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We report experiments on flow of wormlike micellar solutions past a falling sphere.

By increasing the salt-to-surfactant concentration ratio, and beyond a viscosity peak,

wormlike micelles experience a transition from linear to branched microstructure.

Two viscoelastic wormlike micelles with salt to surfactant concentrations on each side

of the viscosity peak are considered. Our results indicate three significant differences

in flows of branched and linear micelles. First, while the sphere drag correction factor

rapidly decreases upon increasing Weissenberg number in linear micelles, it shows

an apparent local maximum at Wi ≈ 3 in branched micelles. Second, despite its

high viscoelasticity, the time-averaged flow of branched micelles around the falling

sphere exhibits a fore-and-aft symmetry, while a strong negative wake is observed in

linear micelles at relatively weaker flows. Third, branched micelles exhibit a stronger

flow-induced birefringence than linear micelles in an otherwise identical condition.

Our hypothesis is that subject to strong flows around the falling sphere, branched

micelles can relax much more efficiently than linear wormlike micelles through sliding

of the branched junctions. This additional stress relaxation mechanism may facilitate

micellar orientation, produce a marginal sphere drag reduction and a Newtonian-like

flow profile around the falling sphere. Finally, unsteady flow is observed in both linear

and branched micellar solutions beyond some critical thresholds of the extensional

Weissenber number. Our results corroborate a recently proposed criterion for onset

of instability in flow of wormlike micelles past a falling sphere, thereby, suggesting

that micellar branching does not affect the mechanism of flow instability.
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I. INTRODUCTION AND BACKGROUND

Surfactants are amphiphilic molecules that can self-assemble into various morphologies in-
cluding spherical, rod-like, sponges or lamellar [1]. The morphology of the aggregates is
dictated by the packing parameter p[2], which is defined as p = v/lca0, where v is the vol-
ume of the hydrophobic chain, lc is the maximum effective length of the hydrophobic chain,
and a0 is the effective area per molecule at the surfactant/water interface[2]. The most
common micellar shape is spherical. However, beyond a critical micelle concentration, the
addition of salt or a counterion to surfactant solution gives rise to a geometrical transition
to un-entangled rod-like micelles that at sufficiently high concentrations grow in length,
overlap, and gradually form entangled networks that exhibit strong viscoelastic properties.
Interestingly, beyond a second critical salt to surfactant concentration ratio, some wormlike
micelles show a maximum in their rheological properties (e.g. the zero-shear-rate viscosity
or the relaxation time) [3–8]. The drop in the rheological properties has been related to
yet another geometrical transition from linear to branched wormlike micelles[9]. It has been
suggested that the branches in micelles can be thought of sliding connections that provide
additional stress relaxation mechanism to micelles, thereby, giving rise to a low viscosity[10].

Wormlike micellar fluids have received wide-spread applications in an array of industrial op-
erations including as viscosity modifiers in foodstuffs, paints, personal care products[11, 12].
In addition, entangled wormlike micellar fluids are widely used in oil-field operations during
which they constantly interact with particles[13, 14]. Therefore, a fundamental understand-
ing of the nature of interactions between particles and flow of wormlike micelles is critical
for the optimal processing in industrial settings. However, understanding the nature of
interactions between solid particles and wormlike micelles offers a considerable challenge.
Hence, recent studies have mostly investigated the flow of wormlike micelles past a falling
sphere as a first step towards a better understanding of the flow of wormlike micelles in
porous medium with packed particles[15–19].

Entangled wormlike micellar fluids share many similarities with viscoelastic polymer so-
lutions, however, unlike polymers, surfactants are weakly bound together by non-covalent
bonds in wormlike micelles, and constantly undergo breakage and recombination[20]. The
possibility of micellar breakage and reformation is believed to have given rise to an interesting
instability in flows of wormlike micelles past a falling sphere[16, 17]. It has been shown that
beyond a critical threshold, a sphere falling in wormlike micellar solutions may undergo an
instability that is characterized by temporal fluctuations in sphere sedimentation velocity or
the flow of wormlike micelles around the sphere[17]. This instability is believed to be tied to
strong extensional flows in the wake of the falling sphere[17, 21], and caused by flow-induced
micellar chain scission in the bulk scale [21]. Since the earliest work of Jayaraman and
Belmonte[15], many research groups have investigated the effects of various parameters or
conditions on this instability including, the effects of micelles relaxation spectrum[22], chem-
istry of the surfactant[23], sphere boundary conditions[19] and the micellar concentration[24].
More recently, Sasmal and co-workers have used the Vasquez-Cook-McKinley (VCM) model
and reproduced this flow instability[25]. For a more detailed discussion, readers are referred
to a recent review on complex flows of wormlike micelles (where a combination of shear and
extension is relevant)[26].
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Flow around a falling sphere is highly complex and non-viscometric. Near sphere and
on its flanks, a strong shear flow exists, while farther away from the sphere, downstream of
the sphere center of mass, the extensional flow is strong and dominant. It has been suggested
that the flow instability associated with the falling sphere occurs in the wake of the sphere
where extensional flows are dominant[16, 17]. Although flow instabilities in microfluidic bend
device are not highly impacted by micellar branching[27], recent experimental studies have
illustrated that the uni-axial extensional flow of wormlike micelles is strongly affected by the
microstructure of the wormlike micelles [28–30]. In particular, Chellamuthu & Rothstein[28]
studied the effects of micellar branching on extensional rheology of a wormlike micellar
solution based on cetyltrimethylammonium bromide/sodium oleate (CTAB/NaOA) using a
combination of capillary breakup extensional rheometery and filament stretching extensional
rheometery. These researchers illustrated that as the micellar branches grow in this system,
the dimensionless extensional viscosity (or Trouton ratio, Tr) decreases until it levels off
around Tr ≈ 3. The Trouton ratio is defined as the ratio of the apparent extensional viscos-
ity to that of the zero-shear rate viscosity. According to Chellamuthu & Rothstein, highly
branched micelles behave similarly to Newtonian fluids due to additional stress relaxation
mechanism provided by sliding branched junctions. More recently, Sachsenheimer et al.[30]
and Omidvar et al.[29] demonstrated that filament lifetime in uniaxial extensional flows of
branched micelles scales differently with zero-shear rate viscosity η0 than the linear worm-
like micelles. The above studies suggest that sphere sedimentation dynamics in wormlike
micelles, where extensional flows play a key role, should be strongly impacted by micellar
branching.

Table (I) summarizes wormlike micellar systems that have been used in prior sphere sed-
imentation experiments. In summary, three micellar systems with different chemistries
have been considered. While the two micellar solutions based on cetyltrimethylammonium
bromide/sodium salicylate (CTAB/NaSal) and cetylpyridinium chloride/sodium salicylate
(CPyCl/NaSal) are known to exhibit a viscosity peak beyond a critical salt to surfactant
concentration ratio, the system of cetyltrimethylammonium p-toluenesulfonate/sodium chlo-
ride (CTAT/NaCl) is known to exhibit a plateau in zero-shear rate viscosity as the salt to
surfactant concentration ratio increases[31].

Although the exact microstructures of these three model wormlike micelles have not

Solution Conc. (mM/mM) Critical Salt Conc. (mM) Micelles Structure

9/9[15, 17] 11[32] Linear

CTAB/NaSal 25/25[17] 30[33] Linear

50/50[16] 45[33] Lightly branched

CPyCl/NaSal 10/15[23] 9[34] Branched

25/18.75, 25/20.5[22] 21[22] Linear

22/50[23] – Unknown

CTAT/NaCl 42/100[18] – Unknown

TABLE I. List of micellar solutions used in prior sphere sedimentation experiments.
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been directly evaluated via Transmission Electron Microscopy (TEM) imaging, one can pre-
dict formation of linear and branched micelles for salt concentrations below and above the
critical concentration associated with the viscosity peak. Theoretical studies of Lequeux [35]
have predicted that micellar branching should lower the viscosity, fundamentally supporting
the transition from linear to branched micelles above the viscosity peak. Therefore, we have
assessed the potential microstructure of wormlike micelles used in prior sphere sedimenta-
tion experiments based on their salt composition. Table (I) shows the concentration of salt
in wormlike micellar solutions used for sphere sedimentation experiments along with the
documented salt concentration associated with the viscosity peak in each system. It is clear
that majority of the wormlike micellar systems used in previous studies consists of linear
wormlike micelles. The only system that may be moderately branched is the CPyCl/NaSal
system used by Zhang and Muller[23]. Note that in the latter study, the wormlike micelles
differ both in their steady rheology (shear banding vs. non shear banding) as well as the sur-
factant chemistry. Additionally, the potential microstructure of CTAT/NaCl is not known
because a viscosity peak is not typically observed in this system. Therefore, it is not possible
to assess the effects of micellar branching in their studies.

To the best of our knowledge, a mechanistic understanding of the effects of micellar topology
(linear vs. branched) on sphere sedimentation dynamics in wormlike micellar solutions is not
available. In particular, it remains unclear how (if any) flow structure, fluid structure and/or
drag correction factor are affected by micellar branching. Another open question is whether
the flow instability caused by sphere motion is observed in branched micelles. According to
Rothstein and co-workers, the stress relaxation mechanism due to sliding of branched points
is highly effective such that it leads to a Newtonian-like Trouton ratio in uniaxial extensional
flows[28]. Could this additional stress relaxation mechanism be more dominant than the
flow-induced micellar breakage to delay or even eliminate this flow instability in branched
micelles? Finally, in the case of flow instability in branched micelles, could the criterion
proposed by Mohammadigoushki and Muller[17] be still valid? Mohammadigoushki and
Muller performed a systematic study of sphere sedimentation in linear wormlike micellar so-
lutions of CTAB/NaSal, and showed that a Weissenberg Number (Wi = λγ̇) defined by the
shear rate is not suitable for explaining the threshold of instability. Instead, an extensional
Weissenberg number(WiE = λε̇max) provides a appropriate criterion to distinguish unsteady
sphere motion from steady cases, where λ is the relaxation time of the wormlike micelles
and ε̇max is the maximum extensional rate in the wake of the falling sphere. The exten-
sional rate is defined as ε̇ = (∂Vx

∂x
), with Vx is the velocity of the fluid in the wake of a falling

sphere along the direction of the sphere motion, and x is the position at the wake of a sphere.

The main objective of this paper is to investigate the effects of micellar microstructure
(linear vs. branched) on dynamics of sphere sedimentation in wormlike micellar solutions.
More specifically, we will investigate i) how micelles microstructure affects the flow of worm-
like micellar solutions around the falling sphere, and ii) whether the previously developed
criterion for the onset of instability can describe the onset of instability for different micellar
microstructures. To accomplish this, we chose two sample wormlike micellar solutions based
on CPyCl/NaSal at a fixed surfactant concentration but various salt to surfactant concen-
tration ratios that correspond to each side of the viscosity peak. We used a combination
of particle tracking velocimetry, particle image velocimetry and flow-induced birefringence
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to evaluate the dynamics and orientation of linear and branched wormlike micellar chains
around the falling sphere over a wide range of elasticity and inertia.

II. EXPERIMENTAL APPROACHES

A. Materials

Surfactant solutions are composed of CPyCl and NaSal in de-ionized water. Both CPyCl and
NaSal were purchased from Sigma-Aldrich and used as received. The solutions were prepared
by mixing a 25mM of CPyCl with various salt to surfactant concentration ratios in de-ionized
water. The micellar solutions were mixed over a period of two days and equilibrated for four
days before use. The salt to surfactant concentration ratio R was varied to determine the
critical salt concentration associated with the maximum in the zero-shear rate viscosity or
the relaxation time. Once the critical salt concentration is determined, one solution in each
side of the maximum were selected to represent the linear and branched micellar solutions
(see more details below). Additionally, various spheres with different densities (e.g., Nylon,
Delrin, Teflon, Ceramic, Steel, Brass, Tungsten Carbide, and Aluminum) and diameters (a
= 3/32′′- 1/4′′) were considered.

B. Rheological Measurements

Micellar solutions were characterized using both shear deformation and uni-axial extensional
flows. The shear deformation experiments consist of linear and non-linear steady shear
experiments that were performed in a commercially available rheometer (Anton-Paar MCR
302) using a Couette co-axial cylinders geometry with Ri = 13.35 mm and Ro = 14.53
mm. Here Ri and Ro denote the radii of the inner and the outer cylinders, respectively.
Additionally, we characterized the extensional rheological properties of the wormlike micellar
solutions via a dripping on a substrate capillary extensional rheometer (DoS) discussed in
previous works[29, 36, 37]. The lower substrate in DoS experiments has a finite size to ensure
that the fluid contact-line in pinned during filament thinning measurements[38].

C. Flow Visualizations

Flow visualization experiments were performed in a vertical cylindrical column with a height
of L = 1 m and diameter < = 85 cm. The vertical glass cylindrical column is positioned inside
a temperature controlled water bath made of acrylic. The water bath reduces the visual dis-
tortion by matching the refractive index of the glass tube cylinder and the wormlike micelles,
which ensures a flat plane for particle image velocimetry (PIV) experiments. Further details
on this setup are provided in our previous studies[22, 24]. Flow visualization experiments
consist of particle tracking velocimetry (PTV), PIV and flow-induced birefringence (FIB).
PTV was used to evaluate the velocity of the sphere center of mass[39], and the detailed
form of flow structure around the falling sphere was characterized via the PIV technique[40].
For PIV related experiments, wormlike micelles were seeded with a small amount of tracing
particles that does not affect the rheological properties of the fluids. Additional information

Page 5 of 21 Soft Matter



6

on the PIV setup is given in our prior publications[22, 24]. Finally, FIB was performed to
evaluate the degree of micellar alignment and orientation around the falling sphere. When
a linearly polarized light passes through a deformed micellar solution, an anisotropy in re-
fraction index tensor is observed. Typically, in FIB experiments the important parameters
are the retardation angle (δ) and the extinction angle (χ). The retardation angle is directly
related to the optical anisotropy or the strength of the birefringence ∆n as:

δ =
2πH∆n

Γ
, (1)

where Γ and H are the wave-length of the incident light and the optical depth of the bire-
fringent sample. Two relevant orientations with respect to the flow direction may exist for
wormlike micelles; the orientation of surfactant molecules that make up the wormlike mi-
celles, and the orientation of the micelles themselves. The extinction angle quantifies the
relative orientation of the wormlike micelles with respect to the flow direction. To obtain a
full field FIB measurement, we have adopted the Osaki method[41]. Using this approach, the
wormlike micellar fluids in the cylindrical column is placed between two crossed polarizers
and a single wavelength incident light is used to illuminate the flow between two crossed
polarizers. The wave-length of the light used in our FIB experiments Γ ≈ 680 nm. The ar-
rangement of the cross polarizers is changed as 0◦/90◦ and 45◦/135◦, and the light intensity
is measured at different polarizers orientation. The light intensity at the 0◦/90◦ orientation
can be related to the birefringence as:

i0 =
2I0

I0
= sin22χsin2(

δ

2
), (2)

where, I0 and I0 are the light intensity at orientation of 0 and the background light intensity
in the absence of linear polarizers. The light intensity at the orientation angle of 45◦ is also
given as:

i45 =
2I45

I0
= cos22χsin2(

δ

2
). (3)

By combining the above two equations, one can separately determine the retardation angle
δ and the extinction angle χ as:

δ = sin−1(
√
i0 + i45), χ =

1

2
tan−1(

√
i0/i45). (4)

Following FIB measurements at 0◦/90◦ and 45◦/135◦ orientation angles, compute i0 and i45,
which are then used to determine the retardation and the extinction angle fields for the flow
of wormlike micelles around the falling sphere.

III. RESULTS AND DISCUSSION

A. Rheological Measurements

First, we prepared a range of micellar solutions at a fixed surfactant concentration (25mM)
and various salt to surfactant concentration ratios R = 0.7− 1. The shear rheological prop-
erties of these solutions were characterized to determine the critical concentration associated
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with the maximum in the zero shear-rate viscosity or the relaxation time. This critical
concentration ratio occurs at R = 0.84. Therefore, we chose two solutions with R = 0.8
and R = 0.92 that correspond to either side of the viscosity peak curve (see the inset of
Fig. 1(a)). TEM imaging of wormlike micelles is extremely challenging from sample prepa-
ration to the image acquisition stage with the equilibrium microstructure of the micelles often
altered during sample preparation. Although the actual TEM images of these two wormlike
micellar solution are not available, for a similar system (although at a different surfactant
concentration; 100mM), Gaudino et al.[42] demonstrated a transition tructures above the
critical concentration ratio. Moreover, for a similar solution with a surfactant concentration
of 100mM, our diffusion based NMR spectroscopy measurements indicate that the transi-
tion around the viscosity peak is associated with the linear to branched micelles structures,
respectively[43]. Therefore, based on the mechanical properties of these two solutions, and
recent results of Gaudino et al.[42] and Holder et al. [43], we expect that wormlike micelles
with R = 0.8 and R = 0.92 form linear and branched structures. Fig. 1 shows the rheological
properties of these two wormlike micellar solutions measured at room temperature (T = 22
◦C). Included in Fig. 1(a) are also the best fit to the Carreau-Yasuda model, which is given
as:

η(γ̇) = η∞ + (η0 − η∞)/[1 + (γ̇/γ̇∗)α](1−n)/α. (5)

In this model η∞, γ̇∗, α, and n denote the infinite shear rate viscosity, the shear rate for the
onset of shear thinning, transient control factor and the shear thinning index, respectively.
Fitting this model to the steady shear rheology data yields the above parameters which are
listed in Table (II) below. Fig. 1(b) shows the Cole-Cole plot of these two micellar solutions
along with the predictions of the single-model Maxwell model (continuous curve). The
linear viscoelastic rheology of these two micellar solutions is best described by a single-mode
Maxwell model within a wide range of frequencies (see also Fig. S1 in the supplementary
materials). The inset of Fig. 1(b) shows the shear relaxation time of the micellar solutions
with arrows pointing at the two solutions considered in this study. The relaxation times
are obtained by fitting an m-mode Maxwell model to the linear viscoelastic rheology results
with m varying for different salt to surfactant concentration ratios. For the two solutions
considered in this study m = 1. Note that both zero-shear rate viscosity and the relaxation
time of the linear micellar solution with R = 0.8 are higher than those measured for the
branched micelles with R = 0.92. According to our rheological measurements, other linear
wormlike micellar solutions with R < 0.8 are described by m-mode Maxwell models where
m > 1. Based on our previous studies, sphere instability is not expected for linear wormlike
micelles with a broad spectrum of relaxation times[22]. Additionally, the branched micellar
solution is chosen as R = 0.92 to allow for a high density of branched junctions to form.

Besides shear rheology, the extensional rheological properties of these two micellar solutions
were characterized with a DoS device (see Fig. 1(c,d)). Fig. 1(c) shows the mid-filament
diameter as a function of time for these two micellar solutions and the best exponential fit
to the elasto-capillary thinning regime denoted as solid lines. The mid-filament diameter in
elasto-capillary regime varies as: D = D0exp(−t/(3λE)), where λE represent the extensional
relaxation time of the viscoelastic solution. Additionally, the transient non-dimensional
extensional viscosity (or the Trouton ratio) was calculated as a function of Hencky strain.
The Trouton ratio is defined as Tr = ηE/η0 = −σ/(η0dD/dt), and the Hencky strain or the
total accumulated strain is defined as: ε = 2Ln(D0/D(t)). The linear wormlike micellar fluid
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shows a stronger strain hardening response than the branched system. The key rheological
properties of these two micellar solutions are summarized in Table (II) below.

R = [NaSal]/[CPyCl] η0 [Pa.s] η∞ [Pa.s] γ̇∗ α n λ [s] λE [s] Trmax

0.8 48 3×10−3 0.04 3.8 0.01 23.2 6.1 300

0.92 24 7.3×10−2 0.09 1.9 0.15 10.2 1.8 245

TABLE II. Rheological properties of the wormlike micellar solutions based on CPyCl/NaSal.
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FIG. 1. (a) Steady shear viscosity as a function of imposed shear rate for the two micellar solutions.

In this figure, the linear and branched micellar solutions are denoted by blue squares and red circles,

respectively. Inset shows the zero-shear rate viscosity (η0) at a fixed surfactant concentration and

various salt to surfactant concentration ratios (R). Two arrows indicate the linear and the branched

micellar solutions considered in this study. The black curves show the best fits to Carreau-Yasuda

model. (b) Cole-Cole plots of the linear and branched micellar solutions. Inset shows the shear

relaxation time (λ) of the micellar solution at a fixed surfactant concentration and various salt to

surfacatant concentration (R). Two arrows indicate the linear and the branched micellar solutions

considered in this study. The black curves are the best fitted single-mode Maxwell model. (c)

mid-filament diameter (D) as a function of time for both the linear and branched wormlike micelle

systems. The black curves indicate the best exponential fits to the elasto-capillary thinning regime.

(d) Transient Trouton ratio Tr as a function of Hencky strain ε for linear and branched micellar

solutions.
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Subsequent to rheological characterizations, sphere sedimentation experiments were per-
formed in these two micellar fluids. In the following we discuss the results by first explaining
the results of drag correction factor on steady and unsteady sphere sedimentation regimes
in linear vs. branched micelles. Then, we provide a more in-depth discussion about the
detailed form of flow structure and the flow-induced birefringence around the falling sphere.
Finally, we compare the unsteady flow structures around the falling spheres in linear and
branched micelles and discuss the proposed criterion for the onset of flow instability.

B. Drag Correction Factor

In his seminal work George G. Stokes obtained the analytical solution for sphere sedimen-
tation velocity in an un-bounded viscous fluid at vanishingly small Reynolds number as:
VStokes = 2(ρs − ρf )ga2/9η0, where ρs, ρf and a represent the sphere density, the fluid den-
sity and the sphere diameter, respectively. In experiments with wormlike micellar solutions,
the fluid is highly viscoelastic and spheres are no longer moving in an un-bounded domain.
Therefore, in line with previous literature, we use a wall correction factor (or widely known
as the drag correction factor) to evaluate the extent of drag reduction in sphere sedimen-
tation experiments with wormlike micelles. The drag correction factor can be defined as:
K = VStokes/Vmax, where Vmax is the measured sedimentation velocity of the sphere center
of mass. Fig. 2 shows the drag correction factor as a function of Weissenberg number in
the linear and branched wormlike micellar solutions. Weissenberg number is defined as
Wi = λγ̇, where the characteristic shear rate is expressed as γ̇ = Vmax/a. Note that the
results of Fig. 2 are reported for various sphere to column size ratios a/< = 0.018 − 0.074,
and each experiment has been repeated at least three times.

The empty symbols in Fig. 2 denote experiments with steady sphere motion while filled
symbols represent unsteady sphere sedimentation cases. For unsteady sphere sedimentation
cases, Vmax is the time-averaged velocity of the sphere center of mass. Note that steady
and unsteady sphere sedimentation behavior is observed both in the linear and branched
micellar solutions. As expected, at low Wi numbers (Wi < 1), the drag correction factor
for both linear and branched micelles are close to unity with K varying as 1.1 < K < 1.25.
As the flow around the falling sphere is strengthened (i.e. Wi increases) the wall correction
factor drops for both linear and branched wormlike micelles. At Wi > 1, the drag correction
factor in branched and linear micelles differ in two ways: First, the drag correction factors
in branched micelles are larger than those measured for the linear micellar solution. Sec-
ond, the drag correction factor in branched micellar system shows an apparent maximum
approximately at Wi ∼ 3 with a drag correction factor Kmax ≈ 0.75. In viscoelastic fluids,
the drag correction factor is affected by the ratio of the sphere size to that of the boundary
size (here a/<), the extent of shear thinning and elasticity (i.e., Normal stress differences,
N1) K ∼ f(a/<, η(γ̇)/η0, N1). Mena et al.[44] showed for an inelastic shear-thinning fluid
the drag correction factor can be approximated as:

K =
η(γ̇)/η0

1− f(a/<)(η(γ̇)/η0)
, (6)

where Faxen’s series f(a/<) is given as: f(a/<) = 2.1044(a/<)−2.0888(a/<)3+0.9481(a/<)5.
Included in Fig. 2 are also the predictions of Mena et al.[44] for the two wormlike micellar
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FIG. 2. drag correction factor K as a function of Weissenberg number, Wi for linear and branched

micellar solutions. Empty and filled symbols denote the steady and unsteady sphere sedimentation

behaviors. The red dashed-line and the continuous black line correspond to the predictions of

Eq.(6) for linear and the branched micellar solutions, respectively.

solutions and various sphere to tube size ratios used in the experiments. The shaded area
represents the extent to which the drag correction factor is affected by a/< values used
in this work. The deviations from Stokes’ drag at low Wi numbers are due to the finite
size of the spheres compared to the tube diameter. In general, Stokes’ solution is valid
for an infinite domain, whereas in these experiments the sphere to tube size ratio varies
as a/< = 0.018 − 0.074. At this range of sphere to tube size ratio, sphere drag correction
factors are affected by presence of the wall. At higher Wi numbers, the shear thinning effects
become dominant and the drag reduction is reasonably independent of the sphere to tube
size ratio. The two representative curves correspond to predictions of Eq. (6) for linear and
branched micelles and deviations at high Wi numbers is caused by different degree of shear
thinning in linear and branched micellar solutions (see shear thinning indices in Table (II)).

While the measured drag correction factors in linear wormlike micelles are in good agree-
ment with the predictions of Mena et al. over the entire range of Wi numbers, significant
deviations are reported in experiments with branched micelles for Wi > 2. We note that the
maximum in drag correction factor is independent of the sphere to tube size ratio (see e.g.,
Fig. S2 in supplementary materials for a fixed a/<). Therefore, this apparent maximum in
drag correction factor is presumably linked to presence of branched points in the solution
with R = 0.92. Chen and Rothstein reported a similar, albeit modest, apparent maxi-
mum in their drag correction factor in a wormlike micellar solution based on CTAB/NaSal
(50mM/50mM), which based on our estimate (see Table (I)) is lightly branched[16]. Therein,
the maximum occurs right at the transition from steady to unsteady sphere sedimentation,
which is reasonably consistent with our results.
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C. Flow Profiles

To gain a more in-depth understanding of the nature of differences in drag correction factors
in the branched and linear wormlike micelles, we turn our attention to the form of flow
structure in steady flow experiments. Fig. 3 shows a series of time-averaged fluid velocity
fields along the axis of the sphere center of mass for branched (Fig. 3(a)) and linear wormlike
micelles (Fig. 3(b)) at various Wi numbers and fixed sphere to tube size ratios. Interestingly,
flow of the branched micelles around the falling sphere exhibits a fore-and-aft symmetry even
at the highest attainable Wi number for steady experiments (e.g., Wi = 5). The measured
velocity profiles slightly deviate from Stokes’ analytical solution, which has been reported
elsewhere in Newtonian fluids[45]. Note that a similar fore-and-aft symmetry is reported in
other experiments with different a/< ratios (see e.g., Fig. S3 in the supplementary mate-
rials for a/< = 0.056). These results are rather surprising because in a strong viscoelastic
branched wormlike micellar solution of R = 0.92, one anticipates a strong negative wake
with a stagnation point flow to form downstream of the falling sphere. The stagnation point
flow refers to a location downstream of the falling sphere center of mass where fluid velocity
switches sign from positive (fluid moving in the direction of the sphere motion) to negative
(fluid moving in the opposite direction of sphere motion). Interestingly, the Newtonian-like
velocity profiles around the falling sphere in branched micelles are consistent with a drag
correction factor around unity presented in Fig. 2.

On the other hand, in linear wormlike micelles, although the normalized velocity pro-
files show a fore-and-aft symmetry at low Wi numbers, a strong negative wake and a
stagnation point flow appear downstream of the falling sphere at higher Wi numbers. The
stagnation point is located at (X − a)/a ≈ −3 downstream of the falling sphere. This
behavior is expected and has been reported in previous studies with linear wormlike micellar
solutions[17, 19].

FIG. 3. Normalized fluid velocity as a function of distance along the axis of sphere center of mass

for branched (a) and linear (b) wormlike micellar solutions. The sphere to tube size ratio a/< =

0.037 in branched micelles and a/< = 0.056 in linear wormlike micellar experiments. The dashed

line represents the prediction of Stokes’ analytical solution at vanishingly small Reynolds numbers.
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The form of flow structure around a falling sphere in viscoelastic fluids has been extensively
studied both experimentally and theoretically [45–48]. Through their large-scale numerical
calculations, Harlen[47] and Bush [48] demonstrated that the flow structure downstream
of the falling spheres is controlled by the competition between normal stress differences in
uniaxial extensions and normal stress differences in simple shear flows. The ratio of these
two forces can be expressed as Tr/Wi, where Trouton ratio (Tr) and Weissenberg numbers
Wi represent strength of the extensional flow and the shear flow. Based on the theoretical
analyses of Harlen and Bush, below a critical threshold of this dimensionless parameter, a
negative wake forms in the rear of the falling sphere. Later, Arigo and McKinley illustrated
that this critical threshold is also impacted by the sphere to fluid column size ratio a/<,
and have slightly modified this criterion by including the size ratio as C = Tr/Wi.(a/<).
Therefore, it is expected that a negative wake appears downstream of a falling sphere in
viscoelastic fluids for C values below a critical threshold.

To check whether the above criterion can rationalize the differences observed in the linear
and branched micelles, we have plotted our experimental results in terms of the dimension-
less number C (see Fig. 4). Note in calculating C we have used the maximum Trouton ratios
of the two fluids Tr∞ measured via the DoS technique. Empty and filled symbols repre-
sent cases with no stagnation point and stagnation point flow, respectively. For the linear
wormlike micelles the negative wake appears below a critical threshold C ≈ 2. However,
for the branched micelles although experiments allow for much lower C values, the negative
wake is not observed. This result clearly indicates that other parameters besides bulk shear,
extensional rheology or sphere to tube size ratio play a key role in controlling the form of
flow structure around the falling sphere in branched micelles.

10
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R = 0.92, Branched
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FIG. 4. Dimensionless C = (Tr∞/Wi(γ̇)).(a/<) parameter as a function of Wi number for lin-

ear (squares) and branched (circles) micellar solutions. Empty symbols denote experiments with

no negative wake, while filled symbols correspond to experiments for which the negative wake is

observed.
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D. Flow-Induced Birefringence

To further assess the effects of micellar structure on flow around the falling sphere, we
performed full field flow-induced birefringence analysis. Flow-induced birefringence mea-
surements enable us to access some flow features (micellar orientation and alignment) that
are not detected by conventional methods such as PIV or PTV. Flow induced birefringence
has been typically used in two-dimensional flows of wormlike micelles including flow past
a stationary cylinder[49, 50] or cross-slot geometry[51–53]. Flow past a falling sphere is
three-dimensional, which means that the micellar alignment and orientations are spatially
averaged along the path of the light and therefore, the retardation and the extinction angles
measured in this study are in fact spatially averaged values. Fig. 5 shows the averaged retar-
dation and the extinction fields measured for the linear wormlike micellar solution around
the falling sphere at a fixed sphere to tube size ratio a/< = 0.056, various Wi numbers,
and vanishingly small Reynolds numbers. At small Weissenberg numbers Wi = 0.2, the
time averaged birefringence intensity is uniformly small around the falling sphere. This is
not surprising because at such small Wi numbers, micelles do not stretch, and therefore,
fluid shows no signs of birefringence. Additionally, the measured average extinction angles
vary between 0-45◦, which suggests that micelles are randomly oriented in the flow direction.
Note that the characteristic extinction angle for isotropic wormlike micellar fluids[54, 55] or
polymer melts[56] is defined as 45◦ in the literature, which agrees with the maximum ex-
tinction angle measured in our experiments at low Wi numbers. Therefore, to be consistent
with the literature, we use the numerical values of the maximum extinction angle at low
Wi numbers (i.e., χ̄ ≈ 45◦) to denote the random orientation of micelles around the falling
sphere. As Wi number increases to Wi = 2.6, and therefore, the flow is strengthened, a
small birefringent band forms downstream of the sphere center of mass. At still stronger
flows with Wi = 16, the transmitted light intensity contrast sharpens, and the birefringence
band grows markedly in the wake of the falling sphere. This birefringence band reflects the
increased alignment of wormlike micelles along the extensional flow direction. Within this
birefringent band, the micelles are fully aligned in the direction of flow with an extinction
angle χ̄ ≈ 0◦, which is consistent with previous measurements in extensional flows of polymer
solutions[57], colloidal rods[58] and in flow of wormlike micelles past a falling sphere[16].

On the other hand, Fig. 6 shows flow-induced birefringence results for spheres with a/< =
0.056 at various Wi numbers in the branched micellar solution. Similar to linear wormlike
micelles, the branched micelles do not show any significant birefringence up to Wi = 0.44,
and the resulting averaged extinction angles vary as χ̄ ≈ 0 − 45◦. At Wi = 0.44, branched
micelles become weakly birefringent. However, at Wi = 2.2, branched micelles demonstrate
a strong birefringent behavior and the extinction angle approaches χ̄ ≈ 0◦ in the wake of the
falling sphere. Further increase of the Wi number to Wi = 3.7 gives rise to a broader bire-
fringence band downstream of the sphere center of mass with extinction angles χ̄ ≈ 0◦ (see
also Fig. S4 in the supplementary materials.). Beyond Wi ≈ 1, birefringence intensity and
the extinction angle inside the band become practically constant, reflecting quasi-saturation
of alignment of the branched wormlike chains in the band. It is worth noting that at an
approximately similar Wi numbers, not only the branched micelles exhibit a much stronger
birefringent band, but also the birefringent band is much thicker in branched micellar solu-
tion than its linear counterpart (compare Fig. (6) with Fig. (5)).
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FIG. 5. Averaged birefringence intensity (false color) ∆̄n around the falling sphere (left panel) and

the averaged extinction angle χ̄ (right panel) calculated for the linear wormlike micellar solution.

Experimental conditions are as follows: (a,b) Wi = 0.2 and Re = 1.39× 10−5, (c,d) Wi = 2.6 and

Re = 3.37× 10−4 and (e,f) Wi = 16 and Re = 1.7× 10−2. The sphere to fluid column size ratio in

all of these experiments is fixed at a/< = 0.056.

Fig. 7 shows the averaged birefringence intensity of the linear and branched micelles
at a distance equal to one sphere diameter away from the sphere center of mass downstream
of the falling sphere. For both linear and branched micellar solutions, the micelles become
more birefringent as the Wi number increases. The branched micelles are typically more
birefringent than the linear micelles for 0.1 < Wi < 3. Additionally, for both micellar solu-
tions the birefringence intensity is saturated beyond a critical Weissenberg number (Wi ≈ 1
for branched micelles and Wi ≈ 2.5 for linear micelles).

Thus far, our experiments have indicated that the steady flow of branched micelles around
the falling sphere is characterized by i) fore-and-aft symmetric velocity profiles, ii) an ap-
parent local maximum in the drag correction factor and iii) a stronger birefringence than
the linear micelles in an otherwise identical condition. But, how can branched micelles show
a Newtonian-like flow profile in the wake of a falling sphere and at the same time impart
a strong birefringence? The difference between the flow structure in linear and branched
micelles could be linked to the micellar microsructure. Chellamuthu and Rothstein[28] in-
vestigated the uniaxial stretching of branched micelles in a filament stretching rheometer and
showed that at high enough branching densities, the Trouton ratio asymptotes to 3, indicat-
ing that highly branched micelles exhibit Newtonian-like behavior in extensional flows. Chel-
lamuthu and Rothstein linked this behavior to additional stress relaxation mechanism that
is available to branched micelles through ghost-like crossing of the branched junctions. Their
findings are consistent with our flow profile measurements that demonstrate a Newtonian-like
flow and a near unity drag correction factor around the falling sphere in branched micelles.
Unlike polymers, the branched points in micellar solutions are not fixed and can slide along
the micelles chain backbone, giving rise to an additional stress relaxation mechanism. Our
hypothesis is that at the range of Weissenberg numbers corresponding to steady flow behav-
ior 1 < Wi < 5, branched micelles can relax the stresses around the falling sphere much
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FIG. 6. Averaged birefringence intensity ∆̄n (false color) around the falling sphere (left panel)

and the averaged extinction angle χ̄ (right panel) calculated for the branched wormlike micellar

solution. Experimental conditions are as follows: (a,b) Wi = 0.13 and Re = 1.4 × 10−5, (c,d)

Wi = 0.44 and Re = 6.8 × 10−5, (e,f) Wi = 2.2 and Re = 1.00 × 10−3 and (g,h) Wi = 3.7 and

Re = 4.9× 10−3. The sphere to fluid column size ratio in all of these experiments is fixed at a/<
= 0.056.

FIG. 7. Time averaged birefringence intensity ∆̄n as a function of Wi number for linear (filled

circles) and branched (empty squares) wormlike micellar solutions.

more efficiently than the linear wormlike micelles by ghost-like crossing. This additional
stress relaxation mechanism not only gives rise to a Newtonian-like flow profile around the
falling sphere and an almost Newtonian drag correction factor, but also may further facil-
itate alignment and orientation of the branched micelles around the falling sphere. Note
that the upturn in the drag correction factor in branched micelles is not likely caused by mi-
celles extensional hardening because linear wormlike micelles exhibit a stronger extensional
hardening response than the branched wormlike micelles (see Fig. 1 (d)).
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E. Unsteady Flow

As flow around the falling sphere is strengthened, both branched and linear micellar fluids
experience a flow instability that is characterized by acceleration and deceleration in sphere
sedimentation velocity. The sphere drag correction factor decays upon increasing the flow
strength in unsteady flow regime. According to Chen and Rothstein, the instability in sphere
sedimentation experiments is due to flow-induced micellar breakage en masse[16]. Therefore,
the reduction in sphere drag correction factor in unsteady flow regime is caused by increasing
possibility of the flow-induced micellar breakage at higher characteristic Wi numbers.

Fig. 8(a) shows the time-resolved velocity of the sphere center of mass for a sphere with
a/< = 0.037 and various Wi and WiE in the linear and branched micellar solutions. It is
worth noting that fluctuations in the sphere sedimentation velocity are random such that
the dominant frequency of these fluctuations is rather very broad both in the linear and
branched micellar solutions. Additionally, the flow field around a falling unsteady sphere is
resolved in the linear and branched micellar solutions. Fig. 8(b,c) show the 2D time-resolved
velocity vectors around the falling sphere during the acceleration-deceleration time window
denoted in Fig. 8(a). Interestingly, the flow fields around the falling sphere at the moment of
instability are qualitatively different for the linear and branched micellar fluids. In branched
micellar solution, and following the onset of instability, a wave forms from in the wake of the
falling sphere, and start propagating away from the falling sphere. This wave is likely elastic
in nature because of the large elasticity El = Wi/Re of the wormlike micellar solutions.
For experiments with branched micelles fluid elasticity varies as El ≈ 90 − 9 × 104, and
for linear micelles El ≈ 30 − 8 × 104. Evidently, this wave can propagate long enough
distances all the way to the cylinder walls, forming four vortices around the falling sphere in
branched micelles. Whereas, the linear micellar solution, although experiencing a stronger
flow (higher Wi), does not show a strong enough elastic wave capable of generating obvious
recirculation regions. To assess the effects of elastic wave on the flow structure around the
falling sphere, a viscoelastic Mach number can be defined as: Ma = Vmax/υ, where velocity

of the propagating wave υ =
√
G0/ρf . The viscoelastic Ma number quantifies the relative

strength of the local flow velocity (Vmax) to wave propagation velocity (υ). The two wormlike
micellar solutions of this study are Maxwellian fluids, therefore, the plateau modulus can
be estimated as G0 = η0/λ, which leads to Ma = Vmax/υ =

√
Wi.Re0. Fig. 9 shows the

viscoelastic Mach number as a function of Wi for sphere sedimentation experiments in the
linear and branched micellar solutions. The resulting viscoelastic Mach numbers are typi-
cally larger in experiments with the branched micelles than the linear micelles. In particular,
for unstable sphere sedimentation cases presented in Fig. 8, the viscoelastic Mach number
in the branched micelles (Ma ≈ 0.22) is larger than in the linear micelles (Ma ≈ 0.1), which
suggests that following the instability, the wave that form may propagate easier in branched
micelles. Our hypothesis is that the branched micelles may form an intertwined connected
network of micelles that help facilitate the propagation of elastic waves around the falling
sphere compared to the linear micelles.
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FIG. 8. (a) Time-resolved velocity of the sphere center of mass in linear and branched micelles.

Note that the velocity data for linear micellar solution are shifted up for visual clarity. (b) The

2D velocity vectors around the falling sphere in the branched micellar solution at Wi = 26.5,

WiE = 26.5, and Re = 2 × 10−2. (c) 2D velocity vectors around the falling sphere in linear

wormlike micellar solution at Wi = 54.5, WiE = 27.8, and Re = 5 × 10−2. The sphere to fluid

column size ratio is fixed at a/< = 0.037.
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FIG. 9. Viscoelastic Mach number as a function of Weissenberg number for sphere sedimentation

experiments in linear and branched micellar solutions. The empty and filled symbols denote the

steady and unsteady sphere sedimentation cases, respectively. The dashed and continuous lines

correspond to the best power-law fit of Ma ∝ Wi0.95 to the experimental data of branched and

linear micellar solutions, respectively.

Mohammadigoushki and Muller[17] proposed a criterion based on the extensional Weis-
senberg number that successfully separated steady from unsteady sphere sedimentation
regimes from each other. This criterion is independent of the surfactant chemistry and/or
the shear banding behavior. To test the applicability of this criterion for branched micellar
solutions, we have calculated both Wi and WiE in a similar fashion to our previous studies
for unsteady flow experiments. Fig. 10(a) shows that resulting Wi numbers as a function
of Re for experiments reported in this study along with the literature values. As expected,
the criterion based on Wi − Re is not capable of explaining the onset of instability in our
experiments. On the other hand, Fig. 10(b) shows similar experimental results plotted based
on WiE−Re. Clearly the steady and unsteady flow regimes are still separated. Despite some
local differences in the flow field around the falling spheres in linear and branched micelles,
the critical threshold for onset of instability is unaffected by the micellar microstructure.
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V. SUMMARY

We presented a detailed study on the flow of linear and branched micellar solutions past a
falling sphere. The three key findings in steady flow regime can be summarized as follows:

1. A falling sphere experiences a near unity drag correction factor in both linear and
branched micelles for Wi < 1. While at higher Wi numbers, a significant drag reduc-
tion is reported in linear wormlike micelles, an apparent maximum with drag correction
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FIG. 10. The phase diagrams for sphere sedimentation experiments based on (a) Wi − Re and

(b) WiE − Re. The empty and filled symbols correspond to the steady and unsteady sphere

sedimentation experiments. The literature data are extracted from[17, 23].

factors Kmax ≈ 0.75 is observed for branched micelles. The drag correction factors in
branched micelles for Wi > 1 are always higher than the linear wormlike micelles.

2. Subject to weak flows (i.e., Wi < 1), the flow structure around the falling sphere is
characterized by a fore-and-aft symmetry both in the linear and branched micelles.
At higher Wi numbers, the linear wormlike micellar fluid exhibits a strong negative
wake downstream of the falling sphere, while branched micelles still show a fore-and-aft
symmetry. The criterion proposed by Arigo and McKinley (C = Tr/Wi(γ̇).a/<) does
not capture the different flow structures reported in the linear and branched micelles,
indicating that micellar branching has contributed significantly to the form of flow
structure around the falling sphere.

3. Flow induced-birefringence measurements around the falling sphere illustrated that the
branched micelles are more birefringent than the linear wormlike chains in an otherwise
identical condition.

Our hypothesis is that the additional stress relaxation mechanism via ghost-like crossing of
branched points is highly effective such that not only it leads to a Newtonian flow structure
and an upturn in sphere drag correction factor, but also may facilitate micellar orientation,
and hence, gives rise to a stronger flow-induced birefringence around the falling sphere.

In addition to the steady flow regime, we have reported unsteady sphere sedimentation
behavior both in the linear and branched micellar solutions. The resulting sphere drag cor-
rection factor always decreases upon increasing Wi number presumably due to flow-induced
micellar breakage. Despite some differences in detailed form of the flow structure around the
falling sphere in linear and branched micelles, our results corroborate the previously pro-
posed criterion based on WiE − Re for the onset of instability. Therefore, we can conclude
that micellar branching does not affect the mechanism of instability.
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Finally, the results of this study reveal the importance of micellar branching on flow around
a falling sphere where a combination of shear and extensional flow is present. The corre-
spondence (or the feedback loop) between the flow field and micellar topology may also
impact dynamics of wormlike micelles in simple shear flows (e.g., Lutz-Bueno et al.[59]) or
other types of complex flows (e.g., contraction-expansion, cross-slot, flow past a cylinder
and etc.). Additionally, currently available theoretical models on flows of wormlike micelles
have not included the effects of micellar branching. Hence, this study opens a new direction
with tantalizing opportunities for future experimental and theoretical studies of wormlike
micelles.
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