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The role of complementary shape in protein dimerization

Fengyi Gao,a Jens Glaser,‡a and Sharon C. Glotzer∗ab

Shape guides colloidal nanoparticles to form complex assemblies, but its role in defining interfaces in
biomolecular complexes is less clear. In this work, we isolate the role of shape in protein complexes
by studying the reversible binding processes of 46 protein dimer pairs, and investigate when entropic
effects from shape complementarity alone are sufficient to predict the native protein binding interface.
We employ depletants using a generic, implicit depletion model to amplify the magnitude of the
entropic forces arising from lock-and-key binding and isolate the effect of shape complementarity in
protein dimerization. For 13% of the complexes studied here, protein shape is sufficient to predict
native complexes as equilibrium assemblies. We elucidate the results by analyzing the importance
of competing binding configurations and how it affects the assembly. A machine learning classifier,
with a precision of 89.14% and a recall of 77.11%, is able to identify the cases where shape alone
predicts the native protein interface.

1 Introduction
When proteins associate with other proteins, they form complexes
with biological function, including signal transduction1–3, im-
mune response4,5, DNA binding6–8, and enzyme activation9–11.
Predicting the structure of these complexes and understanding
their assembly mechanisms are of fundamental importance for
design of protein assemblies12–24 and rational drug design. The
heuristic nature of currently available models to predict the struc-
ture of a protein complex based on steric and/or physicochem-
ical complementarity at the protein-protein interface25,26 illus-
trates our limited understanding of in-vitro protein-protein inter-
actions. Conversely, simulation approaches at atomistic resolu-
tion come at a significant computational cost, which, in practice,
limits their ability to study assembly processes and predict protein
complexes27.

The significance of shape complementarity has been reported
since the earliest days of protein structure determination28,29.
Tightly packed interfaces are observed in co-crystallized com-
plexes in the Protein Data Bank (PDB)25, motivating studies on
the statistics of protein shape complementary30,31 and develop-
ment of geometry-based models of protein affinity32–34. In these
studies, geometric match at the protein interfaces was reported in
different functional classes including antibodyâĂŞantigen pairs,
enzymeâĂŞinhibitor/substrate and other complexes, suggesting
its important role in biomolecular recognition. Protein shape
complementarity has also been incorporated in several machine
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learning models for binding interface prediction35–37. However,
to our knowledge, shape complementarity has yet to be applied to
directly simulate and predict protein association except for ideal-
ized shape models38, which prevents the one-to-one mapping to
biomolecules.

Simplified colloidal systems allow testing models of protein-
protein association because their physical chemistry can be pre-
cisely controlled in experiment, and because colloidal interactions
are well understood theoretically39. Motivated by Fischer’s lock-
and-key principle40, colloids with complementary shape have
been studied computationally and experimentally to exploit en-
tropic depletion forces for assembly, regardless of their composi-
tion and surface chemistry41–47. Specifically, it has been conjec-
tured that shape-allophilic, entropic interactions contribute sig-
nificantly to proteins’ lock-and-key binding31,38,45. In addition,
shape complementarity has been exploited experimentally to en-
able the hierarchical assembly of DNA duplexes into higher-order
structures48,49, suggesting a universality beyond inorganic sys-
tems. For proteins, coarse-grained patchy representations ac-
celerate simulations and capture their phase behavior in some
cases50–54. However, constructing these models requires know-
ing the crystallized structures, which can obscure the main driv-
ing force. Isolating and investigating the role of shape comple-
mentarity in protein dimerization will enable us to better under-
stand the mechanism of protein assembly and engineer protein
interfaces for nanomaterials and therapeutics. Here, we aim to
answer the question: is shape alone sufficient to assemble pro-
tein native complexes? If so, another challenge remains: can we
identify these cases and use shape complementarity to predict
the native interface? We address the first question by simulat-
ing protein interfaces with atomic-level resolution of molecular

Journal Name, [year], [vol.],1–8 | 1

Page 1 of 8 Soft Matter



shape and a generic depletion interaction55,56, and compare the
assembled configurations with those known from experiment. We
elucidate our results by analyzing the importance of competing
binding configurations and how it affects the assembly. Based on
the analysis, a machine learning classifier is built to answer the
second question by identifying the shape binders and showing
that shape complementarity can predict the native configuration
correctly for strong and selective binders.

2 Model and methods
In depletion57,58, overlap between the solute excluded volumes
increases the volume available to the cosolutes (hereafter called
"depletants"), and thus their entropy. To isolate shape contribu-
tions, we consider only hard interactions between proteins, i.e.,
overlapping particle configurations are forbidden (U =+∞). The
system is therefore purely entropic [β = (kBT )−1 ≡ 1]. We are in-
terested in the idealized case where the depletant particles form
an ideal gas, i.e., they are mutually penetrable but hard with re-
spect to the solute56,57,59,60. These depletants exchange with the
grand-canonical system of interest through a reservoir with num-
ber density nR. Then, the Boltzmann weight of a configuration ~X
of solutes is given by

P(~X) ∝ exp
[
−H(~X)+nRV f (~X)

]
(1)

Here, H is the Hamiltonian, and V f is the free volume available
to the depletants, which for N solutes decomposes into contribu-
tions from single particle excluded volume V i

ex, system volume V
and overlap volume ∆V between solutes as V f =V −∑

N
i=1 V i

ex +∆V
(Fig. 1). It is therefore sufficient to consider only ∆V to determine
the free energy change ∆F due to depletion interaction, having
∆F = −nR∆V . The dependence on overlap volume can be gener-
alized to include the four Minkowski measures61–63, but here we
are interested solely in demonstrating the usefulness of the most
idealized approach to protein assembly that only includes volume
terms.

Fig. 1 Mechanism of depletion interactions, mediating shape complemen-
tarity at a protein dimer interface through the maximization of overlap
volume ∆V , and hence entropy.

To investigate the shape effect on protein self-assembly, we
simulated 46 dimer pairs in the Dockground database64. Four
of the first 50 dimers in the database are excluded because in-
spection of the native configuration revealed that the path to
assembly is topologically forbidden without reconfiguration due
to their intertwined structure. Fig. 2 shows their corresponding
native binding configurations. To reduce the computational ef-
fort, we use interface templates, which keep only the regions
extracted from the full structures at a distance of 12Å from the

interface, as shown in the highlighted region in Fig. 2. For each
dimer pair, we study the binding process driven by shape comple-
mentarity, determine the binding interface, and compare the pre-
dicted interface with the native one. We simulate the binding pro-
cesses of the protein dimers across a range of depletant sizes and
densities with HOOMD-blue65–67 using its Hard Particle Monte
Carlo (HPMC) simulation method55,56 in µdNVT thermodynamic
ensemble. This method stores information only about the col-
loidal particles and accounts for depletion interactions implicitly
by sampling the free volume change in the local environment of
a colloidal particle during a trial move. Treating the depletants
implicitly rather than explicitly along with consideration of the
protein interface rather than the entire protein makes these sim-
ulations computationally possible56.

As illustrated in Fig. 2, we model each protein monomer in-
terface as a rigid sphere union with a single bead representing
a heavy atom to capture the molecular shape of proteins. The
corresponding atom position and radius of each atom bead are
generated using the MSMS software68. For each dimer pair, we
initialized the system in a random unbound configuration con-
taining one receptor (grey monomers in Fig. 2) and N = 45 non-
interacting ligands (gold monomers in Fig. 2). We fix the position
and orientation of the receptor and only perform trail moves on
the ligands. The ligands are non-interacting in the sense that
they can penetrate each other and only have depletion interac-
tions with the receptor. This setup enables modeling binding pro-
cesses of multiple independent dimer pairs simultaneously, and
prevents the system from forming larger scale aggregates. To re-
solve the geometric features of the protein surface, we choose
depletant radii rp of 0.20 and 0.25nm, slightly larger than a wa-
ter molecule, for all the assembly simulations. The depletant size
is determined to capture the surface geometry of the protein and
to represent a generic depletion attraction range in an aqueous
environment. We also vary the depletant reservoir volume frac-
tion (φ = nR ∗ 4

3 πr3
p) ranging from 0.54 to 0.70. Each simulation

runs for at least 3×107 HPMC steps. This choice of runtime was
determined by observing yield remains approximately constant
(fluctuates less than 5%) for a million HPMC steps. We ran three
replicas at each statepoint.

To compare the assembled structure to the experimentally de-
termined native binding configuration, we align the receptors in
the assembled configuration to the native one, and calculate the
root mean squared deviation (RMSD) between the ligands. Yield
of a dimer is defined as the fraction of dimer pairs with RMSD less
than 1nm among the multiple binding processes. We choose the
RMSD tolerance following the Critical Assessment of Prediction of
Interactions (CAPRI) criterion69. According to CAPRI, the ligand
RMSD, calculated over the ligand residues after a structural su-
perposition of the receptor, is an important quantity to determine
the quality of a predicted model. A prediction with less than 1nm
is classified to have acceptable quality, while beyond that the pre-
diction is incorrect. We report equilibrium yield 〈Y 〉 by averaging
the transient yield Y over the final one million HPMC steps. The
yield Y used in our study can be mapped to association constant
Ka for a typical protein binding reaction [L] + [R] −→ [LR]native,
where Ka = (V ∗Y )/(N ∗ (1−Y )2) in which V is the system vol-
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(75%, 100%] (50%, 75%] (25%, 50%] (0% - 25%] 0%

D1 D6D5D4D3D2 D9D8D7 D10

D11 D16D15D14D13D12 D19D18D17 D20

D21 D26D25D24D23D22 D29D28D27 D30

D31 D36D35D34D33D32 D39D38D37 D40

D41 D46D45D44D43D42 D49D48D47 D50

1af51A2A 1afs0A0B 1aif0L0H1ail1A2A

Fig. 2 Protein dimer structures in the Dockground database64. We summarize 50 studied protein dimer pairs ranked by their optimal yield 〈Y 〉opt .
Interfaces are highlighted as the darkened regions. The background color shows the optimal yield 〈Y 〉opt of each dimer. 46 protein dimers (labelled in
black) are used in the original study, and four pairs (labelled in red) are used as the test cases in the shape binder classification.

D1

1ad10A0B 1a6v0L0H

D6

1a730A0B

D7

1a5t1A2A

D12

1a8y1A2A

D46

Fig. 3 Overall performance of dimer assembly. Equilibrium yield 〈Y 〉opt (solid color bars) and maximum yield Ymax (hashed) of 46 dimer pairs, showing
significant variation across complexes, as also indicated by the discrete color scale. The finite value of 〈Y 〉opt for 45/46 dimers indicates protein dimers
can form due solely to complementary shape. Non-zero values of Ymax reveal that the model can capture the native binding configurations. Insets
Typical native binding configurations of protein dimers, as highlighted in the axis label.
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ume, and N is the number of available reactant ligands.
We calculate the potential of mean force (PMF)70,71 with the

freud software toolbox72 on the bound dimer pairs over the final
one million HPMC steps. These calculations allow us to visualize
the distribution of ligand binding configurations, and to quan-
tify the free energy associated with the ligands binding in some
positions relative to the fixed receptor. We also employ the sup-
port vector machines (SVM) classifier, using the metrics generated
from PMF calculation, to identify the cases where shape alone is
sufficient produce the native interface.

3 Results and discussion
All 46 dimers assembled in simulation, suggesting that our
method samples the native complexes of most protein dimers. We
evaluate the performance of our method on each protein dimer
interface in terms of the yield of native assemblies found during
simulation. In Fig. 3, we plot the maximum yield Ymax and the
optimized equilibrium yield 〈Y 〉opt for each protein pair. Ymax is
defined as the maximum transient yield observed for simulation
trajectories of a given protein dimer, while 〈Y 〉opt is the equilib-
rium yield optimized across depletant parameters. Snapshots of
the typical native binding configurations with various yield are
shown in the insets. The equilibrium yield 〈Y 〉opt is lower than
Ymax because of transient binding, especially for the pairs in the
tail of the distribution (Fig. 3, main plot). Notably, six protein
dimers achieved over 50% yield, indicating that complementary
shape on its own is sufficient for predicting their dimerization in-
terfaces.

We further find that 〈Y 〉opt varies significantly (0−98%) across
different dimer pairs. To investigate this behavior, we compare
the optimal simulation trajectories of three representative ex-
amples with different 〈Y 〉opt, including D1 (〈Y 〉opt = 98%), D7
(〈Y 〉opt = 35%) and D21 (〈Y 〉opt = 7%) as shown in Fig. 4. We plot
the evolution of the average RMSD and yield over all independent
replicas in the left panel with insets showing the native contact.
To further understand the distribution of the binding sites, we
examine the three-dimensional PMF W (~r) = − lng(~r)70,71, which
allows us to visualize the free energy map of pairwise interactions
between receptor and the bound ligands (right panel of Fig. 4).
Here, g(~r) is the pair correlation function. In all three systems,
yield increases and average RMSD decreases over the course of
the simulation, suggesting that the near-native protein binding
interfaces are equilibrium configurations stabilized by comple-
mentary shape. The native interface of D1 is planar with com-
plementary locks and keys on both sides. It is not surprising that
the native contact is favored because increasing the size of such
a "facet" strongly increases the protein overlap volume, hence the
depletant entropy. Consistently, the PMF of D1 exhibits a deep
well around the native binding site with few completing com-
plexes. For D7, the native interface resembles a tadpole with
two tails binding the pocket of the other, which is not consistent
with the largest surface alignment. Yet, the depletion model still
achieves 35% yield. This demonstrates that the maximization of
overlapping volume in depletion model does not necessarily favor
the largest surface alignment, and the addition of depletants with
atomic length scale is able to capture the local geometric infor-

mation on protein surface. The PMF becomes more disperse as
more competing complexes with comparable shape entropy ap-
pear in the system, resulting in a lower yield. Finally, for D21, the
ground state is no longer discernible due to a plethora of complet-
ing transient configurations. From these three examples, we infer
that some protein dimers can be assembled solely with comple-
mentary shape, but they also beg the question, why do different
dimers achieve different optimal 〈Y 〉opt? And how does 〈Y 〉 de-
pend on the depletant size and reservoir concentration?

A

E

C

B

D

F

D1

D7

D21

Fig. 4 Optimal assembly trajectories of D1, D7 and D21. (A, C, E)
Yield increases and average RMSD decreases for all three systems as
the binding processes evolve. Insets show the experimentally determined
binding configurations with receptor colored in black and ligand colored in
gold. (B, D, F) PMF of the complexes sampled by individual association
events. The bound complexes are aligned to the receptor and positioned
the same as the experimentally determined complex. A single snapshot
of the receptor (black sphere unions) is shown for reference, together
with the center of mass of ligands in competing configurations colored
by the PMF.

We hypothesize three prerequisites to achieve a significant yield
for the native configuration solely from the contribution of com-
plementary shape. (1) Bind: The binding of two proteins should
lower the depletant free energy. (2) Predict: Multiple different
dimer configurations are sampled in a single trajectory and in the
different replicas. To achieve high yield, the system needs to se-
lect a particular complex as its equilibrium configuration. Degen-
erate binding configurations, on the other hand, limit predictiv-
ity. The above two criteria can be quantified by analyzing the as-
sembly trajectories without knowing the native binding interface.
However, the prediction can result in a non-native interface even
though these two conditions are satisfied. Thus a third prerequi-
site is needed, (3) Match: The dominant configuration, i.e. the
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prediction, coincides with the experimentally determined com-
plex. For the systems studied here, the true interface is known.
In the following, we quantify the above criteria for all complexes
studied to evaluate the performance of the depletion method, ex-
trapolate it to a situation where the native binding interface is
unknown, and determine whether it binds due to complementary
shape.

18 16 14 12 10 8 6 4
W0

0

0.2

0.4

0.6

0.8

1.0

P

-15 -12
0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100
Y

Fig. 5 Factors that determine the model performance. Correlations
between assembly properties and yield. We show the distribution of two
assembly properties colored by corresponding yield 〈Y 〉 for all studied
systems. The performance of our model is correlated to two assembly
properties: binding free energy of prediction W0 and binding selectivity
P. In general, shape binders have low W0 and high P (close to the upper
left corner). The dashed line shows the SVM decision boundary between
shape and non-shape binders. The SVM margin is depicted by the shaded
area. Inset Evaluation of the SVM classifier on test cases (D47-D50 in
Fig. 2), resulting in prediction accuracy of 98.96%. The classifier is
generalizable and able to predict if a given protein pair is likely to be
a shape binder. Three hashed square markers inside the SVM margin
correspond to misclassified cases.

We analyze the first two criteria for each statepoint and in-
vestigate if they correlate with the yield. To quantify the ten-
dency for two proteins to bind, we map their three-dimensional
PMF as in Fig. 4, but only report the ground state free energy
W0 among all the bound complexes for a given pair. The bound
complexes are defined as those in which the ligand has a closest
distance less than 5.5Å to the receptor. To evaluate how predictive
the simulation is, we first select bound states within ∆W = 6kBT
of W0 as competing configurations, and cluster the PMF based
on spatial distance with cutoff distance of 3Å. We then obtain
several spatially disconnected competing clusters with compara-
ble free energy, where cluster i contains Ni points with an av-
erage PMF of Wi. We define the selectivity P as the probability
of forming the predicted complex among competing complexes,
P := N0 exp(−W0)/∑cluster:i Ni exp(−Wi), in which N0 and W0 cor-
responds to the prediction. We perform the analysis for all the
statepoints and investigate how yield correlates with the assem-
bly properties as shown in Fig. 5. Consistent with our hypothesis,
W0 decreases and P increases as yield increases. Overall, systems
that successfully assemble the native complex, or high yield, are

found at the upper left corner with low W0 and high P, satisfying
the first two prerequisites, strong and predictive binding. In con-
trast, systems with low yield (less than 20%) are typically binders
with weaker binding strength, and they are frustrated by multiple
competing configurations. We call shape binders the molecules
that bind exclusively due to complementary shape with deple-
tion, having (〈Y 〉 ≥ 50%). Additionally, for a given protein dimer
pair, depletant parameters optimize yield by decreasing W0 and
increasing P, as shown in Fig. 6. We find that the optimal deple-
tant parameters optimize 〈Y 〉 by strengthening W0 and increasing
P, consistent with the first two prerequisite: bind and select. For
D1, rp and φ optimizes 〈Y 〉 by achieving strong and selective bind-
ing at rp = 0.25nm and φ = 0.57. For D7 and D21, the weak W0 or
low P limits the yield for the whole range of depletant parameters
studied.

Fig. 6 Depletion affects yield by binding strength and selectivity. Deple-
tant radii rp and depletant reservoir volume fraction φ affect the equi-
librium yield 〈Y 〉 (Left Column) by tuning the ground state binding free
energy W0 (Middle Column) and the selectivity P (Right Column). Top,
middle and bottom rows correspond to D1, D7 and D21 respectively.

We train a SVM model to classify shape binders (〈Y 〉 ≥ 50%)
and non-shape binders (〈Y 〉 < 50%) based on W0 and P. The
decision boundary of the classifier, given by −2.49W0 + 2.63P−
42.32 = 0, is shown as the dashed line in Fig. 5. The model has
a precision of 89.14 % and a recall of 77.11 % on the mod-
eled systems with 10-fold cross validation, where precision :=
∑shape binders found/∑shape binders predicted and recall :=
∑shape binders found/∑all shape binders. We selected the next
four dimers pairs in the Dockground database (Fig. 2, labelled
in red) as test cases. The classifier has 98.96 % prediction accu-
racy on the test set, misclassifying only three shape binders inside
the SVM margin (Fig. 5 Inset). Here the prediction accuracy is
defined as the fraction of correctly identified shape binders and
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non-shape binders. This demonstrates the interface prediction
ability of this model, i.e., depletion identifies the shape binder
and predicts the native configuration correctly if the binders are
strong and selective.

30 20 10 0 10 20 30
nR( V0 Vn)

0

0.2

0.4

0.6

0.8

1.0

P

Shape DrivenNon-shape Driven

0

25

50

75

100

Y

Fig. 7 Overlap volume analysis. The system selectivity (P) versus the
depletant free energy difference between the predicted and native config-
uration (−nR(∆V0−∆Vn)) colored by 〈Y 〉.

To understand the circumstances under which the model makes
a wrong prediction, we revisit the depletion free energy given by
∆F = −nR∆V where nR is the depletant number density, and ∆V
is the overlap volume. We measure the difference of ∆V between
the predicted equilibrium (∆V0) and the native one (∆Vn) to cate-
gorize the systems into shape-driven states (∆V0 ≤ ∆Vn) and non-
shape driven states (∆V0 > ∆Vn) (Fig. 7). Shape driven systems
can lower the free energy to form the equilibrium configuration,
whereas for non-shape driven interfaces, at least one competing
complex has lower free energy than the native one. In the latter
case, depletion interaction alone cannot explain self-assembly of
the native interface. Overall, 46% of systems in this study are
shape driven. However, this property is predicted by the ob-
served yield 〈Y 〉. For low yield 〈Y 〉 < 50%, 42.6% of the pairs
are shape driven, while all the systems with 〈Y 〉> 50% are shape
driven. This finding validates the third prerequisite, that when
native complexes form with depletion, they form reversibly and
represent true equilibrium configurations. For non-shape driven
systems, other forces such as electrostatic or hydrophobic inter-
actions may drive the native interface formation. It is also possi-
ble that our study introduces different competing complexes with
higher shape complementarity by only incorporating the interfa-
cial parts of proteins. Taken together, however, there is strong
evidence for the power of shape complementarity to predict na-
tive protein interfaces.

4 Conclusions
In this contribution, we isolated the effect of complementary
shape on protein dimerization to evaluate if and how molecular
shape affinity drives assembly. It is remarkable that shape alone
can ever be sufficient to predict the native protein dimer interface.
The shape-only model we introduced achieves a maximum yield
of 98%, and samples the native configurations in all systems. Our
results suggest that shape complementarity is more important for
a subset of highly ranked proteins. We expect this knowledge to

be useful for experimentalists who engineer protein-protein inter-
faces and interactions to design hierarchical protein structures.

Of course, biological systems such as enzymes and proteins rely
not only on geometry and entropy, but also on intra- and inter-
molecular forces to guide and hold structures in place. Hence,
we further outline the prerequisites for the model to be predictive
and isolate the three contributions including the binding strength,
selectivity and overlapping excluded volume, which all correlate
with yield. The first two prerequisites provide guidance on the
quality of the prediction even without prior knowledge of the na-
tive interface. Despite the simplicity of our model incorporat-
ing nothing more than protein shape and excluded volume in-
teractions to elucidate the role of entropy in dimerization, it is
predictive compared to patchy protein models that use existing
structural information about the target protein complex that is
only known a posteriori73,74. We expect more generally that for
molecules with strong shape complementarity, the entropic na-
ture of their excluded volume may be important for assembly. In
future applications, e.g., in drug discovery and for more flexible
molecules, the shape-based method could be extended to include
conformational ensembles due to its trivially parallel nature. Our
results suggest that complementary shape not only serves as a
conceptual model, e.g., for enzyme kinetics, but also its predictive
power is important for machine-learning approaches that may be
otherwise model-agnostic.
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