm consider an aggregation-diffusion chemical potential, which re-
sults in the well-known Cahn-Hilliard equation that represents phase separation. The energy potential used in studies
of protein aggregation on membrane surfaces consists of an inter-molecular aggregation energy and a diffusion po-
tential comprising of the entropy of the protein distribution. Veksler and Gov [21] considered the Ginzburg-Landau
energy potential for the aggregation-diffusion energy and modeled the curvature-diffusion instability to identify the
parameter space where such instability occurs. Mikucki and Zhou [22] developed a numerical solution for aggregation-
diffusion of proteins with bending of the membrane and inviscid flow of lipids. However, their model assumes that
the local membrane curvature is a function of the density of the proteins as opposed to using a spontaneous curva-
ture, resulting in a weak coupling between bending and diffusion. Givli et al. [23] presented a theoretical model of
diffusion-aggregation in a multicomponent inviscid stretchable membrane coupled with the bending of the membrane.
Additionally, they performed a stability analysis of the system on a sphere, and obtained the most critical modes for
the instabilities.

While the models described above capture different aspects of the same problem, here, we sought to develop a compre-
hensive mathematical model that captures the coupled diffusion and aggregation dynamics, where the proteins induce
a curvature resulting in membrane bending and lipids can flow in the plane of the membrane. Such a framework
can allow us to explore how the different transport contributions in the plane of the membrane (protein aggregation,
protein diffusion, and lipid flow) can contribute both to the formation of protein microdomains and to the curvature
generation capability of the membrane. The manuscript is organized as follows. The full system of governing equa-
tions is presented in Section 2. We first analyzed the special case in the absence of bending and reduced the model to
a classic Cahn-Hilliard system in Section 3. We solved the Cahn-Hilliard equation numerically on a square domain
and demonstrated the configuration of patch formations in the parameter space. Next, we simulated the fully coupled
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system in the case of small deformations from a flat plane in Section 4 and studied the effect of bending energy on the
dynamics of aggregation and diffusion of proteins. Our results show that coupling between curvature, protein aggre-
gation, and diffusion can lead to a strong mechanical feedback loop stabilizing the protein microdomains in regions of
high curvature.

2 Model development

We first formulate the governing equations for coupled diffusion and aggregation of curvature-inducing proteins on
a deformable viscous lipid membrane with bending elasticity, building on previous models [12, 24, 25]. We begin
by formulating a free energy function for the membrane and apply the principle of energy minimization to derive the
governing equations. Complete details of the derivation are provided in the Electronic Supplementary Information
(ESI).

2.1 Free energy of the membrane

Our system consists of the lipids that comprise the membrane and transmembrane proteins that are embedded in the
plane of the membrane and are capable of inducing curvature (Figure 1). Our model does not include the binding
or unbinding of proteins from the bulk or the interactions of the bulk fluid with the membrane. The lipid bilayer is
modeled as a thin elastic shell with negligible thickness that can bend out of the plane and be subject to in-plane
viscous flow. Importantly, we assume that the membrane is areally incompressible and this constraint is imposed on
the membrane using a Lagrange multiplier. Additionally, we use a continuum description for the protein distribution
on the membrane. We describe the different contributions to the total free energy of the system in detail below.

2.1.1 Protein diffusion

The diffusion of proteins on the membrane surface is modeled using the principle of entropy maximization [26]. The
entropy S of q proteins on n binding sites can be found from the number of combinations, Ω = nCq , and is given by

S = kB log Ω, (1)

where kB is the Boltzmann constant [27]. For sufficiently large values of q and n, the entropic component of the free
energy per binding site can be represented as a function of area fraction φ = q/n as [26],

Wentropy

n
= −TS

n
= kBT [φ log φ+ (1− φ) log(1− φ)], (2)

where T is the temperature of system. Note that the area fraction φ can also be represented as the ratio of the local
protein density, σ, and the saturation density of proteins on the surface, σs. The free energy density per unit area of the
membrane is obtained by multiplying the free energy density per binding site (Wentropy/n) with the saturation density
of the proteins (σs). Note that the entropic component of the free energy Wentropy is minimized when the entropy S
is maximum, which corresponds to a uniform distribution of the proteins in the domain.

2.1.2 Protein aggregation

Aggregation of proteins, on the other hand, can be modeled using the interaction enthalpy of particles in a binary
system. With the help of mean-field theory, a continuum representation of the aggregation free energy per binding site
can be derived as [21, 23, 26]

Waggregation

n
=
γ

2
φ(1− φ) +

γ

4σs
|∇φ|2, (3)

where γ is the net effective interaction energy of the proteins. This term captures protein-protein attraction when γ > 0
and protein-protein repulsion when γ < 0.

2.1.3 Bending of the membrane

We model the curvature elastic free energy density of the membrane using the Helfrich Hamiltonian [28] given by

Wbending = κ[H − C(σ)]2 + κ̄K. (4)

Here, H and K are mean and Gaussian curvatures of the membrane, κ and κ̄ are the bending and Gaussian rigidities,
and C is the spontaneous curvature induced by the proteins. The spontaneous curvature is assumed to depend linearly
on protein density σ [12, 25] as

C(σ) = `σ, (5)

3
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where the proportionality constant, `, has units of length.

We obtain the total free energy density of the membrane, in terms of protein area fraction φ, by combining Equa-
tions (2) to (4) as

W = kBTσs [φ log φ+ (1− φ) log (1− φ)]︸ ︷︷ ︸
entropic

+
γσs
2
φ(1− φ) +

γ

4
|∇φ|2︸ ︷︷ ︸

aggregation

+κ(H − `σ)2 + κ̄K.︸ ︷︷ ︸
bending

(6)

2.2 Equations of motion

The lipid bilayer is modeled as a two-dimensional surface in a three-dimensional space (Figure 1b). We refer the
reader to [12, 24, 29] for details of the derivation and briefly summarize the key steps here. The equations of motion
are obtained from a local stress balance on the interface, which can be compactly stated as

∇ ·Σ + pn = 0, (7)

where Σ is the stress tensor, ∇ · Σ is the surface divergence of the stress, p is the normal pressure acting on the
surface, and n is the unit surface normal vector. As a result, the local equilibrium of forces, in the tangential and
normal directions, is given by Equation (S2) and Equation (S3) in the ESI. The incompressibility constraint on the
surface results in the following form of the continuity equation [29]

∇ · v = 2Hw, (8)

where v is the velocity field of tangential lipid flow and w is the normal velocity of the surface.

2.3 Mass conservation of proteins

Conservation of mass for the protein density σ is given by

∂σ

∂t
+∇ ·m = 0, (9)

where the flux is

m = vσ − 1

f
φ∇µ. (10)

This flux has contributions from advection due to the in-plane velocity field v and from gradients in the protein
chemical potential µ. The constant f denotes the thermodynamic drag coefficient of a protein and is related to its
diffusivity D by the Stokes-Einstein relation: D = kBT/f .

The chemical potential, µ, is obtained as the variational derivative

µ =
δF

δφ
, (11)

where F is the total energy of the system of area A, given by,

F =

∫
ω

W (φ,∇φ) dA. (12)

Note that the energy density is a function of both the protein area fraction φ and its gradient ∇φ. Using the definition
of the variational derivative, we get the expression of the chemical potential as:

µ =
δF

δφ
=
∂W

∂φ
−∇· ∂W

∂∇φ
. (13)

Using Equation (6) for W yields

µ = kBTσs[log φ− log(1− φ)]− 2κ`σs(H − `σsφ)− γσs
2

(2φ− 1)− γ

2
|∇φ|2. (14)

Substituting Equation (14) in Equation (10) will result in the evolution equation for σ.

4
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2.4 System of governing equations

Here we summarize the governing equations for the coupled dynamics of the system. Using Equations (S4) to (S7)
for the stresses, the tangential force balance in Equation (S2) becomes [12, 24, 29]

∇λ+ 2ν(∇ · d−∇w · b)− 4νw∇H︸ ︷︷ ︸
viscous

=

−∇σ
[
kBT log

φ

1− φ︸ ︷︷ ︸
entropic

− 2κ`(H − `σsφ)︸ ︷︷ ︸
bending

−
(
γ

2
(2φ− 1) +

γ

2σs
∆φ

)
︸ ︷︷ ︸

aggregation

]
.

(15)

Here, we have introduced a new variable λ, which is the Lagrange multiplier for area incompressibility and physi-
cally represents the membrane tension (see Equation (S6) in the ESI for details), d is the rate-of-strain tensor (see
Equation (S8) in the ESI for the details), b is the curvature tensor of the surface, and ∆(·) = ∇ · ∇(·) is the surface
Laplacian. Along with the surface incompressibility condition

∇ · v = 2wH, (16)

Equation (15) describes how the surface pressure gradient is balanced by the tangential contributions of lipid flow,
membrane bending, and membrane-protein interactions. On the other hand, Equation (16) captures surface incom-
pressibility for a deformed membrane. Equations (15) and (16) constitute the governing equations for the velocity
field and tension on the evolving surface of the membrane.

The shape of the surface is obtained by the normal force balance Equation (S3), which, after substituting in Equa-
tion (S5), Equations (S4) and (S7), is given by

κ∆(H − `σsφ) + 2κ(H − `σsφ)(2H2 −K)− 2H(κ(H − `σsφ)2 + κ̄K)︸ ︷︷ ︸
bending

− 2ν
[
b : d− w(4H2 − 2K)

]︸ ︷︷ ︸
viscous

− 2H

[
kBTσs{φ log φ+ (1− φ) log (1− φ)}︸ ︷︷ ︸

entropic

+
γσs
2
φ(1− φ) +

γ

4
|∇φ|2︸ ︷︷ ︸

aggregation

]
= p+ 2λH.︸ ︷︷ ︸

capillary

(17)

While this equation is complex and contains many terms, it can be understood intuitively by making the following
observations. In the absence of all other stresses (bending, viscous, entropic, and aggregation), Equation (17) simply
reduces to the Young-Laplace law. When the viscous, entropic, and aggregation terms are removed, we recover the
so-called ‘shape equation’ that is commonly used in membrane mechanics [29]. The additional terms capture the
non-trivial coupling between protein density, aggregation, lipid flow, and membrane bending, and are the novel aspect
of the present model. Equation (15) and Equation (17) both involve the area fraction of proteins φ = σ/σs, which
evolves according to the mass conservation equation given by

φt +∇ · (vφ) =
1

f
∆φ

[
kBT

1− φ
+ 2κ`2σsφ− γφ

]
− 1

f
φ

[
2κ`∆H +

γ

2σs
∆2φ

]
+

1

f
∇φ ·

[
∇φ
(

kBT

(1− φ)2
+ 2κ`2σs − γ

)
− 2κ`∇H − γ

2σs
∇(∆φ)

]
,

(18)

where φt denotes the time derivative ∂φ
∂t . Note that, in the absence of flow and protein-induced spontaneous curvature,

Equation (18) reduces to the Cahn-Hilliard equation for aggregation-diffusion as discussed in Section 3. Additionally,
if we eliminate protein aggregation (γ = 0), in the limit of dilute concentration of proteins (φ � 1), we recover the
classical equation for Fickian diffusion.

2.5 Non-dimensionalization

We non-dimensionalize the system of Equations (15)–(18) using the following reference scales. The characteristic
length scale is taken to be the size L of the domain. The membrane tension λ is scaled by its mean value λ0. Velocities
are non-dimensionalized by vc = λ0L/ν, and we use the diffusive time scale tc = L2/D. Note that the protein area
fraction φ = σ/σs is already dimensionless. The governing equations in dimensionless form (where tildes are used to
denote the dimensionless variables) are provided in the ESI (Equation (S10)–Equation (S13)).

The system of dimensionless equations involves seven dimensionless groups that are defined in Table 1 along with
their physical interpretation. In all the analyses that follow, we assume that the transmembrane pressure, p, is zero.
From here on, we use the dimensionless variables but omit the tildes for brevity.

5
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Table 1: List of dimensionless numbers and their definitions.

Dimensionless Number Expression Physical interpretation

B̂
kBT

κ
Thermal energy
Bending energy

L̂
`

L
Spontaneous curvature length

Domain length

Â
γ

kBT
Aggregation coefficient

Diffusion coefficient

Ŝ σsL
2 Domain area

Protein footprint

T̂
2L2λ0
κ

Membrane tension energy
Bending energy

Pe
λ0L

2

νD
Advection strength
Diffusion strength

2.6 Estimation of physical parameters

Given the vast number of physical parameters in the model, we used data from the literature to estimate the ranges
for these parameters and use these to inform the range of the dimensionless parameters in our simulations. We set the
value of the bending rigidity κ to 84 pN·nm [30, 31]. The range of spontaneous curvature length, `, was chosen as
1− 8 nm based on known protein-induced spontaneous curvature values [32]. The saturation density of proteins, σs,
on the lipid bilayer was varied in the range of 2 × 10−4 to 2 × 10−3 nm−2, which corresponds to 20 − 70 nm for
the protein size [33]. The viscosity of the membrane, ν, was taken as 5 ×10−6 pN·s/nm [34, 35], and the diffusion
coefficient of a protein, D, was taken to be 5 ×105 nm2/s [3, 36, 37]. For all the simulations, the domain was fixed
as a square of side L of 1 µm. The average membrane tension, λ0, was considered as 1 ×10−4 pN/nm [38]. As a
result, the Péclet number, Pe, was fixed at 40, the range of Ŝ was 200 to 2000, and the range of L̂ became 1 ×103 to 8
×103. We found that the minimum value of Â to promote aggregation is 11.1 based on stability analysis (Section 3.2)
and considered the value of Â in the range of 25 to 100 for the Cahn-Hilliard system (Section 3.3). Although, for the
coupled system of aggregation with bending, we used the value of Â as 25 (Section 4.2). The value of B̂ at room
temperature became 4.93 × 10−2. However, to demonstrate the dynamic coupling of aggregation and bending, we
used a lower value of temperature T in the numerical simulations; corresponding B̂ was 4.93× 10−4. This regime led
to a strong interaction between the membrane deformations and aggregation diffusion dynamics.

3 Cahn-Hilliard system and stability analysis

3.1 Reduction to the Cahn-Hilliard system

We first consider the simplified diffusion-aggregation system in the absence of membrane bending and in-plane lipid
flow to gain insight into how diffusion and aggregation compete in the plane of the membrane to form protein ag-
gregates (also referred to as patterns or microdomains). We assume that the proteins have zero spontaneous curva-
ture (L̂ = 0) in this case. As a result of these simplifications, the surface gradient reduces to the planar gradient
∇ = ∂

∂xi + ∂
∂y j and the surface Laplacian ∆ becomes ∇2 = ∂2

∂x2 + ∂2

∂y2 . Neglecting the flow and bending terms in
Equation (18), we arrive at a transport equation similar to the Cahn-Hilliard equation:

φt = ∇2φ

[
1

1− φ
− Âφ

]
+ |∇φ|2

[
1

(1− φ)2
− Â

]
− φ

[
Â

2Ŝ
∇4φ

]
. (19)

Equation (19) reduces to Fickian diffusion in the dilute limit (φ � 1) in the absence of aggregation (Â = 0). Equa-
tion (19) is also similar to the system presented by Givli and Bhattyacharya [23], for which they conducted a stability
analysis on a closed surface. Here, we present a stability analysis of the equivalent Cahn-Hilliard system on a flat
surface, and complement the analysis with numerical simulations of the nonlinear system in a periodic domain.

6
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Figure 2: Marginal stability curves for the Cahn-Hilliard system in the (Â,Ŝ) plane for φ0 = 0.1 and various wavenum-
bers k, as predicted by Equation 19. We mark three points in this figure to identify the parameter values for which we
perform nonlinear numerical simulations in Figure 3.

3.2 Linear stability analysis

We perform a linear stability analysis of Equation (19) to identify the parameter regimes that can lead to protein
aggregation. The homogeneous state with uniform concentration φ0 is perturbed by a small amount φ′ such that
φ = φ0 + φ′. Linearizing Equation (19) results in the equation for density fluctuation φ′ as

φ′t = ∇2φ′
[

1

1− φ0
− Âφ0

]
− Â

2Ŝ
φ0∇4φ′. (20)

We consider normal modes of the form φ′ = eαtei2πk·x and obtain the dispersion relation

α = 4π2

[
Âφ0 −

1

1− φ0

]
k2 − 8π4 Â

Ŝ
φ0k

4. (21)

We find that the growth rate α is always real. The first term in Equation (21) is positive and is destabilizing as long
as the strength of aggregation exceeds a certain threshold: Â ≥ Âc = [φ0(1− φ0)]−1(≈ 11.1 for φ0 = 0.1),whereas
the second term is always stabilizing. The marginal stability curves α = 0 in the (Â, Ŝ) plane are plotted for various
wavenumbers k in Figure 2. For a given choice of Â and Ŝ, this results in a band of unstable wavenumbers 0 ≤ k ≤ kc,
where

k2c =
Ŝ

2π2

[
1− Âc

Â

]
, (22)

and the maximum growth rate occurs at wavenumber km = kc/
√

2. The corresponding wavelength Λ = 2π/km pro-
vides a prediction for the characteristic lengthscale of aggregation patches, which is expected to decay with increasing
Ŝ but to increase with increasing Â.

3.3 Numerical simulations

We conducted numerical simulations of Equation (19) inside a square domain for various combinations of Â and
Ŝ that satisfy the necessary condition of aggregation as given in Equation (22) and Figure 2. The initial condi-
tion was set as a homogeneous distribution of φ0 = 0.1 with a small random spacial perturbation with magnitude
|φ′| ≤ 1 × 10−4. We numerically restricted the value of φ to the interval [ε, 1 − ε] with ε = 1 × 10−3 to ensure
that neither φ or 1 − φ becomes zero during the simulations. We used periodic boundary conditions for the pro-
tein density and solved the equation numerically using a finite difference technique (the Fortran code is available on
https://github.com/armahapa/protein aggregation in membranes). In Figure 3, we show the evolution of the protein
distribution over time for three different values of the dimensionless number Ŝ that denotes the ratio of domain area
to the protein footprint, while maintaining the aggregation strength at Â = 25. In all cases, we find that the ini-
tial perturbation in the density field evolves towards the formation of distinct dense circular protein patches that are

7
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Figure 3: Temporal evolution of the protein distribution in simulations of the Cahn-Hilliard model of Equation 19 on a
flat square patch of area 1 µm2 for Â = 25 and three different values of Ŝ. The three rows in panels (a-i) correspond to
three distinct times: at an early time tb = 3× 10−3 shortly after the start of the simulation, at an intermediate time tin
when protein density variance reaches Vφ = 2× 10−3, and at a late time ts = 0.3 when the system has reached steady
state. The three columns correspond to Ŝ = 200 (a-c), Ŝ = 500 (d-f ), and Ŝ = 1000 (g-i). Also see Movies M1-M3 in
the ESI for the corresponding dynamics. (j) Temporal evolution of the variance Vφ of the protein density for the same
cases shown in (a-i). The dashed lines indicate the intermediate time tin when the variance reaches Vφ = 2× 10−3.

8
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Figure 4: (a) Configurations of protein aggregates on a flat square membrane at a late time t = 0.3 approaching
steady state for various combinations of Â and Ŝ. (b) Variation of the number of protein patches with Â, for different
values of Ŝ. (c) Variation of of the protein density variance Vφ with Â for different values of Ŝ.

distributed randomly and nearly uniformly across the domain, in agreement with standard Cahn-Hilliard aggregation
dynamics [10]. The main effect of varying Ŝ, which is more dramatic than varying Â as we further show below, is to
control the number of patches as well as their size. Indeed, we recall that Ŝ, which is a dimensionless measure of the
finite size of the proteins, directly controls the stabilizing term in the dispersion relation Equation (21) and therefore
the dominant wavenumber of the instability. Consistent with the stability predictions, we find that larger values of Ŝ
produce larger numbers of patches with smaller sizes. During the transient evolution, proteins get drawn towards the
emerging patches due to aggregation, and at steady state we find that the density inside the patches approached the
saturation density (φ = 1), whereas it approaches zero outside (Also see Movies M1-M3 in the ESI). We quantify the
growth of density fluctuations by plotting in Figure 3j the time evolution of the density variance, defined as

Vφ =

∫
A

(φ− φ0)2dA. (23)

We find that the growth of the variance is exponential at short times, consistent with the expected behavior for a linear
instability, before reaching a constant plateau at long times. The growth is observed to increase with Ŝ in agreement
with the linear prediction of Equation (21). The steady state value, on the other hand, is found to decrease slightly
with Ŝ, although the differences are small.

A more complete exploration of pattern formation is provided in Figure 4a, showing the long-time configurations of
aggregated protein patches in the parameter space of Â and Ŝ. We note that the number of patches, their size, and
their homogeneity vary with both parameters. As we already observed in Figure 3, increasing Ŝ for a given value of
Â increases the number of patches and decreases their size. On the other hand, increasing Â for a given Ŝ tends to
increase inhomogeneity among patches, with some visibly denser patches while others tend to be more diffuse. The
dependence of the number of patches as a function of both Â and Ŝ is shown in Figure 4b, while the steady-state
variance is plotted in Figure 4c. The variance is found to decrease with Â, as the more diffuse patches forming at large
Â result in weaker spatial fluctuations.

9
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4 Coupling of aggregation with bending: analysis in the small deformation regime

To understand how the inclusion of membrane curvature alters the aggregation-diffusion landscape, we simulated
the dynamics of the coupled system Equations (S10) to (S13) in the regime of small deformations from a plane.
The surface is represented using the Monge parametrization, such that the position vector is given by r = xαeα +
z(x1, x2, t)e3. In the regime of small deformations from the plane, we consider gradients of the surface deformation
to be small and ignore the higher-order terms [12]. The surface gradient and Laplacian in the Monge parameterization
simplify to ∇ = ∂

∂xi + ∂
∂y j and ∇2 = ∂2

∂x2 + ∂2

∂y2 . In the limit of small deformations, the system of governing
equations Equation (S11) to Equation (S13) reduces to Equation (S14) to Equation (S17).

4.1 Linear stability analysis

We first perform a stability analysis of the system of equations (Equation (S14) to Equation (S17)) to identify the
parameter regimes similar to the analysis of Section 3.2 but in the presence of bending due to spontaneous curvature
induced by the protein. In the base state, the membrane is flat and at rest with uniform tension (z0 = 0, v0 = 0,
λ0 = 1), and the protein density is uniform with value φ0. We showed in an earlier study [12] that a uniform protein
distribution on a flat membrane is indeed a steady state even when the proteins induce a spontaneous curvature. We
perturb the variables by small amounts with respect to this base state:

φ = φ0 + φ′, z = 0 + z′, v = 0 + v′, and, λ = 1 + λ′. (24)

Linearizing Equations (S14) and (S15) provides the governing equations for velocity and tension fluctuations as

∇ · v′ = 0, (25)

and,

∇λ′ +∇2v′ +∇(∇ · v′) = −∇φ′
[

2B̂Ŝ

T̂
log

φ0
1− φ0

+
4L̂2Ŝ2

T̂
φ0 −

ÂB̂Ŝ

T̂
(2φ0 − 1)

]
. (26)

The normal force balance of Equation (S16) reduces to

∇4z′ − 2L̂Ŝ∇2φ′ − 2B̂Ŝ∇2z′
[
{φ0 log φ0 + (1− φ0) log(1− φ0)}+

Â

2
φ0(1− φ0) +

L̂2Ŝ

B̂
φ20

]
= T̂∇2z′. (27)

Finally, the transport equation for the protein density given in Equation (S17) becomes

φ′t = ∇2φ′
[

1

1− φ0
+

2L̂2Ŝ

B̂
φ0 − Âφ0

]
− φ0

[
L̂

B̂
∇4z′ +

Â

2Ŝ
∇4φ′

]
. (28)

We find that the linearized equations the velocity field and tension partially decouple from the shape equation (27) and
protein transport equation (28): in other words, lipid flow and tension fluctuations do not affect the membrane shape
and protein transport in the linear regime. To analyze the dynamics of protein aggregation, we therefore need only
consider Equations (27) and (28). Performing a normal model analysis (see ESI for details), we obtain the dispersion
relation as

α = 4π2k2
[
Âφ0 −

1

1− φ0
− 2L̂2Ŝ

B̂
φ0g(k)

]
− 8π4φ0

Â

Ŝ
k4, (29)

where g(k) is given by

g(k) = 1− 16π4k4

M(k)
, (30)

and,

M(k) = 16π4k4 + 8π2k2B̂Ŝ

[
{φ0 log φ0 + (1− φ0) log(1− φ0)}+

Â

2
φ0(1− φ0) +

L̂2Ŝ

B̂
φ20

]
+ 4π2k2T̂ . (31)

Similar to Equation (21), the second term in Equation (29) is always stabilizing, and therefore protein aggregation
takes place only if the first term is positive. The necessary condition for protein aggregates to form becomes

Â− 2L̂2Ŝ

B̂
g(k) ≥ 1

φ0(1− φ0)
, (32)
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Figure 5: Dependence of g defined in Equation 30 on wavenumber k for different values of Ŝ and L̂, with Â = 25.

or

Â ≥ Âc +
2L̂2Ŝ

B̂
g(k), (33)

where Âc was previously defined in Section 3.2 in the Cahn-Hilliard case. Here again, we find that there exists an
unstable range of wave numbers 0 < k < kc, where kc satisfies the implicit equation

k2c =
Ŝ

4π2

[
1− Âc

A
− 2L̂2Ŝ

B̂Â
g(kc)

]
. (34)

The maximum growth rate occurs at wavenumber km, also given by an implicit equation:

km =
kc√

2

[
1 +

1

4π2km

L̂2Ŝ2

B̂Â
g′(km)

]−1/2
. (35)

Figure 5 shows the dependence of g(k) on wave number k for Â = 25 and various combinations of L̂ and Ŝ. When
both L̂ and Ŝ increase, g(k) tends to increase for small wavenumbers and thus stabilizes the system. This means in
particular that proteins with large spontaneous curvature, as captured by L̂, can in fact have a stabilizing effect on
protein aggregation, and this counterintuitive observation will be confirmed in numerical simulations as we discuss
next.

4.2 Numerical simulations

We solved Equations (S14) to (S17) numerically on a square domain with periodic boundary conditions for a small
random density perturbation over a homogeneous steady state density of φ = 0.1. The proteins now induce a sponta-
neous curvature in the membrane, and the model also captures the viscous flow on the membrane manifold. Typical
transient dynamics are illustrated in Figure 6 in a simulation with L̂ = 8 × 10−3, Â = 25, and Ŝ = 2000. The
initial random distribution resolves into strong patches of proteins over time with the same number of patches as we
observed in the Cahn-Hilliard system (compare Figure 3a-c with Figure 6a-c). Because the system of equations now
accounts for coupling of curvature with protein dynamics, we observe that the formation of dense protein patches is
accompanied by the localized growth of membrane deformations, in the form of nearly circular peaks surrounded by
flatter regions of oppositely-signed curvature (Figure 6a-c). We also observe that the formation of protein aggregates
is coupled with a tangential velocity field in the plane of the membrane, to accommodate the deformation of the mem-
brane (Figure 6 d-f ): as the protein aggregates form and deflect the membrane in the normal direction, a source-like
flow is generated locally as dictated by the continuity relation Equation (S14). During this process, the magnitude of
the velocity increases until the system approaches a steady state where aggregation balances diffusion. As the steady
state is approached, the flow in the membrane changes nature as the normal velocity vanishes, with each protein patch
driving a weaker flow with quadrupolar symmetry.

As we have noted in prior works [12, 24, 39], coupling of lipid flow to membrane deformation not only completes
the description of the physics underlying the viscoelastic nature of the membrane but also allows for the accurate
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Figure 6: Temporal evolution of protein distribution, membrane shape, in-plane velocity and tension for a square
membrane of size 1 µm2 with Â = 25, Ŝ = 200, and L̂ = 8× 10−3. (a-c) Height of the membrane colored with the
local protein density, (d-f ) in-plane velocity field, and (g-i) membrane tension at dimensionless times 0.003, 0.216,
and 0.3.

calculation of the membrane tension field (the Lagrange multiplier for incompressibility). This is particularly relevant
for understanding how microdomains of proteins can alter the tension field in the membrane. The tension field on the
membrane tracks with the protein microdomains and the deformation in the coupled system (Figure 6g-i). Initially,
the membrane has nearly uniform tension, but as regions of high protein aggregation and therefore high membrane
curvature form, these locations are found to have lower tension in comparison with the rest of the membrane (see [39]
for a detailed discussion on this point). Thus, the dynamics of the coupled system is able to capture key experimental
observations in the field of membrane-protein interactions: (a) regions of high curvature and aggregation are correlated
for curvature-inducing proteins suggesting a positive feedback between these two important factors [40], (b) lipid flow
is important to sustain the deformations ([41]), and (c) membrane tension is a heterogeneous field and varies with the
local membrane composition [38].

To further quantify these behaviors, we investigated the parameter space of Ŝ and L̂, to understand how the
spontaneous-curvature induction versus protein footprint compete in a fixed regime of aggregation-to-diffusion
(Â = 25 fixed) (see Equation (33)). We varied Ŝ in the range of 200 to 2000 and L̂ from 1 × 10−3 to 8 × 10−3

and summarize these results in Figure 7. We first observed that the growth rate of the variance of φ shows a strong
dependence on L̂ (Figure 7a). For Ŝ = 200, the growth rate for the two different values of L̂ differ slightly with the
growth rate being slower for larger L̂. This effect persists and is amplified for larger Ŝ: as both Ŝ and L̂ increase,
the growth rate decreases, indicating that it takes longer time for patterns to form on the membrane. However, when
Ŝ = 2000, we see a decay in the variance of protein density φ as opposed to the exponential growth and eventual
plateau for the cases where protein aggregrates form. This result, which is consistent with the stability analysis of
Section 4.1 suggests that the induction of curvature on the membrane can alter significantly the dynamics of protein
aggregation.
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1
0
0
0
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0
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Figure 7: Effect of Ŝ and L̂ on protein aggregation and membrane dynamics. (a) Temporal evolution of the protein
density variance Vφ for two values L̂ and the same three values of Ŝ shown in (b). (b) Distribution of protein density
on the deformed membrane at a long time approaching steady state (t = 0.3) for various combinations of L̂ and Ŝ,
with Â = 25. The corresponding dynamics are also shown in movies M4-M6 of the ESI. (c) Distribution of the local
membrane tension for the same cases as in (b). (d) Variance of protein density Vφ and (e) number of protein patches
np at t = 0.3 as functions of L̂, for various values of Ŝ.

The steady-state patterns and deformations are illustrated in Figure 7b (also see Movies M4-M6, and Figures B.1 and
B.2 in the ESI), where we observe that the number of protein patches is largely unaffected by L̂ for Ŝ = 200. The
number of patches increases with Ŝ for a given L̂ (as already found in Figure 4). However, when Ŝ increases to 1000,
the number of patches decrease with L̂. Since the deformation is directly affected by spontaneous curvature, we find
however that L̂ has a strong effect on the magnitude of membrane deflections, with larger protein footprints resulting
in stronger deflections. Surprisingly, when Ŝ = 2000, we noticed that protein aggregates do not form for the value
of L̂ = 8 × 10−3 and the membrane remains flat. This phenomenon can be explained from the critical value of Â in
Equation (33). Since both L̂ and Ŝ have a stabilizing effect on density fluctuations φ′ (Equation (33)), for higher value
of Ŝ and L̂, an aggregation coefficient of Â = 25 is not sufficient to overcome the stabilizing barrier. However, for
lower values of L̂ or lower values of Ŝ, where the stabilizing effect is relatively weak, we see the formation of protein
aggregates.

The tension profile in the membrane follows the inhomogeneity of the protein distribution as expected (Figure 7c and
Figure B.2). As previously noted in Figure 6, the patches are associated with tension minima. We find that the range of
λ depends strongly on Ŝ and L̂, as ∇λ linearly depends on the negative of the gradient of the spontaneous curvature,
which in turn depends on both ` and σ. This is consistent with our previous results showing that λ is a heterogeneous
field on the membrane and varies with the protein-induced spontaneous curvature [12, 39]. Figure 7c further highlights
the coupling between curvature, flow, and aggregation dynamics. Finally, we look at the variance and the number of
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patches as a function of both Ŝ and L̂ (Figure 7d,e). We note that for a given value of Ŝ, the variance decreases with
increasing L̂ for higher values of Ŝ and this decrease is more dramatic when compared to the Cahn-Hilliard model
(Figure 4b). Even though the number of patches remains more or less unaltered for small values of Ŝ as L̂ increases,
the number decreases with increasing L̂ for larger values of Ŝ (Figure 7e), consistent with the stability behavior noted
in Equation (33). These results suggest that the landscape of protein inhomogeneity is not only governed by the Â-Ŝ
space as is the case in the Cahn-Hilliard model; rather the curvature parameters, specifically L̂ in this case, can have a
significant impact on the protein aggregation behavior. Thus, we find that the aggregation-diffusion landscape on the
surface of the membrane is altered by the protein-induced spontaneous curvature – tuning these different effects can
allow for differential control of curvature-aggregation feedback.

5 Discussion

The interaction of peripheral and integral membrane proteins with the lipid bilayer of cellular membranes is fun-
damental to cellular function [42–44]. In this work, we have developed a comprehensive modeling framework that
couples the multiple effects that take place in such membrane-protein interactions: protein diffusion in the plane of
the membrane, interaction between the proteins resulting in aggregation, lipid flow in the plane of the membrane, and
out-of-plane curvature generation due to protein-induced spontaneous curvature. The resulting system of equations
now completely describes the mechanics of a lipid membrane with a second species that can both diffuse and aggregate
in the plane of the membrane. We compared this system against a reduced system of Cahn-Hilliard equations to show
how the coupling with membrane bending alters the system behavior using both linear stability analysis and numerical
simulations. In the absence of curvature coupling (the Cahn-Hilliard system), the dynamics of protein aggregation is
driven by the competition between two key parameters, Ŝ, representing the relative size of the protein footprint and Â,
representing the relative strength of protein aggregation over diffusion. In the presence of curvature coupling due to
protein-induced spontaneous curvature, these dynamics are altered and depend strongly on the strength of the sponta-
neous curvature induced by these proteins. These altered dynamics can be summarized as follows: for certain regimes
of Ŝ and L̂, microdomains of proteins form on the membrane and are closely tied to the membrane curvature as is
expected, generating a strong feedback between curvature and aggregation. We also found that for certain regimes of
Ŝ and L̂, the growth rate decays, preventing the formation of protein aggregates and the membrane remains flat.

The interaction between curvature and protein aggregation in membranes has been studied in multiple modeling [21,
23, 45, 46], simulation [6, 7, 10], and experimental contexts [47–51]. Our work builds on this literature with a few key
differences. Many of the theoretical models analyze the governing equations in simplified settings. In some cases, the
geometry is fixed and the emergence of patterns is analyzed, and in other cases, the dynamics of the protein interactions
on the surface is ignored [10, 23]. Here, we have analyzed the fully coupled system without any assumptions on the
dominant regimes and demonstrated how curvature generation can affect aggregation. Another important feature
of our model is the calculation of membrane tension. Since the lipid bilayer is assumed to be incompressible, the
calculation of the Lagrange multiplier, which is widely interpreted as membrane tension (see detailed discussion in
[39] and references therein), is an important aspect of the coupled physics. By incorporating the viscous nature of
the membrane, we ensure that the incompressibility constraint is met rigorously at all times and therefore obtain the
tension fields on the membrane. Our calculation of the heterogeneous tension fields are consistent with previous
models as noted above and with experimental observations [52]. Moreover, a lower tension inside the phase-separated
domain further supports the existence of line tension at the domain boundary, which has been observed experimentally
[38].

Finally, we discuss the relevance of our model in the context of biological systems. Coarse-grained molecular dynamic
simulations of N-BAR proteins on flat membranes and spherical vesicles showed that at low protein density these
proteins form linear aggregates and meshes on the membrane surface [53]. Many proteins, especially those that
belong to the coat family of proteins including clathrin and COP, are known to aggregate on the membrane and their
aggregation results in morphologolical changes of the membrane [54]. The nucleation of these protein aggregates and
the subsequent deformation of the membrane has been studied using simplified systems [55]. While the exact role of
lipid flow, diffusion, and aggregation is often not unraveled in these experiments, they have shown that the extent of
curvature induced depends on multiple physical parameters including the composition of the membrane and the nature
of the protein [43, 56]. From a physiological perspective, many neurodegenerative diseases such as Alzheimer’s
disease, Parkinson’s disease, and Huntington’s disease are associated with surface aggregation of proteins in cells.
Even though the precise mechanisms of such aggregation are not fully established, the role of membrane-protein
interactions, particularly aggregation, is becoming increasingly important [57].

The formation of domains is not specific to lipid-protein systems but is also observed in vesicles that have two different
kinds of lipids. The temporal behavior of formation of disordered lipid domains was studied in a ternary mixture of
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fluid membrane [41] and it was shown that in-plane flow was critical to the formation of such domains [8] and that
smaller domains can be attracted towards larger domains following the internal flows [58].

In developing models for many of these experimental observations described above, aggregation of domains of protein-
induced curvature is often assumed a priori or curvature is proposed as an organizing factor to explain cellular observa-
tions and experiments in reconstituted systems [59–65]. By developing a general theoretical framework that accounts
for the coupled effects of protein diffusion, aggregation, and curvature generation, we have eliminated the need for
such strong assumptions and more importantly, demonstrated that the intricate interactions between these different
physics can lead to different regimes of pattern formation and membrane deformations. These regimes can be tuned
and controlled by different parameters, allowing for exquisite control of experimental design. In summary, the compre-
hensive model that we have developed here allows for a broader interpretation and understanding of membrane-protein
interactions in a unifying framework.

6 Acknowledgments

This work was supported by NIH NIGMS R01-132106, ONR N00014-20-1-2469 to P.R. and NSF CBET-1705377 to
D.S.

15

Page 15 of 18 Soft Matter



A PREPRINT - AUGUST 19, 2021

References

[1] N. Cremades and C. M. Dobson. “The contribution of biophysical and structural studies of protein self-assembly
to the design of therapeutic strategies for amyloid diseases”. Neurobiol. Dis. 109 (2018), pp. 178–190.

[2] J. Mukherjee and M. N. Gupta. “Protein aggregates: forms, functions and applications”. Int. J. of biological
macromolecules 97 (2017), pp. 778–789.

[3] N. Kahya et al. “Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence
correlation spectroscopy”. J. Struct. Biol. 147.1 (2004), pp. 77–89.

[4] H. T. McMahon and J. L. Gallop. “Membrane curvature and mechanisms of dynamic cell membrane remod-
elling”. Nature 438.7068 (2005), pp. 590–596.

[5] P. M. Douglas and D. M. Cyr. “Interplay between protein homeostasis networks in protein aggregation and
proteotoxicity”. Biopolymers: Orig. Res. Biomol. 93.3 (2010), pp. 229–236.

[6] B. J. Reynwar et al. “Aggregation and vesiculation of membrane proteins by curvature-mediated interactions”.
Nature 447.7143 (2007), pp. 461–464.

[7] C. Weber, T. Michaels, and L. Mahadevan. “Spatial control of irreversible protein aggregation”. Elife 8 (2019),
e42315.

[8] I. Nitschke, A. Voigt, and J. Wensch. “A finite element approach to incompressible two-phase flow on mani-
folds”. J. Fluid Mech. 708 (2012), p. 418.

[9] C. J. S. Klaus et al. “Analysis of diffusion in curved surfaces and its application to tubular membranes”. Mol.
Biol. Cell 27.24 (2016), pp. 3937–3946.

[10] P. Gera and D. Salac. “Cahn–Hilliard on surfaces: A numerical study”. Appl. Math. Letters 73 (2017), pp. 56–
61.

[11] H. Noguchi and G. Gompper. “Fluid vesicles with viscous membranes in shear flow”. Phys. Rev. Lett. 93.25
(2004), p. 258102.

[12] A. Mahapatra, D. Saintillan, and P. Rangamani. “Transport phenomena in fluid films with curvature elasticity”.
J. Fluid Mech. 905.A8 (2020), pp. 1–31.

[13] P. J. Flory. “Thermodynamics of high polymer solutions”. J. Chem. Phys. 10.1 (1942), pp. 51–61.
[14] M. L. Huggins. “Some properties of solutions of long-chain compounds.” J. of Phys. Chem. 46.1 (1942),

pp. 151–158.
[15] J. W. Cahn. “On spinodal decomposition”. Acta Metall. 9.9 (1961), pp. 795–801.
[16] A. Onuki. “Long-range interactions through elastic fields in phase-separating solids”. J. Phys. Soc. JPN. 58.9

(1989), pp. 3069–3072.
[17] A. Onuki and A. Furukawa. “Phase transitions of binary alloys with elastic inhomogeneity”. Phys. Rev. lett.

86.3 (2001), p. 452.
[18] J. W. Cahn. “On spinodal decomposition in cubic crystals”. Acta Metall. 10.3 (1962), pp. 179–183.
[19] L. M. Stolerman et al. “Stability Analysis of a Bulk-Surface Reaction Model for Membrane Protein Clustering”.

Bull. Math. Biol. 82.2 (2020), p. 30.
[20] P. Gera and D. Salac. “Three-dimensional multicomponent vesicles: dynamics and influence of material prop-

erties”. Soft Matter 14.37 (2018), pp. 7690–7705.
[21] A. Veksler and N. S. Gov. “Phase transitions of the coupled membrane-cytoskeleton modify cellular shape”.

Biophys. J. 93.11 (2007), pp. 3798–3810.
[22] M. Mikucki and Y. C. Zhou. “Curvature-driven molecular flow on membrane surface”. SIAM J. Appl. Math.

77.5 (2017), pp. 1587–1605.
[23] S. Givli, H. Giang, and K. Bhattacharya. “Stability of multicomponent biological membranes”. SIAM J. Appl.

Math. 72.2 (2012), pp. 489–511.
[24] P. Rangamani et al. “Interaction between surface shape and intra-surface viscous flow on lipid membranes”.

Biomech. Model. Mechan. 12.4 (2013), pp. 833–845.
[25] A. Agrawal and D. J. Steigmann. “A model for surface diffusion of trans-membrane proteins on lipid bilayers”.

Zamm-Z Angew. Math. Me. 62.3 (2011), pp. 549–563.
[26] C. Canuto et al. Spectral Methods. Springer, 2006.
[27] N. M. Laurendeau. Statistical thermodynamics: fundamentals and applications. Cambridge University Press,

2005.
[28] W. Helfrich. “Elastic properties of lipid bilayers: theory and possible experiments”. Z NATURFORSCH C

28.11-12 (1973), pp. 693–703.

16

Page 16 of 18Soft Matter



A PREPRINT - AUGUST 19, 2021

[29] D. J. Steigmann. “Fluid Films with Curvature Elasticity”. Arch. Ration. Mech. Anal. 150.2 (1999), pp. 127–152.
[30] M. B. Schneider, J. Jenkins, and W. Webb. “Thermal fluctuations of large quasi-spherical bimolecular phospho-

lipid vesicles”. J. Phys. (Paris), 45.9 (1984), pp. 1457–1472.
[31] P. W. Fowler et al. “Membrane stiffness is modified by integral membrane proteins”. Soft Matter 12.37 (2016),

pp. 7792–7803.
[32] F. Quemeneur et al. “Shape matters in protein mobility within membranes”. Proc. Nat. Acad. Sci. USA 111.14

(2014), pp. 5083–5087.
[33] A. Horner, Y. N. Antonenko, and P. Pohl. “Coupled diffusion of peripherally bound peptides along the outer

and inner membrane leaflets”. Biophys. J. 96.7 (2009), pp. 2689–2695.
[34] R Dimova et al. “Falling ball viscosimetry of giant vesicle membranes: finite-size effects”. Eur. Phys. J. B 12.4

(1999), pp. 589–598.
[35] A. Zgorski, R. W. Pastor, and E. Lyman. “Surface shear viscosity and interleaflet friction from nonequilibrium

simulations of lipid bilayers”. J. Chem. Theory Comput. 15.11 (2019), pp. 6471–6481.
[36] N. Kahya et al. “Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spec-

troscopy”. J. Biol. Chem. 278.30 (2003), pp. 28109–28115.
[37] D. Scherfeld, N. Kahya, and P. Schwille. “Lipid dynamics and domain formation in model membranes com-

posed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol”. Biophys. J. 85.6
(2003), pp. 3758–3768.

[38] T. Baumgart, S. T. Hess, and W. W. Webb. “Imaging coexisting fluid domains in biomembrane models coupling
curvature and line tension”. Nature 425.6960 (2003), pp. 821–824.

[39] P. Rangamani, K. K Mandadap, and G. Oster. “Protein-induced membrane curvature alters local membrane
tension”. Biophys. J. 107.3 (2014), pp. 751–762.

[40] T. Baumgart et al. “Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane
vesicles”. Proc. Nat. Acad. Sci. USA 104.9 (2007), pp. 3165–3170.

[41] D. Saeki, T. Hamada, and K. Yoshikawa. “Domain-growth kinetics in a cell-sized liposome”. J. Phys. Soc. JPN.
75.1 (2006), pp. 013602–013602.

[42] H. T. McMahon and E. Boucrot. “Membrane curvature at a glance”. J. Cell Sci. 128.6 (2015), pp. 1065–1070.
[43] H. T. McMahon and J. L. Gallop. “Membrane curvature and mechanisms of dynamic cell membrane remod-

elling”. Nature 438.7068 (2005), pp. 590–596.
[44] M. M. Kozlov et al. “Mechanisms shaping cell membranes”. Curr. Opin. Cell Biol. 29 (2014), pp. 53–60.
[45] A. Agrawal and D. J. Steigmann. “Modeling protein-mediated morphology in biomembranes”. Biomech. Model.

Mechanobiol. 8.5 (2008), pp. 371–379.
[46] A. Agrawal and D. J. Steigmann. “Coexistent Fluid-Phase Equilibria in Biomembranes with Bending Elastic-

ity”. J. Elast. 93.1 (2008), pp. 63–80.
[47] A. Callan-Jones and P. Bassereau. “Curvature-driven membrane lipid and protein distribution”. Curr. Opin.

Solid State Mater. Sci. 17.4 (2013), pp. 143–150.
[48] A. Beber et al. “Membrane reshaping by micrometric curvature sensitive septin filaments”. Nat. Commun. 10.1

(2019), p. 420.
[49] S. Aimon et al. “Membrane Shape Modulates Transmembrane Protein Distribution”. Dev. Cell 28.2 (2014),

pp. 212–218.
[50] J. C. Stachowiak et al. “Membrane bending by protein-protein crowding”. Nat. Cell Biol. 14.9 (2012), pp. 944–

949.
[51] J. C. Stachowiak, C. C Hayden, and D. Y Sasaki. “Steric confinement of proteins on lipid membranes can drive

curvature and tubulation”. Proc. Natl. Acad. Sci. USA 107.17 (2010), pp. 7781–7786.
[52] Z. Shi et al. “Cell Membranes Resist Flow”. Cell 175.7 (2018), 1769–1779.e13.
[53] M. Simunovic, A. Srivastava, and G. A. Voth. “Linear aggregation of proteins on the membrane as a prelude to

membrane remodeling”. Proc. Nat. Acad. Sci. USA 110.51 (2013), pp. 20396–20401.
[54] P. Sens, L. Johannes, and P. Bassereau. “Biophysical approaches to protein-induced membrane deformations in

trafficking”. Curr. Opin. Cell Biol. 20.4 (2008), pp. 476–482.
[55] M. Simunovic et al. “How curvature-generating proteins build scaffolds on membrane nanotubes”. Proc. Nat.

Acad. Sci. 113.40 (2016), pp. 11226–11231.
[56] J. L. Gallop et al. “Mechanism of endophilin N-BAR domain-mediated membrane curvature”. EMBO J 25.12

(2006), pp. 2898–2910.
[57] K. A. Burke, E. A. Yates, and J. Legleiter. “Biophysical insights into how surfaces, including lipid membranes,

modulate protein aggregation related to neurodegeneration”. Front. Neurol. 4 (2013), p. 17.

17

Page 17 of 18 Soft Matter



A PREPRINT - AUGUST 19, 2021

[58] M. Yanagisawa et al. “Growth dynamics of domains in ternary fluid vesicles”. Biophys. J. 92.1 (2007), pp. 115–
125.

[59] J. E. Hassinger et al. “Design principles for robust vesiculation in clathrin-mediated endocytosis”. Proc. Natl.
Acad. Sci. USA 114.7 (2017), E1118–E1127.

[60] J. Liu et al. “Endocytic vesicle scission by lipid phase boundary forces”. Proc. Natl. Acad. Sci. USA 103.27
(2006), pp. 10277–10282.

[61] J. Liu et al. “The mechanochemistry of endocytosis”. PLoS Biol. 7.9 (2009), e1000204.
[62] H. Alimohamadi et al. “The role of traction in membrane curvature generation”. Mol. Biol. Cell 114.16 (2018),

pp. 2024–2035.
[63] R. Ma and J. Berro. “Endocytosis against high turgor pressure is made easier by partial protein coating and a

freely rotating base”. Biophys. J. (2021).
[64] P. Rangamani, A. Behzadan, and M. Holst. “Local sensitivity analysis of the “membrane shape equation” de-

rived from the Helfrich energy”. Math. Mech. Solids 26.3 (2021), pp. 356–385.
[65] F. Yuan et al. “Membrane bending by protein phase separation”. Proc. Natl. Acad. Sci. USA 118.11 (2021).
[66] H. Hasimoto. “On the periodic fundamental solutions of the Stokes equations and their application to viscous

flow past a cubic array of spheres”. J Fluid Mech. 5.2 (1959), pp. 317–328.
[67] S. Safran. Statistical thermodynamics of surfaces, interfaces, and membranes. CRC Press, 2018.

18

Page 18 of 18Soft Matter


