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Slip of soft permeable particles near a wall

Monica E. A. Zakharia and Roger T. Bonnecaze∗a

The slip and stick of soft permeable particles sliding near a smooth surface is determined by computing
flow, pressure and shape of a particle pressed against a surface due to the osmotic pressure of the
surrounding suspension and its translation at constant velocity parallel to the surface. We present
a poro-elastohydrodynamic lubrication theory that accounts for the interplay of the viscous pressure
force on the elastic deformation of the particle and the flow through the particle pores. At high
particle velocities, the particles move along an elastohydrodynamic film of fluid causing the particles
to slip on the surface. For finite particle permeability, there is a critical particle velocity determined
by the permeability relative to the thickness of the film and a ratio of the viscous and elastic forces
that cause a portion of the particle to contact the surface and stick. In this case the magnitude of
pressure in the lubricated film is lower compared to their impermeable counterpart sliding against a
smooth surface at the same speed. The particle pores offer an alternative route for the fluid in the
film, reducing the lubrication pressure resulting in the particle contacting the surface. A universal
function is deduced to predict this transition for a range of poro-elastohydodynamic interactions.
The drag force of the particle sliding along the surface up to the contact is also determined and
found to follow a universal function. These results demonstrate the possibility of dynamic stick-slip
transitions via control of particle properties instead of wall surface treatments.

1 Introduction
Complex fluids are materials that are sophisticated in their com-
plexity on a multitude of length scales. Colloidal systems are ex-
ceptionally attractive from fundamental, industrial, and techno-
logical perspectives. The ability to tailor macroscopic behavior of
colloidal suspensions by tuning the individual particle properties
makes colloidal systems ubiquitous for several industrial applica-
tions, such as in functional coatings1–3, pharmaceuticals4,5, and
foods6–8. Exploiting these materials in industrial applications ne-
cessitate processing them in confined spaces, such as by extrusion
and 3D printing9, which makes them susceptible to wall slip near
smooth surfaces. The behavior of concentrated colloidal suspen-
sions is strongly affected by their interaction with the bounding
surfaces.

The presence of slip hampers accurate characterization of rhe-
ological behavior of these materials. Slip originates from a lack
of adhesion between the sheared particle-suspension and bound-
ing surfaces. The presence of slip results in a thin layer of fluid
that is depleted from the suspended particles, which results in
non-uniform macroscopic properties. Slip alters the resulting flow
field and leads to errors in macroscopic flow measurements such
as relations between shear stress and shear rate, especially the
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yield stress10–12. In the absence of slip, i.e. under no-slip con-
ditions, the flow of concentrated suspensions of soft particles is
characterized by a yield stress σy, while when slip is present, the
material exhibits an apparent yield stress σ s

y (< σy), also known as
slip yield stress below which particle tend to stick to the wall12.
Slip-stick in concentrated colloidal suspensions and the resulting
flow gradient discontinuity has significant implications and is un-
avoidable during processing of these materials. Boundary effects
can also lead to the development of flow instabilities similar to
those developed in extruded polymer melts, such as secondary-
flow instabilities13 and melt fracture14–16.

Slip is often desirable in applications where transport efficiency
is crucial, inspired by many biological and natural processes. Slip
is essential for the transport of foods throughout the digestive
tract17, the motion of red blood cells through microvascular net-
works to deliver oxygen and nutrients18, and intracellular flows
in large plant cells, i.e. cytoplasmic streaming, for fast and effi-
cient transport of nutrients and other chemicals within the cell19.
Furthermore, mucus acts as biological lubricant for organs such
as the eye; it protects the eye by allowing slip to rapidly expel for-
eign particles20. The efficient transport promoted by slip as ob-
served in several biological systems can also be exploited in indus-
trial applications, such as microfluidic devices21,22, sewage treat-
ment23, oil extraction24, and food processing25,26. All of these
applications require control over slip-stick transitions, which can
be achieved by regulating bounding surface properties.
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Wall-slip can be suppressed by manipulating wall surface, phys-
ically and/or chemically. Physical implementation of surface as-
perities, i.e. roughening the wall surface, can disrupt the thin
lubricated layer and suppress slip. Rough surfaces have been
achieved by sandblasting27,28, machining29,30, creating surface
features by serrated tools for example31. The effect of roughness
degree on the slip behavior is examined in detail in32,33. Inhibit-
ing slip by surface roughness requires creating surface features
that are much larger that the particle size or the largest dominat-
ing heterogeneity. This criterion is the reason why it is difficult to
suppress slip by surface roughness in colloidal gels, in which case
aggregates coarsen as the gel ages34. While surface roughness is
often successful to prevent slip, an increased surface roughness
has been found to result in fracture32. Seth et al. (2008)35 pro-
posed controlling slip-stick behavior via chemical modifications
of the surface. The idea originates from the observation that lu-
bricating films are often on the order of 2− 10 nm11,28. Over
this short length scale, short-range interactions between particle
and wall become more relevant. Attractive forces originate from
van der Waals interactions with the wall or more generally the
hydrophobic nature of the surface, which result in sticking behav-
ior rather than slip. Repulsive forces are a consequence of hy-
drophilic surfaces and this leads to slip of particles when sheared
against it12,35,36. In general, it is demonstrated that slip can be
effectively suppressed by the physical and/or chemical surface
treatment, controlling the degree of slip-stick is more challeng-
ing using this approach37.

In this paper, we propose controlling the slip-stick behavior by
tuning particle properties rather than wall surface properties. Re-
cent studies suggest that surface features of soft impermeable par-
ticle strongly influence its adhesion to a rigid wall when sliding
against it38. However, the interrelationship between particle in-
ternal structure and confinement effects remains an unexplored
territory39. Based on their architecture, soft permeable particles
can be broadly classified as microgels and star polymers39. The
softness and deformability of these particles are well-regulated by
the degree of crosslink density and the number of arms for micro-
gels and star polymers, respectively39,40. When compressed, soft
particles are able conform in shape and size by expelling solvent
from their interior. The conformability of soft particles is a direct
consequence of their internal structure. An effective description
of the particle internal structure for different particle architecture
remains an experimental challenge39. However, numerical sim-
ulations can have a unique contribution, where the effect of the
particle internal structure can be incorporated by an effective per-
meability41,42. The particle permeability effectively regulates the
flow through the particle pores. Here, we extend the non-contact
elastohydrodynamic lubrication theory initially presented in11,28,
and modified later to account for short-range interactions with
the wall in35. This theory explains the slip behavior in soft imper-
meable particles by coupling the elastic deformation of the parti-
cle due to bulk osmotic pressure and gap hydrodynamics. With
the aim of investigating the slip behavior of soft permeable par-
ticle suspensions, we derive a model that accounts for fluid flow
through the particle pore as it slides near the wall. The presented
model is then used to examine the interplay between particle in-

ternal structure, i.e. its permeability, and its slip-stick behavior
near a wall.

The remainder of this paper is organized as follows. The micro-
scopic theory for slip of permeable particles near the wall – the
poro-elastohydrodynamic theory – is presented in both dimen-
sional and dimensionless forms in Sec. 2. In Sec. 2, we also
present the model parameters used in the numerical simulations.
This is followed by a description of the numerical procedure used
to solve the resulting set of equations in Sec. 3. The obtained
numerical results are presented in Sec. 4. Finally, the paper is
concluded with a discussion in Sec. 5.

2 Microstructural theory for slip in perme-
able particle suspensions

In this section, we present an extension of elastohydrodynamic
lubrication theory that accounts for the poroelastic nature of
the particles, which originates from their permeable structure.
Soft permeable particle such as microgels, star-polymers, and
supramolecular particles can be modeled as poroelastic particles
with permeability κ.

Consider a concentrated suspension of randomly-arranged soft
poroelastic particles moving parallel to a smooth rigid wall due to
a shear or pressure-driven flow. The suspension volume fraction,
φ , is higher than random close packing fraction of hard-sphere
systems, i.e. φ > 0.64. At such high densities, particles are trapped
in tight cages by their neighboring particles and the wall, on the
one hand. Therefore, particle displacements relative to other par-
ticles and particle migration are neglected. On the other hand,
particles are compressed and deformed on all sides by particle-
particle contacts and a particle-wall contact. The wall is assumed
to be perfectly rigid, since it has a much higher modulus than the
soft particles considered here. A particle near the wall is com-
pressed against the rigid wall due to the surrounding particles.
Particles near the wall can hence be assumed to only translate
and not rotate or migrate due the confinement of the surrounding
particles. When the particle is at rest, Hertzian contact pressure
acts on the particle and a facet develops. When the particle is
moving, a lubricating film is formed and the fluid pressure in the
gap creates the facet. In this case, the pressure field is not ax-
isymmetric and so the facet is no circular. The suspension moves
with some velocity distribution that varies normal to the wall and
the particles near the wall can move at a finite velocity due to
the elastohydrodynamic lubrication of the particle-wall contact.
The particle experiences non-contact elastohydrodynamic lift and
drag forces, FL and FD, due to interactions with the wall.

Specifically, let us consider the behavior of single particle of ra-
dius R pressed against the smooth wall by the bulk osmotic pres-
sure of the suspension. The particle translates horizontally at a
constant applied sliding speed U as depicted in Fig. 1. Assum-
ing no bulk rearrangements, the particle will remain locked in its
place relative to the wall by its neighbors with an overlap with
the wall of h0 +δ . This deformation results in a facet of radius r0.
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Fig. 1 Schematic of a soft particle of radius, R, compressed against a
smooth rigid wall and sliding against it with a velocity U . The particle
forms a contact facet of radius r0 =

√
Rh0 at rest, where h0 is the initial

compression of the particle. The deformed particle surface is denoted
by δ (x,y). The particle experiences non-contact elastohydrodynamic lift
and drag forces, FL and FD, due to interactions with the wall. The origin
of the Cartesian coordinate system is fixed at the wall below the center
of the particle.

2.1 Theory of poro-elastohydrodynamic slip

The present model extends the elastohydrodynamic theory pre-
sented by Meeker and co-workers11,28 for impermeable soft par-
ticles to a porous, permeable soft particles. The original model
couples Reynolds lubrication equation43 in the gap with the gen-
eral integral equation for contact mechanics44. This earlier model
was later modified to account for short-range attraction and re-
pulsion with the wall35. Here, we extend the original model by
allowing flow through the internal structure of the porous particle
through an additional coupling via Darcy’s law45. The resulting
governing equations, which describe the long-time, steady-state
behavior are

∇ ·
(

δ
3
∇p
)
=−6ηsU∂xδ +12ηsυ(x,y), (1a)

δ (x,y) =−h0 +
x2 + y2

2R
+ uz(x,y)|z=0 , (1b)

uz(x,y)|z=0 =
1−ν2

πE

∫
∞

−∞

∫
∞

−∞

p(ξ ,θ)(
(x−ξ )2 +(y−θ)2

) 1
2

dξ dθ , (1c)

where p is the hydrodynamic pressure in the gap between the par-
ticle and the wall, and it is measured with respect to the far-field
fluid pressure away from the wall. In Eq. 1a, ηs is the solvent
viscosity, U is the particle velocity as shown in Fig. 1. The oper-
ator ∇ is the derivative taken over the two-dimensional Cartesian
coordinates (x,y), where the origin is located at the wall and be-
neath the center of the particle. Equation 1a is coupled with the
gap height, which is given by Eq. 1b. Equation 1b described
the particle profile as the summation of the undeformed particle
shape approximated by a parabola, −h0 +

(
x2 + y2)/2R, and the

particle elastic deformation uz(x,y)|z=0
46. This elastic deforma-

tion depends on the hydrodynamic pressure in the gap acting on
the particle, and this relation is described by Eq. 1c. Equation 1c
describes the long-time solution of Hertz contact problem for a
poroelastic particle approaching a semi-infinite plane44,47. In Eq.
1c, E is the particle modulus, ν is Poisson’s ratio, and (ξ ,θ) are
the integration variables in Cartesian coordinates. Finally, the ver-

tical fluid velocity in the gap, υ , describes the velocity by which
the fluid enters the particle pores near the wall, and hence de-
fines the net fluid flow from/to the particle. At steady state the
rate of deformation of the elastic structure vanishes and does not
influence the flow in the porous particle.

Since we only investigate the steady state slip behavior of per-
meable particles, flow from/to the particle is governed by Darcy’s
law45,48. From the particle perspective, the amount of fluid flow-
ing from/to the particle must be conserved. In order to calculate
the vertical fluid velocity in the gap υ and satisfy mass conserva-
tion for the fluid and Darcy’s law, we seek solutions of the Laplace
equation for the pressure which is valid throughout the entire par-
ticle Ω,

∇
2 p = 0 for (x,y,z) ∈Ω. (2)

It is to be noted that, according to the lubrication theory43, the
pressure in the gap is constant in the z-direction, leading to van-
ishing vertical fluid velocity in the gap, however the pressure is
not constant inside the particle. The mutual coupling of lubri-
cation theory, Darcy’s law, and particle elastic deformation is the
origin of the vertical fluid velocity at the particle surface.

In order to calculate the vertical fluid velocity υ , only the pres-
sure gradient at the surface of the particle is required. In this
case, a boundary integral representation49,50 of Eq. 2 is conve-
nient, where the particle is approximated by a semi-infinite do-
main. A fundamental solution of the Laplace equation at a point
xxx in three-dimensions is given by p(xxx)∗ ∼ 1

4πr , where r = ‖xxx− yyy‖
and yyy ∈ Ω51. This solution satisfies the Laplace equation every-
where in the domain Ω except at the singularity location at xxx = yyy.
Using this solution, the boundary value problem described by Eq.
2 can be cast in a boundary integral formulation, that is suitable
for Boundary Element Method (BEM)49–51, as

p(xxx) =
1

4π

∫
∂Ω

[
p(yyy)∂yyy

1
r
−∂yyy p(yyy)

1
r

]
·nnndS xxx ∈Ω (3)

where ∂yyy
1
r =−(yyy− xxx)/r3. In the derivation of Equation 3, Green’s

second identity is used.

Finally, once the pressure field at the surface of the particle is
obtained, the vertical fluid velocity can be calculated according to
Darcy’s law as

υ =−ηs

κ
∇p · eeez for (x,y,z) ∈Ω, (4)

where κ is the particle permeability and eeez is the unit vector in
the z-direction.

2.2 Dimensionless form of the governing equations

Equations (1a-1c) are non-dimensionalized as follows. Dimen-
sionless or rescaled variables are denoted by their corresponding
capital letters. Length scales in the plane of the wall, x and y, and
derivatives thereof are scaled by the contact radius r0 (see Fig.
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1), as

X =
x
r0
, Y =

y
r0
,

∂

∂x
=

1
r0

∂

∂X
,

∂

∂y
=

1
r0

∂

∂Y
.

The contact radius is the radius of the flattened surface parallel to
the wall at rest, r0 =

√
Rh0

44. Length scales normal to the plane
of the wall, such as the gap height and the particle deformation
in the z-direction are scaled with the initial deformation, h0, that
is

H =
h
h0

, UZ =
uz

h0
.

Applying these scaling to the governing equations, the following
non-dimensional forms are obtained

∇ ·
(

H3
∇P
)
=−∂xH +V, (5a)

H(X ,Y ) =−1+
X2 +Y 2

2
+ UZ(X ,Y )|Z=0 , (5b)

UZ(X ,Y )|Z=0 = λ

∫
∞

−∞

∫
∞

−∞

P(Ξ,Θ)(
(X−Ξ)2 +(Y −Θ)2

) 1
2

dΞdΘ (5c)

Far from the wall, the hydrodynamic pressure is given by the an-
alytical expression of a rigid particle moving parallel to a smooth
wall52 as

P|X→∞,Y→∞
=

X
5H2 , (5d)

In Eqs. 5, the flow parameter λ is defined as λ = 6ηsUR/
(
Gph2

0
)
,

where Gp = πE/
(
1−ν2). The boundary integral Eq. 3 becomes

P(XXX) =
1

4π

∫
∂Ω

[
P(YYY )∂YYY

1
r̄
−∂YYY P(YYY )

1
r̄

]
·nnndS̄ XXX ∈Ω (6a)

where ∂YYY
1
r̄ = −(YYY −XXX)/r̄3, r̄ = ‖XXX −YYY‖, and dS̄ = r2

0dS. The di-
mensionless vertical fluid velocity is given by,

V =−12κR1/2

h5/2
0

∂YYY P · eeez. (6b)

It is to be noted that the pressure at the particle surface denoted
by ∂Ω is equal to the hydrodynamic in the gap from Eqs. 5, which
is independent of the gap height as dictated by the lubrication
theory43;

P|XXX∈∂Ω
= P(X ,Y ) (6c)

In Eqs. 5 and 6, the pressure is scaled with the characteristic
hydrodynamic pressure in the gap Pc is given by

Pc =
6ηsUR1/2

h3/2
0

, (7)

and the vertical fluid velocity, V = υ/Vc, is scaled with the char-
acteristic velocity

Vc =
Uh1/2

0

2R1/2
. (8)

2.3 Dimensionless groups specification

To proceed with simulations, realistic estimates of particle and
fluid properties are to be specified. Simulations are fully de-
scribed in terms of the flow parameter λ , and the dimensionless
permeability κ̄ = κ/h2

0. A summary of the simulation parameters
is given in Table 1. Representative values for a microgel particles
are used to obtain the results in Sec. 4. In the absence of flow, the
effect of system density and the resulting osmotic pressure acting
on the particle is expressed by the initial overlap, h0, and the ini-
tial contact radius, r0. The particle compression ratio, ζ0 = h0/R,
is related to the volume fraction of the system as53

ζ0 = 1−
(

φRCP

φ

) 1
3

, forφ > φRCP, (9)

where φRCP = 0.64 is the volume fraction at random close pack-
ing. Similar properties to those used in11,35 are employed in the
present study. Microgel particles of R = 220nm and an initial over-
lap h0 = 22nm, which corresponds to a overall system volume frac-
tion of φ ≈ 88%. The particle is suspended in water, ηs = 1 mPa
· s. The mechanical properties of these particles are described
by Gp ∼ 105Pa. Estimates of particle permeability available in lit-
erature are limited. The permeability of microgels also depend
on polymer concentration, cross-link density, and the permeating
fluid velocity54. However, one can estimate the pore-size and
permeability based on the particle size. It is reasonable to assume
that the pore-size lpore is at least a couple of orders of magnitude
lower than the particle size, i.e. lpore ∼ 0.01R. The permeabil-
ity is proportional to square of the pore size κ ∼ l2

pore, hence the
permeability can be estimated as κ ∼ 10−18m2.

Table 1 Model parameters and range of values.

Parameter Symbol Physical Value

Solvent viscosity ηs 1 mPa · s
Particle modulus Gp 105 Pa
Particle radius R 220 nm
Initial overlap h0 22 nm
Flow parameter λ [0.0001−5]
Dimensionless permeability κ̄ {0,0.207,1.03,2.07,4.13}×10−3

3 Numerical solution
The numerical procedure for solving the coupled equations 5 and
6 is presented in detail in this section.

3.1 Computation of the vertical component of fluid velocity

The vertical fluid velocity at the particle surface V is required
to solve Eqs. 5a-c. As explained in Sec. 2.1, Boundary Ele-
ment Methods (BEM) can be used in this case as expressed in
Eq. 649,50.

To solve Eq. 6 numerically using BEM, the surface of the par-
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ticle is discretized into Np patches. Assuming that the pressure
and its gradient are constant over each patch k, Eq. 6a can be
rewritten, for each patch m, as

Amk
(
∂YYY k P

)
=

N p

∑
k=1

BmkPk. (10a)

where

Amk =
1

4π

∫
∂Ω

1
‖XXXm−YYY k‖

·nnnkdS̄, (10b)

Bmk =−
1

4π

∫
∂Ω

YYY k−XXXm

‖XXXm−YYY k‖3 dS̄. (10c)

The solution can be obtained as follows: Given the pressure field
P and the particle shape H, the midpoint coordinates and outward
normal to each patch are calculated. For each patch m, the inte-
grals Amk and Bmk for all patches k are calculated using Gaussian
2D quadrature. Finally, we solve Eq. 6a for ∂YYY k P as

∂YYY k P = A−1
mk BmkPk. (11)

These values are used to obtain the vertical fluid velocity to the
surface according to Eq. 6b.

3.2 Numerical solution of poro-elastohydrodynamic equa-
tions

Equations 5a-c are simultaneously solved for pressure P, gap
height H, and particle deformation UZ(X ,Y )|Z=0 over a planar
domain (X ,Y ) parallel to the wall. This domain is discretized
into equal-sized square elements in each direction, NX and NY ,
respectively. This domain is chosen to be large enough, so that
the particle deformation is UZ(X ,Y )|Z=0 = 0 and consequently
H =−1+

(
X2 +Y 2)/2 at the boundaries. The boundary condition

Eq. 5d is applied at the perimeter of the computational domain.

An iterative scheme is used to solve Eqs. 5. With an initial guess
for the pressure P0, Eq. 5c is solved using numerical integration
scheme, namely the trapezoidal rule, for UZ(X ,Y )|Z=0, which is
used to compute the gap height H from Eq. 5b. Finite difference
approximations of Eq. 5a are used to obtain an updated hydro-
dynamic pressure P. Convergence is reached when the norm of
the difference in pressure at each point in the domain is less than
10−7, or when the drag and lift force between iterations is the
same up to the fifth decimal point. The drag and lift forces are
calculated as

FD =−
∫ ∫

P ∂X H +
H
2

∂X P− 1
6H

dXdY, (12a)

FL =

(
R
h0

) 1
2
∫ ∫

PdXdY, (12b)

where these forces are scaled by 6ηRu. Finally, to ensure smooth
convergence, under-relaxation is employed for UZ(X ,Y )|Z=0 in
order to avoid unrealistically large particle displacements per it-
eration step, specially in the case of highly permeable particles.

4 Results
The wall-slip behavior of permeable particles is presented and
compared with impermeable particles of similar properties. Sim-
ulations are performed at different sliding speeds, characterized
by the flow parameter, λ , and different permeability values, de-
scribed by, κ̄.

4.1 Slip behavior of permeable particle
The behavior of permeable particle is discussed in comparison
with that of impermeable particle of the same properties, subject
to same sliding speed. Figure 2 shows the particle profile at the
centerline of impermeable and permeable particles in the direc-
tion of motion. In the case of impermeable particle, the particle
shows an asymmetric deformation at the centerline of the parti-
cle. Underneath the particle center the particle facet is almost uni-
form, while upstream the particle is protruded close to the wall.
This asymmetry is in fact a result of the pressure profile in the
lubricated layer of fluid between the particle and the wall. Fig-
ure 3 shows the pressure profile at the centerline of impermeable
and permeable particles in the direction of motion. The pressure
underneath the particle is positive everywhere except at the rear
of the particle. The negative pressure underneath the protruded
surface and at the rear of the particle leads to fluid being pulled in
the gap. This pressure gradient created by the negative pressure
maintains flow in the lubricated fluid film between the particle
and the wall.

Hmin

Fig. 2 The particle profile along X−axis – the sliding direction – of an
impermeable particle (black filled symbols), i.e. κ̄ = 0, and permeable
particle (red open symbols), κ̄ = 2.07× 10−3. Both particles are sliding
against the wall with a speed characterized by λ = 0.5455. The dashed
line indicates the shape of the undeformed particle.

The pressure profile of a permeable particle sliding near a wall
with the same speed is also plotted in Fig. 3. The overall pressure
profile in the gap is lower than the pressure developed beneath
the impermeable particle sliding near the wall to maintain flow
in the narrow gap. The permeable particle moves closer to the
wall as a result of this pressure profile. In order to understand
this behavior, the flow through the particle is examined.

The vertical fluid velocity V is plotted in Fig. 4a for the case of
permeable particle. It is to be noted that the vertical fluid velocity
is vanishing for impermeable particles as shown by the black line
in Fig. 4b. Positive values of V indicate fluid flow to the particle,
while negative values denote flow from the particle. Figure 4b
shows that fluid flows from inside the particle to the gap at the
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Fig. 3 Pressure contour plots (lines and bands) beneath (a) an imperme-
able particle, κ̄ = 0, and (b) a permeable particle, κ̄ = 2.07×10−3, sliding
against the wall at a speed characterized by λ = 0.5455. (c) Pressure
profile beneath both impermeable (black filled symbols) and permeable
(red open symbols) particle center-line and along the sliding direction
denoted by the red lines in (a) and (b), respectively.

rear of the particle, while fluid flows to the particle at the particle
front.

A permeable particle sliding close to a wall is closer than its im-
permeable counterpart with the same properties and sliding at the
same speed. This behavior is a result of the coupling between the
fluid properties in the lubricated film and fluid flow through per-
meable particle. A sketch depicting the major differences in slip
behavior between impermeable and permeable particles is shown
in Fig. 5. When a permeable or impermeable particle slides near
a wall a thin film of fluid forms at the facet between the particle
and the wall. A pressure gradient forms within this film. This
pressure gradient acts to maintain the lubricated layer in the gap,
and this effect is explained as follows. For impermeable particles,
far-field fluid is drawn to the negative pressure side of gap at the
rear of the particle. The fluid is expelled from the positive pres-
sure side of the gap at the front of the particle, see Fig. 5a. In
the case of permeable particles, an additional flow contribution
emerges due to the ability of the particle to draw in and expel
fluid through its pores. The negative pressure at the particle rear
draws fluid to the film from the far-field fluid and from within the
particle pores. Fluid is expelled from the gap at the particle front
and to the particle pores, see red arrows in Fig. 5b. This additional
flow contribution from and to the particle pores at the negative
and positive fluid pressure sides in the gap, respectively, results in
the lower overall pressure compared to the case of impermeable
particle sliding near the wall. As a result, slip is less pronounced
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Fig. 4 (a) Pressure contour line superimposed on vertical fluid veloc-
ity contour bands beneath a permeable particle, κ̄ = 2.07×10−3, sliding
against the wall at a speed characterized by λ = 0.5455. (c) Vertical
fluid velocity profile beneath both impermeable (black filled symbols)
and permeable (red open symbols) particle center-line and along the
sliding direction denoted by the red lines in (a). Note that the vertical
fluid velocity is zero for impermeable particles as shown by the black
curve in (b). The net flow in the permeable particle case is calculated as
Q̄ =

∫
S V dS = 0.1295.

in permeable than impermeable particles – permeable particles
tend to stick to the wall.

4.2 Influence of sliding speed on the behavior of permeable
particles near a wall

The effect of sliding speed on the sticky behavior of permeable
particles is studied in detail in this section.

Figure 6a shows the particle profile at different sliding speeds.
The slower the sliding speed, the closer the particle gets to the
wall. This behavior is also observed for soft impermeable particles
sliding against a rigid wall35, and rigid particle sliding against a
soft impermeable wall55. The corresponding pressure profile at
the centerline beneath the particle is shown in Fig. 6b. The slower
the sliding speed, the higher the magnitude of the pressure in the
gap in both the negative and positive pressure regions.

The pressure profile in the gap has a direct effect on the fluid
flow to and from the particle. Figure 7 shows the effect of sliding
on the vertical fluid velocity and resulting net flow. The mag-
nitude of fluid velocity to and from the particle increases as the
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particle 
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HImper
min > HPermin

(a) (b)Wall Wall

Flow along 
the wall Flow along 

the wall

Particle velocity, U Particle velocity, U

Fig. 5 Sketch of the major differences in slip behavior between (a) an impermeable and (b) a permeable particle sliding near a rigid wall. The colored
sections indicate the pressure in gap. The black arrows show the flow from/to far-field fluid, while the red arrows, in the case of permeable particles
in (b), show flow of from/to particle pores.

sliding speed decreases. Integrating the fluid velocity over the en-
tire domain gives the net flow, Q̄, through the particle. Positive Q̄
values denote net flow to the particle and negative values denote
net flow from the particle. This net flow is plotted in the inset
of Fig. 7 as a function of sliding speed. The net flow is positive
for all sliding speeds, i.e. the net flow is to the particle pores on
the underside of the particle. This fluid of course leave the parti-
cle on its far side and its exit is of no consequence to the sliding
near the wall. The inset in Fig 7 shows that the net flow increases
as the sliding speed decreases as a result of the higher pressure
magnitude at lower λ .

4.3 Influence of permeability on slip-stick behavior

In Section 4.2, we showed that the flow through the particle pores
underlies the difference in slip behavior between permeable and
impermeable particles sliding near a wall. In this section, the ef-
fect of permeability on the sticky behavior of permeable particles
is examined. In order to efficiently study this behavior, the parti-
cle profile is characterized by the minimum height of the particle,
i.e. the closest point to the wall. The net flow is plotted as a mea-
sure of the vertical fluid velocity. Finally, The pressure in the gap
results in a drag force on the particle, hence it is plotted instead
of the full pressure profile.

Figure 8 shows the minimum gap height, denoted by Hmin, for
particles of different permeability values κ̄ sliding at different
speeds λ . The balance between hydrodynamic forces on the par-
ticle and resistance forces from single particle deformation and
osmotic pressure from the bulk dictate the extent of particle de-
formation. The stronger the flow, i.e. high λ , the larger the lift
force experienced by the particle, which leads to more particle
deformation and higher gap heights. Figure 8 shows exactly this
effect – the higher the sliding speed, λ , the larger the minimum
gap height, Hmin, for both impermeable and permeable particles.
For large particle velocities, the minimum gap height appears to
be independent of permeability; this is not the case for low par-
ticle velocities. For these cases, i.e. low λ , the minimum gap
height depends on the permeability. For impermeable particles,
i.e. κ̄ = 0, the minimum gap height decreases with decreasing
sliding speed. For permeable particles, i.e. κ̄ 6= 0, the minimum
gap height continues to decrease with decreasing sliding speed,
until a critical value, λs – the sticking point. Beyond this sticking

point, the minimum gap height becomes negative, which indi-
cates that the lowest surface point of the particle comes in contact
with the wall. The sticking point can be defined as

λs = λ |min H(X ,Y )=0 , ∀(X ,Y ) . (13)

Figure 8b shows that the minimum gap height depends on the
sliding speed following a power law with exponent that is inde-
pendent of the permeability value, Hmin ∼ (λ −λs)

0.50. The stick-
ing point, however, decreases with decreasing permeability, and
it’s vanishing for impermeable particles. The dependence of stick-
ing point on the permeability value follows a power law of type,
λs ∼ κ̄0.65, as shown in Fig. 8b. The minimum gap height when
plotted against the difference between the flow parameter and
the sticking point (see Fig. 9), λ −λs result in the collapse of the
data for different permeability on a universal curve that can be
fitted to a power law with these average fitting parameter shown
in Fig 8b. The critical speed of the particle at the onset of sticking,
Us, is determined from the sticking flow parameter, λs, as

Us =
Gph2

0λs

6ηsR
. (14)

The values of the critical speeds corresponding to the sticking
points at different values permeability are shown in Table 2. In

Table 2 Critical speeds calculated as Us = Gph2
0λs/(6ηsR) for different

values of dimensionless permeability, κ̄, using parameters listed in Table
1 and the values of the sticking point, λs, also listed in the table.

Permeability, κ̄ Sticking point, λs Critical flow speed, Us

0 0 0.0 mm · s−1

0.21×10−3 0.047 1.7 mm · s−1

1.03×10−3 0.166 6.1 mm · s−1

2.07×10−3 0.276 10.1 mm · s−1

4.13×10−3 0.401 14.9 mm · s−1

practice, the value of the critical speed defines the value below
which the effect of slip on suspension rheological properties can-
not be neglected11. The critical speed can define the operating
speeds in rheological experiments, such as the cone speed in a
cone-plate rheometer. In suspensions of permeable particles, the
critical flow speed increases with increasing permeability, which
suggests that wall effects are dominant for a wider range of flow
speeds with increasing permeability.
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Increasing 
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Increasing 
sliding speed

(a)

(b)

Fig. 6 Effect of the sliding speed of a permeable particle, characterized
by λ , on the (a) particle profile and the (b) pressure in the gap beneath
the particle, along the sliding direction, i.e. X−axis. Arrows indicate the
direction of increasing the sliding speed.

The sticky behavior of permeable particles originates from the
ability of fluid to flow through their pores. To examine this be-
havior and how it is influenced by the permeability, the net flow
through the particle is investigated. Figure 10 shows the net fluid
flow through the pores, Q̄, of particles with different permeability
values, κ̄, sliding near a wall at different speeds λ . As discussed
earlier in Sec. 4.2, positive Q̄ denote flow to the particle, negative
Q̄ denote flow from the particle. Figure 10a shows that the net
flow is to the particle for all values of permeability. The net flow
to the particle increases with decreasing sliding speed, as shown
earlier in Fig. 7. The net flow to the particle increases with in-
creasing permeability at the same sliding speed, as shown in Fig.
10a. A universal curve can be obtained by scaling the net flow
with the corresponding permeability (see Fig. 10b). The depen-
dence of scaled net flow on the flow characteristic parameter in
the gap λ obeys a power law Q̄/κ̄ ∼ λ−0.80.

Particles sliding against the wall experience a fluid resistance
force that is proportional on the fluid pressure – the drag force.
Figure 11a shows the drag force, FD, on a particle with dif-
ferent permeability values, κ̄, sliding near a wall at different
speeds λ . Figure 11a shows that the drag force increases with
decreasing sliding speed characterized by the flow parameter λ .
The dependence on sliding speed dominates in comparison with
the dependence on the permeability. It is to be noted that the
drag force is an average quantity over the entire particle sur-

Increasing 
sliding speed

Fig. 7 Effect of the sliding speed of a permeable particle, characterized
by the flow parameter λ , on the vertical fluid velocity at the particle
surface plotted along the sliding direction, i.e. X−axis. Arrows indicate
the direction of increasing the sliding speed. Inset shows the net flow
to the particle as a function of the flow parameter, given by the specific
discharge Q̄ =

∫
S V dS.

face, while permeability dependence is most significant at clos-
est point of the surface to the wall (see e.g. Fig 2). The de-
pendence on the permeability is nonetheless obvious by lower
limit of λ that is set by the sticking point λs, i.e. λs(κ̄) < λ .
Similar to Fig. 9, plotting the drag force against the difference
in flow parameter from the sticking point, λ − λs, the data col-
lapse on a universal curve that follows (λ −λs)

−0.50 at low speeds
and deviates from it at high speeds, (λ −λs)

−0.25, as shown in
Fig. 11b. By fitting the data in Fig. 11a using power-law fits of
type FD = aλ−0.5 +b(ldh0/R)2 ln(ldh0/R)2, where ld is the domain
size, and a and b are the fitting parameters, it is found that the
leading order term governing the drag force scales as a(κ̄)λ−0.50.
The fitting parameter a is found to be independent of the domain
size and the flow parameter, but dependent on the permeability.
The value of a for impermeable particles is a|κ̄=0 = 0.54, while
for permeable particles a|κ̄ 6=0 / a|κ̄=0 = {1.89,2.27,2.52,2.55} for
κ̄ = {0.207,1.03,2.07,4.13}×10−3, respectively.

5 Discussion and concluding remarks
In this work, we present a model of permeable particle sliding
against a smooth rigid wall. The particle is pressed against the
wall by the effect of the bulk system density. The model cap-
tures the flow details in the lubricated gap between the particle
and the wall, and through the particle pores. The gap fluid and
particle are coupled by the fluid pressure in the gap, the particle
deformation, and the normal fluid velocity at the surface of the
particle closest to the wall. Using this model, we study the be-
havior of particles with different permeability sliding at different
speeds against a smooth rigid wall.

A pressure gradient develops in the lubricated layer between
the wall and a deformable particle sliding against it, for both im-
permeable and permeable particles. A negative pressure develops
at the particle rear which draws fluid to the gap and fluid is ex-
pelled from the gap in front of the particle, where positive pres-
sure is developed. This pressure gradients serves to maintain the
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κ̄ = 0
κ̄ = 2.07 × 10−4
κ̄ = 1.03 × 10−3
κ̄ = 2.07 × 10−3
κ̄ = 4.13 × 10−3

Hmin = α(λ − λs)β
Lines are fits

(a)

(b)

λs = λ
Hmin→0

Fig. 8 Effect of particle permeability, κ̄, on the minimum gap height,
Hmin. (a) Minimum gap height along the sliding direction, i.e. X−axis of
impermeable and permeable particles with different permeability values
as a function of flow parameter λ . Lines are power-law fits of type Hmin =

α(λ−λs)
β . (b) Minimum gap height fitting parameter. The pre-factor α

and exponent β are almost identical for all permeability values and their
average values are ᾱ = 0.59, and β̄ = 0.50. The dependence of the flow
parameter on the permeability follows the power law, λ̄s = 14.64κ̄0.65.

lubricated layer. A permeable particle are found to approach the
wall more than an impermeable particle sliding near the wall at
the same speed. The fluid pressure in the gap is lower in mag-
nitude than the pressure developed in the case of impermeable
particles. This pressure reduction is primarily due to the excess
fluid flow from and to the particle pores at the negative and posi-
tive pressure region, respectively.

The flow through the particle pores underlies the difference
in slip behavior between permeable and impermeable particles
sliding near a wall and it is regulated by the permeability. The
effect of permeability can be summarized as follows. The net
flow to the particle is found to increase with increasing perme-
ability. At a certain permeability, the minimum gap height de-
creases with decreasing permeability until a critical point λs –
the sticking point – where the particle first makes contact with
the wall. This sticking point is found to increase with increasing
permeability as λs ∼ κ̄0.65. The pressure developed in the lubri-
cated layer result in a drag force on the particle. The drag force
is dominated by the sliding speed. However, the sliding speed

Hmin = 0.59(λ − λs)0.50Line:

κ̄ = 0
κ̄ = 2.07 × 10−4
κ̄ = 1.03 × 10−3
κ̄ = 2.07 × 10−3
κ̄ = 4.13 × 10−3

Fig. 9 Minimum gap height along the sliding direction, i.e. X−axis of
impermeable and permeable particles with different permeability values
plotted against the difference between the flow parameter and the sticking
point, λ −λs. Dashed line is a power law fit using the average values of
the fitting parameters in Fig. 8b.

itself is implicitly dependent on the permeability via the depen-
dence of the sticking point on the permeability. This results re-
veal the strong coupling between the fluid dynamics in the gap
and the fluid flow through the permeable particle. All of these
results and the fact that permeable particles tend to get closer to
the wall than their impermeable counterparts sliding at the same
speed, and that impermeable-particle systems can slip with much
lower speeds without sticking, confirm that permeable particles
are sticky.

The sticky behavior of permeable particle is similar to the be-
havior observed in35, of impermeable particle with short-range
attraction with the wall. Wall slip is known to depend on the
smooth-surface chemistry12,35,56,57. Typical gap height values are
on the order of 2−10 nm11,28,35, in the range wall-particle inter-
actions can be important. Short-range attractive forces originate
from attractive van der Waals forces, and/or the hydrophobic na-
ture of the surface, which favors weak particle-surface attractions.
In principle, one can predict the wall-slip behavior of permeable
particles by constructing an attractive pressure acting across the
film12,35. For example, the permeability can acts as an effective
Hamaker constant in van der Waals pressure35. This procedure is
efficient and effective in predicting the gap height and the general
slip behavior, but fails to predict the flow details and its effect on
the gap fluid pressure.

The flow of the gap fluid through the particle pores effectively
suppresses wall-slip and instead sticking occurs at λs depending
on the permeability. This result supports the recent findings that
particle-scale features are necessary and sufficient to effectively
predict wall slip in dense soft microgel suspensions58; here, we
describe particle-scale features with the particle permeability. In
fact, the permeability offers an alternative way to avoid wall-slip,
in lieu of suppressing slip via the introduction of wall roughness.
Former studies assert that slip is suppressed when surface asperity
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κ̄ = 2.07 × 10−4
κ̄ = 1.03 × 10−3
κ̄ = 2.07 × 10−3
κ̄ = 4.13 × 10−3

Fig. 10 Effect of particle permeability, κ̄, on the net flow from the
particle, Q̄. (a) Net flow from particles of different permeability values.
(b) Scaling the net flow by the dimensionless permeability results in a
collapse of the data on a universal curve. The net flow scaled with
permeability scales with the flow parameter as Q̄/κ̄ ∼ λ−0.8. Inset in (b)
shows the same data on linear axes.

height Ra is of the same order as particle radius R, i.e. R/Ra ≤
132,59. Let us assume the following; the suppression of slip in
permeable particles to originate from particle-surface roughness
instead of wall roughness. In this case, we can characterize the
surface roughness of the particle in terms of its permeability; that
is Ra <

√
κ. We estimate the particle radius-to-asperity ratio as

R/Ra > 102. This observation confirms that slip can be suppressed
at even much finer particle-surface features than the minimum
required wall-surface features for slip suppression.

The model presented in this paper and the presented results
offer ample opportunities to explore particle permeability to con-
trol slip-stick behavior and consequently bulk mechanical prop-
erties. The permeability of soft particles, such as microgels and
star polymers, can be tuned by several external stimuli such as
applied deformation42,60–62, pH63,64, temperature63,65, or mag-
netic fields66–68. An area that is yet to be explored is using such
external stimuli to trigger stick or slip behavior even at the same
sliding speed.

∼ (λ − λs)−1/2

∼ λ−1/2

∼ aλ−0.5 + b (ld
h0
R )

2
ln (ld

h0
R )

2

Lines are fits: 

∼ (λ − λs)−1/4

κ̄ = 0
κ̄ = 2.07 × 10−4
κ̄ = 1.03 × 10−3
κ̄ = 2.07 × 10−3
κ̄ = 4.13 × 10−3

κ̄ = 0
κ̄ = 2.07 × 10−4
κ̄ = 1.03 × 10−3
κ̄ = 2.07 × 10−3
κ̄ = 4.13 × 10−3

Fig. 11 Effect of particle permeability, κ̄, on the drag force, FD. (a) Drag
force impermeable and permeable particles with different permeability
values as a function of flow parameter λ . (b) Drag force plotted as a
function of the difference of flow parameter and sticking point, λ −λs.
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