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Shear Stress Dependence of Force Networks in 3D Dense Suspen-
sions

Lance E. Edens∗, Enrique G. Alvarado∗, Abhinendra Singh¶, Jeffrey F. Morris‡, Gregory K.
Schenter§, Jaehun Chun§§, and Aurora E. Clark∗∗

The geometric organization and force networks of 3D dense suspensions that exhibit both
shear thinning and thickening have been examined as a function of varying strength of inter-
particle attractive interactions using lubrication flow discrete element simulations. Significant
rearrangement of the geometric topology does not occur at either the local or global scale
as these systems transition across the shear thinning and shear thickening regimes. In con-
trast massive rearrangements in the balance of attractive, lubrication, and contact forces are
observed with interesting behavior of network growth and competition. In agreement with
prior work, in shear thinning regions the attractive force is dominant, however as the shear
thickening region is approached there is growth of lubrication forces. Lubrication forces op-
pose the attraction forces, but as viscosity continues to increase under increasing shear stress,
the lubrication forces are dominated by contact forces that also resist attraction. Contact
forces are the dominant interactions during shear thickening and are an order of magnitude
higher than their values in the shear-thinning regime. At high attractive interaction strength,
contact networks can form even under shear thinning conditions, however high shear stress
is still required before contact networks become the driving mechanism of shear thickening.
Analysis of the contact force network during shear thickening generally indicates a uniformly
spreading network that rapidly forms across empty domains; however the growth patterns ex-
hibit structure that is significantly dependent upon the strength of interparticle interactions,
indicating subtle variations in the mechanism of shear thickening.

1 Introduction

Dense suspensions that contain a high volume fraction of
particles immersed in a liquid can exhibit a wide array of
non-Newtonian rheology. This non-equilibrium behavior
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is influenced by a range of particle interactions, includ-
ing the physicochemical characteristics of both the parti-
cles and the suspending medium. Suspended particles may
generally be subject to hydrodynamic, van der Waals, elec-
trostatic, Brownian, and frictional forces, each of which
may predominate depending on the conditions.1,2 Under
an applied shear, different rheological behaviors, such as
shear thinning and shear thickening, may be observed de-
pending on the interplay of these forces and the system
characteristics. Yielding and shear thinning under low ap-
plied stress can transition into shear thickening and shear-
induced jamming at larger applied stress.3

Shear thinning is a nonlinear effect where increasing the
applied shear stress to a suspension decreases the viscos-
ity. This phenomenon is observed in applications of ce-
ment paste, ceramic precursors, or food products, and is
not necessarily deleterious. Theories for the mechanism
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behind shear thinning focus on different physical aspects
such as the breakdown of particle clustering, elastohydro-
dynamic interactions where particles overcome the lubrica-
tion forces opposing frictional contact, or on possible non-
Newtonian properties of the solvent.3,4 Conversely, suspen-
sions exhibiting shear thickening can flow relatively eas-
ily at low stress but become highly viscous as the applied
shear stress increases. The impacts of shear thickening are
often undesirable when handling dense suspensions in sim-
ilar industrial settings. The shear thickening response can
be continuous shear thickening (CST), where the viscosity
increase with shear stress is gradual, or it can be discon-
tinuous shear thickening (DST), where the viscosity rises
abruptly (often by orders of magnitude) at a critical shear
stress. In the shear-jammed state, the suspension does not
flow and behaves like a solid, but is fragile because the
mixture can flow if the imposed stress is reduced or its di-
rection is changed.5 There is significant interest in under-
standing the mechanism behind the onset of shear thicken-
ing and the further transition into a jammed state.6,7 Theo-
ries for the mechanism behind shear thickening involve the
formation and growth of frictional force contacts between
suspended particles.8

Insight into the balance of shear stress, volume frac-
tion, and the underlying forces that influence cohesion
has begun to be achieved through simulation techniques,
including lubrication flow discrete element modeling (LF-
DEM) which has recently enabled the simulation of flows
of very dense particle suspensions by combining a short-
range lubricating flow description for hydrodynamic inter-
actions with a contact force model commonly employed
in discrete element modeling of granular materials. This
method has successfully reproduced key aspects of rheo-
logical behavior of dense suspensions such as a transition
from CST to DST with increasing shear stress, 8,9 and in-
clusion of both attractive and Brownian forces has been
demonstrated.10,11 Including attractive forces (cohesion)
has resulted in suspensions that exhibit both yielding and
shear thinning at low stress and shear thickening and jam-
ming at high stress.12,13 Predicted flow-state diagrams for
dense frictional suspensions that include attractive inter-
actions contain an intermediate region of stress between
the yield stress region and jammed states that is flowable,
with shear thinning followed by shear thickening as stress
increases.

Fundamental insight has begun to emerge regarding the
role of contact friction force networks in rheological tran-
sitions, and on the relationships between clustering, net-
work phenomena, and cohesive forces. A contact force
network (CFN) is formed by considering the connections
made between particle pairs that share a frictional force as

the edges of a graph (network), with the particles being
the vertices of the graph. In this scenario, it is hypothe-
sized that rupture of lubrication films between particles, as
shear forces overwhelm a repulsive colloidal force, leads to
shear thickening.8,14,15 The central concept is that a CFN
forms as particles are progressively driven into contact with
one another, in this case by increasing imposed stress, and
through the resulting connected structures the suspension
resists flow more efficiently. Prior work2,9,11,13,16,17 has
shown that CFNs play a critical role in the rheological re-
sponse of suspensions, both through their shear-induced
rupture for yielding and their shear-induced formation in
shear thickening. For example, the onset of shear thicken-
ing has been linked with the appearance and rapid growth
of frictional contacts,9 with this behavior being influenced
by the presence of interparticle cohesive forces.11 However,
correlation of the various particle forces as a function of
shear stress have not been extensively studied.

These insights have primarily been obtained through
traditional analyses of the macroscopic response. How-
ever, network-based analyses and associated descriptors
of network topology are beginning to contribute new in-
sights into the mechanisms of rheological transitions.2,18,19

Within a 2D suspension, Edens et al.2 demonstrated that
these network techniques could track the bulk rheological
response of discontinuous shear thickening while also con-
necting that response to the global features of the force
network. The topological descriptors of geodesic index and
the void parameter were introduced to track the CFN re-
sponse during shear thickening. These metrics reflected
complementary aspects of the CFN, with the geodesic in-
dex tracking the connectedness of the contact network and
the void parameter following the spatial areas devoid of
particle contacts. Within the 2D system, the geodesic in-
dex revealed that the onset of DST was characterized by a
rapid rise in the interconnectivity of the contact network,
and was later complemented by topological data analy-
sis,20 which found that loops (network components of Betti
number 1) were the most correlated with the rise in appar-
ent viscosity. The void analysis provided insight into the
homogeneous distribution of empty spaces, showing that
the number and area of the voids were minimized uni-
formly during the increase in network connections. The
implication is that within the 2D systems, the contact net-
work grows homogeneously at large scales but with many
local regions devoid of contacts.

Significant opportunities exist for applying network anal-
yses to flowing suspensions. For example, characterizing
the load-bearing networks as a function of shear stress
in complex-rheology suspensions may provide fundamen-
tal insight into stress transmission and may guide the de-
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sign of rheological modifiers within industrial applications,
along with rigorous correlations to physicochemical par-
ticle forces. Here we expand upon our earlier work2 by
applying topological metrics introduced above to a 3D sys-
tem.13 The single volume fraction (φ) studied in this work
can display both shear thinning and thickening behav-
ior9,21,22 and in the presence of attractive interactions (at
sufficiently large φ) a suspension can even display yield-
ing at low shear stress and thickening to a fully jammed
state at high stress.13,23 We compare and contrast the in-
formation content from various descriptors of geometric
organization and network topology. Pair distribution func-
tions, clustering, geodesic index analysis, and void analysis
are employed along with a full breakdown of all forces in-
volved, to elucidate the connection of particle microstruc-
ture and CFN evolution to both shear thinning and thick-
ening processes. Analyzing the three-dimensional, non-
Brownian cases from Singh et al.13 allows us to further
explore the particle dynamics that occur under different
rheological conditions and the role played by the attractive
interparticle forces.

2 Computational methods

LF-DEM is used to simulate simple-shear flows of dense sus-
pensions.8,9 We consider particle suspensions with differ-
ent magnitudes of attractive interaction, which cause vari-
ation in both yield stress and the nature of shear thicken-
ing, e.g., a large yield stress is found to obscure the shear
thickening, as observed in silica particle suspensions with
polymer-based depletion attractive forces24 - a feature re-
produced by the simulation method used here.11 Our goal
is to elucidate correlating relationships between geometric
organization, viscosity, and the forces (lubrication, contact
and both attractive and repulsive conservative forces) be-
tween suspended particles. We first employ spatial corre-
lation functions to quantify structural organization of the
suspension in its transition from shear thinning to shear
thickening. Next, the individual networks of lubrication,
contact, and attractive forces are examined, both in the
context of the distribution of forces in each network, and
their interconnectivities and density.

2.1 Simulation protocol

Non-Brownian spherical particles interacting by lubrication
hydrodynamics in Newtonian fluid are simulated; conser-
vative and frictional contact forces are included. 3D Lees-
Edwards periodic boundary conditions25 are employed
with imposed stress so that the suspension flows at a time-
dependent shear rate γ̇(t). We simulated about 500 total
particles of equal volume fractions of bidisperse particles
with radii a and 1.4a to prevent ordering. The unit cell for

Fig. 1 Unit cell of the simulation, with 500 total particles of two
radii a (lighter grey shading) and 1.4a (darker red shading). Each
size particle makes up half of the particle volume fraction. This
cell is replicated in all three directions and shearing is imposed by
Lees-Edwards boundary conditions.

a simulation is shown with the two sizes shaded differently
in Fig. 1 to provide an indication of the material packing
density.

The particles experience short–ranged hydrodynamic
(lubrication) forces FH, a conservative force Fcons =FA+FR

(where A and R denote the attractive and repulsive parts
of the interaction, respectively), and contact forces FC; in
a compact notation, these quantities are actually the force
and torque. We considered the motion to be inertialess
(thus, zero Stokes and Reynolds numbers) so that the equa-
tion of motion is the force and torque balance on each par-
ticle,

0 = FH(R,U)+FC(R)+FA(R)+FR(R) , (1)

where R and U are many-body position and velocity vec-
tors; the velocity includes translation and rotation.

The conservative forces FR and FA are determined based
on the positions of the particles, modeling the influence of
physicochemical parameters.

A detailed explanation of these forces is provided in pre-
vious work.9,11,13 Briefly, the hydrodynamic forces are of
the form

FH =−RFU · (U−U∞)+RFE : E∞ (2)

with U∞ = γ̇(t)yêx being the flow due to imposed shear
and E∞ the associated rate-of-strain tensor described by
E∞ ≡ (γ̇(t)/2)(êxêy + êyêx). The hydrodynamic resistance
matrices RFU and RFE contain leading order terms corre-
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sponding to short-range lubrication forces.26

The occurrence of contacts between particles due, for ex-
ample, to surface roughness is mimicked by regularizing
the divergence of the resistance matrix at vanishing nor-
malized interparticle surface separation between particles
i and j, hi j = 2(di j−ai−a j)/(ai+a j) with di j the pair center
separation: the “squeeze” mode resistance is proportional
to 1/(hi j +δ ), while the “shear” mode resistance is propor-
tional to log(1/(hi j + δ )).9 Here, we have used δ = 10−3,
such that the lubrication force is upper limited, and slight
particle overlap (contact) is allowed.

The conservative forces used are shown in Fig. 2. A
repulsive electrostatic double layer interaction between
particles is modeled. The resulting force decays expo-
nentially with interparticle surface separation as |FR| =
F0 exp(−ĥi j/λ ), where λ is the Debye length and ĥi j is
a dimensional interparticle separation (i.e., ĥi j = hi j(ai +

a j)/2). The attractive force between particles is de-
scribed by |FA(hi j)| = Aā/12(ĥ2

i j + H2), where A denotes
the Hamaker coefficient and ā denotes the harmonic mean
radius ā = 2a1a2/(a1 + a2)

27. The parameter H = 0.1ā is
employed to eliminate the divergence of FA at contact
(hi j = 0). The strength of attraction, FA (= |FA|), is con-
trolled by A, which determines the value of the attractive
force at contact, FA(0) (referred to as FA in the rest of the
article). To model the contact interaction between parti-
cles, we employ the approach of Cundall & Strack28 us-
ing linear springs. However, there is no dashpot used here
since the hydrodynamic resistance provides the source of
energy dissipation. The tangential force between two par-
ticles satisfies the Coulomb friction law, i.e.

∣∣Ft
C

∣∣ ≤ µ
∣∣Fn

C

∣∣
for compressive normal forces, where µ is the interparti-
cle friction coefficient. Upon making contact, friction is
activated and we fix the interparticle friction coefficient
at µ = 1.0 in this work. Sliding and non-sliding contact
forces are not differentiated in this case. A finite softness
is allowed at the contact. In this study, the spring stiff-
ness is tuned for each (φ ,σ), using a stiffer spring at large
σ so that neither the normal nor tangential spring defor-
mation exceeds 0.03a, i.e., they are maintained near the
rigid limit;9,29 it has been shown that the behavior can be
reproduced using the maximum spring stiffness at all con-
ditions, but with the cost of a much smaller time step at
small stress,15 apparently due to the need for sufficient de-
formation to allow enduring contacts; work without such
deformation has shown that strong shear thickening is not
captured.30

Using this simulation scheme, we determine particle po-
sitions (and thus conservative forces), normal and tan-
gential contact forces, and non-contact lubrication forces.
The development of the balance between contact and non–

Fig. 2 Conservative forces Fcons = FA +FR, plotted as function of
the scaled surface separation of a pair of particles, hi j. The dash-
dotted black curve represents the repulsive force; positive forces are
repulsive. The dashed blue, purple, and red curves are the attrac-
tive force curves with maximum magnitudes at surface contact of
FA = 0.3, 0.75, and 0.9, respectively, with the solid curves of the
same color representing the complete Fcons for the three values of
attractive force.

contact interactions with increasing strength of attraction
is responsible for significant changes in the rheological re-
sponse of the suspension. A detailed description of the
viscosity response of frictional non-Brownian suspensions
to increasing applied stress under various attractive forces
can be found in Singh et al.13 The apparent viscosity of
the suspension is defined η = σ/γ̇(t), where σ is the im-
posed shear stress. The relative viscosity is ηr = η/η0,
where η0 is the pure fluid viscosity. By increasing σ , these
systems show a transition through two different shear re-
sponse regimes. This response is shown in Fig. 3, modified
from Singh et al.,13 but here we focus on only the data
that will be further analyzed below (i.e. 500 particle sim-
ulations with a volume fraction of φ = 0.56). Beginning
at low σ , all systems are in a soft solid state. With an in-
crease in the applied shear stress beyond the yield stress,
the suspension begins to flow and exhibits shear thinning,
as the viscosity decreases with increasing σ . With further
increase of the shear stress, the viscosity reaches a mini-
mum and then increases in the shear thickening regime.
The minimum viscosity occurs at a transition σ (in dimen-
sionless form between 0.2 and 1.0, with scaling by F0/a2

that depends on FA), and marks a shift from shear thinning
to shear thickening. At larger σ , the viscosity continues to
increase until a plateau is reached as the contact network
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Fig. 3 Relative viscosity ηr plotted versus dimensionless applied
stress σ (shown in log scale). The relative viscosity is ηr = η/η0,
where η0 is the pure fluid viscosity.
Each curve corresponds to a different global FA value. The
left and right dotted vertical lines separate flowing states

from yield stress region and saturated response (i.e.
shear-thickened) states as determined by Singh et al.13

The middle dashed vertical line delineates the shear
thinning to shear thickening transition.

growth, and thus the suspension viscosity, saturates. In-
creasing the FA values results in a larger yield stress, and a
shift to a larger value of the transition σ . The minimum vis-
cosity values reached by shear thinning also increase with
larger FA, and for FA = 0.9, it can be seen that the shear
thickening is almost completely obscured, as the viscosity
shear thins almost directly onto the high stress plateau. In
short, increasing FA increases the yield stress, leading to
an increased rate of shear thinning as the connectivity is
ruptured, and reduces the extent of shear thickening.

2.2 Data Analysis
2.2.1 Analysis of 3D Particle Configurations

Pair Distribution Functions. The pair distribution func-
tion (PDF) G(d), was found by extensive sampling for the
three pairs of particle sizes: small-small, large-small, and
large-large based upon the interparticle distance d. Small
and large particle radii are a and 1.4a.

Void Analysis in 3-Dimensions. Given a collection
of points in space, Voronoi analysis is a commonly used
method that associates portions of space to their closest
point in the collection. In the current work, the points are
the particle centers, with the regions being Voronoi poly-
hedra. The Zeo++31 open source software was utilized,
as it is designed to perform geometry-based analysis of
porous materials. The program utilizes three-dimensional
Voronoi calculations to obtain the diameter of the largest

free spheres, which provides the empty space void regions
among a network of points. In this work, Zeo++ was em-
ployed in two ways. First, it was employed to study the
changes in particle packing as a function of shear stress,
to complement the information obtained from G(d). In a
more unique application of Zeo++, we subsequently an-
alyzed the “voids" in the networks formed from contact
forces. By manually defining the size of the input particles,
Zeo++ can be utilized to find voids in 3D networks (es-
sentially treating a network as a porous material). The “Ac-
cessible Volume”, “Pore Size Distribution”, and “Distance
Grids” functions were all utilized in this analysis. The Ac-
cessible Volume function outputs the number of voids, de-
fined as either pockets (empty regions surrounded by par-
ticle network) or channels (empty regions where contigu-
ous probe spheres overlap, extending across the bounding
box). Together the pockets and channels define a pore, or
overall void space. The LF-DEM output was converted to
CSSR file format∗ and the outputs from Zeo++ were aver-
aged across all the snapshots. In all cases the probe sphere
radius was set to the radius of the small particle to limit the
probe to accessible volumes.

2.2.2 Network Analyses

Network analysis is one method to characterize the topo-
logical organization of physical systems. Considering the
different particle interactions, force networks can provide
insight that is not apparent by observing solely particle lo-
cation. We have used this analysis to identify correlations
of particle force networks with the global structure, for ex-
ample the creation of long chains vs. isolated pockets of
particle-particle interactions, and with the bulk rheological
response.

The Adjacency Matrix A mathematical representation of
a network is the N × N adjacency matrix A. Two differ-
ent representations of the force networks were examined.
In the first, an unweighted network was analyzed; if the
value of the specific type of force was above a cutoff thresh-
old, then an edge value of 1 was given between a pair of
particles and zero otherwise. For an unweighted network
A = (Ai j) is defined as

Ai j =

{
0

1, if αi j is satisfied

}
(3)

where N is the number of participating nodes and αi j is
the criterion for establishing an edge between nodes i and
j. The unweighted formalism is useful to identify a va-
riety of network features, including the interconnectivity

∗ Information available at https://code.lbl.gov/
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Fig. 4 A layered network, subdivided into the conservative, lu-
brication, and contact frictional force subnetworks. a is the small
particle radius while FN and FT denote the force component normal
and tangential to the contact respectively.

of the network and the voids in the network. For con-
tact forces FC, an unweighted graph network is created
by defining edges as the frictional contacts between par-
ticles. Frictional contact occurs when the center-to-center
distance between particle pairs (d) is equal to the sum of
the particles’ radii ai + a j. In contrast to FC, the hydro-
dynamic (lubrication) forces, FH, and conservative force,
Fcons = FA +FR, are ranged interactions without hard cut-
offs. To create an unweighted graph network for FH, a
cutoff value was applied to the force values. Here an edge
between particle pairs was established when the lubrica-
tion force value was above the 20th percentile of all lubri-
cation force values for a given σ . In this work, the par-
ticle interaction forces are analyzed as separate networks
and correlations are examined between those networks, as
shown schematically in Fig. 4. Weighted force networks
can be constructed when, in Eq. 3, the weight of an edge
between two particles is the actual value of the force (con-
tact, lubrication, attractive, etc.) between the particles.
Both weighted and unweighted networks were considered,
and are constructed using the ChemNetworks software pro-
gram.32

Measuring Network Interconnectedness. To consider
the global topology of the network, we first consider path-
ways of interactions that span multiple nodes and can have
a variety of forms, e.g. chains/strings or loops/cycles. The
extent of interconnectivity within the network can be mea-
sured by analyzing the number of interaction pathways in

which each node participates. It is mathematically expedi-
ent to define a shortest pathway that connects any pair of
nodes, or a geodesic path. Here, the Floyd-Warshall (FW)
algorithm33,34 is used to convert A to the geodesic distance
matrix containing the shortest contiguous interaction paths
between individual nodes. The raw geodesic distance ma-
trix contains all sub-paths that connect a pair of nodes.
(See Fig. S1†) These sub-paths are removed to create the
so-called isolated geodesic matrix, the entries of which are
used in the geodesic index, Igd.19,35 This metric of the nor-
malized average number of pathways to which all nodes
in the network contribute and converges with system size.
The value of Igd for a network with N nodes sampled at M
frames of a simulation is given by

Igd = 100× [
∑

M
1 ρgd

N×M
]. (4)

where
ρgd =

gd1 +gd2 + . . .+gdN

N
. (5)

For i = 1, ...,N, gdi is equal to the number of isolated
geodesic paths in which node i participates. Note that ρgd

can be larger than N, as node i can be a linking node in
many geodesics that connect other pairs of vertices. The
scaling factor of 100 is introduced for convenience.

Network Sparsity. An analysis of regions void of fric-
tional contacts was performed using the Zeo++31 soft-
ware. The same method was utilized to find all particle
voids was employed here, but applied on just the contact
force network; particles that are not part of a contact pair
(often called rattlers) were removed, i.e. only particles
with at least one contact force edge were considered.

3 Results and Discussion

3.1 Analysis of Cartesian Space

Local Geometric Structure of the System. The pair dis-
tribution function (PDF) G(d) indicates the likelihood of
finding particles at a center-to-center distance d from the
reference particle. The PDF for FA=0.3 between all parti-
cle pairs is shown in Fig. 5. The three data sets shown in
Fig. 5 correspond to pairs of different particles sizes (1:1,
1:1.4, and 1.4:1.4). The PDF plots for all FA datasets are
included in the Supplementary Information (See Fig. S2†),
along with a PDF plot for FA=0.3 where surface-to-surface
distances are utilized (See Fig. S3†).

When adjusted for particle sizes, the three size pairings
have similar G(d), each with a main peak corresponding to
the nearest-neighbor position. Integrating under the peaks
from the PDFs yields the coordination numbers (CN) for
the particle pairings (Fig. S4†). Overall, the distribution
of CN for the interactions of different size particles indi-
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Fig. 5 A pair distribution function (PDF) plot for FA=0.3 where
d is the particle pair distance (in units of particle radius a). The
particle pair interactions for the bisdisperse suspension have been
separated by size, where small particles (S) have a normalized ra-
dius of 1 and large particles (L) have a radius of 1.4. Two shear
stress values were plotted to highlight the difference between shear
thinning (at σ=0.055) and shear thickening (at σ=5.0). Bin sizes
were set to 0.001. The insert highlights secondary peaks for each
pair interaction. Here the data has been smoothed using Bezier
Curves.

cate that the small particles are evenly dispersed between
the larger ones. Besides a minor shift in G(d) and CN val-
ues under higher FA, there is little PDF variability across
the three FA values. In the shear thinning regime, all peak
locations are at expected d values representative of the par-
ticles’ respective sizes. Under shear thickening conditions,
the peak d values and CN numbers indicate a slight ten-
dency toward more tightly packed configurations within
the particles forming the contact network. All FA show
a similar shift, as this is the result of the increased shear
stress forcing the particles closer together.

Pore Structure. The 3D spatial configurations of par-
ticles were explored by plotting the volume of empty do-
mains (pores) as a function of σ (see Fig. S5†). A pore is
defined as any space within the system that can contain a
test sphere of radius a (the size of the smaller simulation
particle) without the test sphere contacting any real parti-
cles. Tracking the total volume of pores conveys informa-
tion about the spatial distribution of the system, highlight-
ing any instances of large-scale inhomogeneity that occur
as a function of shear stress. Regions of high density will
produce many small pockets while low density regions will
have larger void volumes. In this instance, pores show a
relatively homogeneous distribution across all shear stress

values for all FA. However, the variability in the pore vol-
umes decreases with increasing σ , showing that the parti-
cle reorganization accesses a narrower range of conditions
in the shear thickening regime compared to the shear thin-
ning regime.

Taken together, the G(d) values, coordination numbers,
and pore volumes all indicate that slight, but not striking,
rearrangement of the geometric topology occurs as the sys-
tems transitions across the shear thinning and shear thick-
ening regimes. Therefore, the extreme changes observed
in the viscosity are not a result of large-scale particle rear-
rangements and must instead be due to alteration of the
balance of forces between particles, and reorganization of
the networks they form. Thus, classical structural correla-
tions give little insight, while we demonstrate below that
the force network analyses provide guidance about these
processes.

3.2 Layers of Forces and Their Network Interactions

Here, we consider the distributions of the particle interac-
tion forces (conservative, lubrication, and frictional con-
tact), paying particular attention to the differences ob-
served when comparing the shear thinning and thickening
regimes. All forces are scaled by the repulsive force FR at
contact, which is actually a piece of the composite conser-
vative force FA + FR. As the conservative forces depend
only on position, i.e. on pair separation in this discussion,
they will reflect and complement information gleaned from
the pair distribution function. The lubrication forces are
viscous and thus depend on particle relative motion.

3.2.1 Forces during Shear Thinning

In Fig. 6, the distributions of conservative, hydrodynamic
lubrication, and contact forces are shown respectively in
parts A-C, all for shear thinning conditions. All forces are
determined pair-wise, so the distribution is expressed in
the network theory term of an edge count, with a force
conceived as an edge between two vertices that are the par-
ticles interacting through that force. In Fig. 6A, the conser-
vative forces are characterized by a continuous distribution
of attractive forces (FA +FR < 0), with distinct and sharp
repulsive peaks evident for maximum (at surface contact)
values of FA = 0.75 and 0.9; the three peaks for each of
these FA values correspond to the three different particle
size pair interactions (1:1, 1:1.4, and 1.4:1.4). The broad
distribution is associated with sampling the full range of
separations as particles approach and recede from one an-
other, and is attractive as the attraction dominates except
at close separations. The lack of added peaks for the shear-
thinning conditions at contact value of FA = 0.3 is a result of
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Fig. 6 Shear thinning condition force distribution. (A) Histogram
of edge weights for total conservative force.(B) Histogram of edge
weights in the lubrication force network. (C) Log-linear plot of
the distribution of edge weights within the contact force network.
The number of edges in the contact force network for FA=0.3 are
virtually non-existent and are therefore not plotted. A lower cutoff
value of 0.001 was utilized for edge weights. For all plots, σ values
of 0.055, 0.21, and 0.3 were used for contact values of FA=0.3,
0.75, and 0.9, respectively.

the point of zero force (PZF), i.e. where FA(r)+FR(r) = 0,
being at a surface separation of about 0.04 radii, so the in-
tegrated effect of the weak repulsion and lubrication keeps
the particles from making frequent contact, and thus the
count is spread over many radial sampling points. For the
higher attractions (maximum FA = 0.75 and 0.9), the PZF
is at surface separation of 0.01 or smaller, and the particles
are pushed up to the maximum repulsive force for many
samplings instead of distributed, leading to sharp peaks.
Thus, even though the largest positive FA+FR is largest for
the case of a contact FA = 0.3, this condition is not sam-
pled densely at any one point, and essentially never at its
maximum (surface contact) value for this low shear stress.
Note that the absence of contact values of the extended-
range conservative force is reflected in an absence of sur-
face contact forces in Fig. 6 C. The contact force network
is relatively minor (with few edges) in the shear thinning
regime. As shown in Fig. 6C, the contact forces begin to
dominate over the conservative and lubrication forces for
the larger FA; interestingly, because force balance must be
achieved on each particle, the implication is that the large
contact forces are balanced by other contact forces and not
by forces of conservative or lubrication type. This has in-
teresting rheological implications: while the yield stress
increases with increasing strength of attraction, Singh et
al.13 reported that the contribution of viscosity due to con-
tacts at the onset of flow increases with the strength of at-
traction. Our results confirm this, and show that this is due
to the bringing of particles into proximity such that the flow
occasionally induces a contact network. While the contact
forces have significant strength, the values which are well
above the scale of conservative and lubrication forces are
relatively few, indicating that the contact force network is
only occasionally dominant.

Figure 6B shows the edge weight distribution within the
lubrication force network, from which we may deduce cer-
tain dynamical features of the behavior. In the shear thin-
ning regime, the lubrication edge weights increase at larger
strength of attraction, as a result of particles being pulled
close to contact, where the lubrication resistance (scal-
ing as the inverse gap scale for normal motion) is largest.
The lubrication forces are comparable to the conservative
forces, with scaled values of O(0.1), except for occasional
large values at FA = 0.9 where the noted PZF near contact
results in contact network formation. When this network
breaks, some particles have unbalanced contact forces and
these must be balanced by rapid change of surface sep-
aration with neighbors, resulting in the large lubrication
forces. Note that the edge count distributions of the ele-
vated lubrication and contact forces at FA = 0.9 are compa-
rable, roughly falling in the range of 0.01-10.
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Fig. 7 Shear thickening condition force distribution. (A) Histogram
of edge weights for total conservative force. (B) Histogram of edge
weights in the lubrication force network. (C) Log-linear plot of the
distribution of edge weights within the contact force network. A
lower cutoff value of 0.001 was utilized for edge weights. For all
plots, σ values of 5.0 were used.

3.2.2 Forces during Shear Thickening

Following the format of Fig. 4, the edge distribution within
the conservative force network in the high stress shear
thickening regime for the three FA is shown in Fig. 7A.
Again, the broad sampling of the attractive portion (nega-
tive force) is simply understood as a result of the bulk mo-
tion moving particles to and away from contact, thus sam-
pling the longer-range attraction. We now see the sharp
peaks in the conservative force distribution for all of the
values of the attractive portion of the potential: these are
the contact peaks where pair accumulation is indicated at
contact in the G(d) plots of Fig. 3. The peaks at maximum
repulsion (positive FA +FR) for contact FA = 0.3 are well-
defined, but are lower in total edge count than the higher
attraction forces. This is consistent with FA = 0.3 having
the least developed network organization. Both FA = 0.75
and 0.9 show well-defined narrow peaks.

The edge weights of the lubrication forces for the shear
thickening regime are smoothly distributed in magnitude,
as seen in Fig. 7B. The lubrication forces, while generally
more distributed to larger values than in the shear thinning
regime, are dominated by the contact forces. Interestingly,
the FA = 0.9 shows the lowest lubrication force values while
FA = 0.3 has the highest value, suggesting that the stronger
attraction is effective in generating correlated motion of
sufficient solid-body character that larger lubrication forces
are limited.

Contact forces are the dominant interactions during
shear thickening, and significant edge counts extend to di-
mensionless force values of O(10) where the shear thinning
reached only O(1). The contact forces for all three FA are
shown in Fig. 7C for σ = 5. The striking change in the
contact force distribution between the thinning and thick-
ening regimes highlights the transition from a lubricated
to frictional rheology,14,15 with the attractive forces play-
ing a large role in the behavior at small stress. The form
of the contact force distribution, with a large pair count
for relatively small edge weights, a maximum correspond-
ing to roughly the mean contact force, and an exponential
decay at larger edge weights, is characteristic of the inter-
particle forces found in granular materials.36 The relatively
small differences in both lubrication and contact forces in
the shear-thickening regime between different maximum
FA values point to the essential similarity of the material in
this regime, with convergence to very similar bulk proper-
ties at σ > 10, where the attractive forces are small relative
to the other forces.

3.2.3 Shear Thinning vs. Shear Thickening Regimes

Compared to shear thinning (Fig. 6), the attractive force
network during shear thickening (Fig. 7) displays a slightly

Journal Name, [year], [vol.],1–12 | 9

Page 9 of 12 Soft Matter



more organized structure, with FA = 0.3 showing the most
change. However, the overall attractive force edge distribu-
tions between particle pairs does not change significantly
between the shear thinning and thickening regimes.With
respect to the lubrication force network, as the suspension
goes from shear thinning to shear thickening, the lubrica-
tion edge distribution display two major changes. First,
the overall force magnitudes have greatly increased. Sec-
ond, the relationship between the lubrication force and FA

reverses. Due to opposing factors, sorting out the exact
mechanism behind these two changes in the lubrication re-
sponse is difficult. While globally the overall particle dis-
tances do not greatly change between the shear thinning
and shear thickening regimes, local distances in the shear
thickening regimes can decrease. Lubrication requires rel-
ative motion between particles, and for a given relative
motion (normal or tangential, with much stronger effects
for normal motion), the force is stronger when the particle
pair gap is smaller. It is possible that under shear thinning
conditions, where contact forces are relatively insignifi-
cant, higher attraction forces pull more particles closer to-
gether, but not to contact. This increases pairwise lubrica-
tion forces and therefore the overall force scales with FA.
In the shear thickening regime, where contact forces are
dominant over the other forces, larger σ values provide
the force needed to drive more particles to contact.

Particles involved in frictional contributions have neg-
ligible relative motions along the line of centers of each
pair. This leads to an appreciable reduction of lubrica-
tion forces at higher FA, whereas the few particles that are
not involved in such contact networks experience increased
lubrication forces. The former contribution is dominant.
Lower FA values with higher lubrication forces thus aligns
with the notion that structured local clustering due to dom-
inant frictional contact forces is responsible for shear thick-
ening.

Given the lack of a CFN in the shear thinning region, we
analyze the changes to the contact forces by examining the
growth of the network using two different metrics of net-
work behavior, the geodesic index (a measure of intercon-
nectivity) and analysis of the void regions in the network.
The geodesic index, Igd , is a global metric of the extent of
interconnectivity in a network, as it measures how many
nodes participate in isolated geodesic paths. We applied
this measure to the frictional contact force networks. The
geodesic index for all three FA datasets is shown in Fig.
8A as a function of applied shear stress. For FA = 0.3, the
contact network is not significant until σ is large enough
to be within the shear thickening regime. Once the transi-
tion σ value is reached, contact networks form rapidly as
a function of σ , as indicated by the rising Igd . At large σ ,

the geodesic index approaches its saturation value of par-
ticles participating in the network. For FA = 0.75, Igd has
a value of ≈ 40 at σ = 0.1, indicating that the higher at-
traction force generates frictional contacts within the shear
thinning regime, and continues to grow with uniform slope
through the transition σ . For FA = 0.9, Igd begins at ≈ 60
at σ = 0.1 and shows a very rapid increase to the satu-
ration value while still in the shear thinning regime, and
in fact shows a slight overshoot, suggesting that the force
network is a combination of shear-driven and attraction-
driven contacts at the peak. Igd then remains at its satura-
tion value for all higher applied shear stress. This indicates
that higher attractive forces allow for contact networks to
form under shear thinning conditions. It is striking to note
that Igd correlates closely with the variation of the viscosity,
explaining why shear thickening is essentially obscured at
FA = 0.9: the saturated network is essentially fully devel-
oped in the thinning regime, whereas at lower FA, satura-
tion of the occurs at stresses above the transition value and
so the viscosity exhibits significant shear thickening.

Complementary to the connectivity measure of the
geodesic index is an understanding of the regions that
remain unoccupied by the contact networks as stress in-
creases. We begin by describing the pore data and continue
by relating the results to the geodesic index. Measuring
volumes of the empty domains, or pores, conveys informa-
tion on the patterns associated with the forming networks.
Here the edges of the contact network form the boundaries
that segregate the void domains; therefore, a region of high
connection density will produce many small voids. Un-
der increasing σ , a uniformly growing network will show a
continuous, rapid decrease in pore volume as network con-
nections spread across the empty domains. Conversely a
network grown inhomogeneously from several “seed" loca-
tions will initially display a slow decrease in pore volume,
switching to a rapid decrease when the various networked
domains connect with each another.

The pore volume (as a percentage of the total possible
empty volume) for all three FA is shown in Fig. 8B as
a function of applied shear stress. As expected from the
above geodesic plot, the FA=0.3 dataset shows the most
change in pore space while FA = 0.9 only has very small
pores resulting from a saturated network. However, there
is new information in the shape of each curve. FA = 0.3
initially shows a very rapid decrease until σ = 1. This is
indicative of a uniformly spreading network that rapidly
forms across the empty domains. Within the shear thick-
ening regime, between σ = 1.0 and σ = 10 the decrease
in pore volume slows. The slow growth appears to result
from contacts spreading from established zones, consistent
with the formation of a fully ramified CFN from more ten-
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Fig. 8 (A) The geodesic index for contact networks (shown in log
scale). (B) The total pore volume (i.e. empty space) created by
the contact networks plotted as a percentage of maximum possible
pore volume. For all plots, each curve corresponds to a different FA

value. The asterisks represent the transition point between shear
thinning and shear thickening.

uous contact force chains. At large σ , the pore volume
rapidly decreases again as the local networks meet each
other and form a saturated global network. In contrast,
FA=0.75 does not exhibit a rapid decrease of pore area, but
instead shows a steady decrease in pore volume until near
global saturation. Interestingly, between σ = 1.0 and σ =
10, both FA = 0.3 and FA = 0.75 have similar pore volumes
and show similar network growth. However, the lack of an
initial global homogeneous growth pattern for FA = 0.75
may mean the contact networks present have many small
zones of high connectivity, which could explain why Igd for
that network remains greater than for FA = 0.3.

4 Conclusions
In-depth knowledge of the rheological response of dense
suspensions is critical to handle, predict, and tailor flows of
the suspensions in various natural (e.g., sediments, mud)
and industrial (e.g., petroleum, ceramic, cement, and nu-
clear waste treatment) settings. Utilizing detailed infor-
mation on positions and forces associated with the parti-
cles from the LF-DEM simulations, we have investigated

correlations between geometric organization of particles,
underlying forces, and rheological properties based on dif-
ferent spatial analyses and topological metrics exhibiting
global/local particle organization and connectivity, com-
bined with network structure/topology and strength of
particle forces. Specifically, we implemented pair distri-
bution functions, and geodesic index/void analyses, com-
bined with detailed force analysis, to explain the particle
microstructure and contact force network behavior during
both shear thinning and thickening processes.

These analyses demonstrate that changes to suspension
viscosity do not simply result from local/global-scale par-
ticle rearrangements but are rather associated with the
detailed balance of forces between particles and resul-
tant force networks, coupled with the application of shear
stress. For the force network analyses, global metrics (e.g.,
geodesic index and pore volume) present reasonable signa-
tures of ensemble characteristics of rheology, here shown
as the relative viscosity, of suspensions), connecting to
the balances between particle forces. This can provide a
connection between parameters used in empirical viscos-
ity models of dense suspensions (e.g., Krieger-Dougherty
equation) and structural information for attractive dense
suspensions. The network analyses indicate that signifi-
cant rearrangements of the balance of forces occur as a
suspension transitions from shear thinning to shear thick-
ening with application of shear stress. The attractive, lu-
brication, and contact force networks evolve in an interac-
tive fashion as the regime changes. Although the attractive
force is dominant under shear thinning, with increased σ ,
lubrication force networks grow that oppose attraction and
both become outweighed by the contact force network as
shear thickening occurs. As understood from prior study,
contact forces dominate during shear thickening - increas-
ing by an order of magnitude across the shear thinning to
shear thickening transition. Interestingly, the growth of the
contact force network, and more specifically the network
topology, is rather sensitive to the magnitude of the attrac-
tive interaction between particles within the simulation.
For example, at smaller attractive force, different rates of
the network topology growth rate can be observed once the
shear thinning - shear thickening transition is reached. In
contrast, under sufficiently large attractive force, these dif-
ferent growth rates are absent from the network topology
and contact networks saturate during the shear thinning
regime. In addition, the manner in which the contact force
network grows in these 3D suspensions is more nuanced
than previously observed in 2D suspensions analysed us-
ing a similar methodology. This highlights a need for more
quantitative correlations between the interaction network
and rheological responses.
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