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Hysteresis in spreading and retraction of liquid droplets
on parallel fiber rails†

Fang Wanga and Ulf D. Schiller∗a

Wetting and spreading of liquids on fibers occurs in many natural and artificial processes. Unlike
on a planar substrate, a droplet attached to one or more fibers can assume several different shapes
depending on geometrical parameters such as liquid volume and fiber size and distance. This paper
presents lattice Boltzmann simulations of the morphology of liquid droplets on two parallel cylindrical
fibers. We investigate the final shapes resulting from spreading of an initially spherical droplet
deposited on the fibers and from retraction of an initial liquid column deposited between the fibers.
We observe three possible equilibrium configurations: barrel-shaped droplet, droplet bridges, and
liquid columns. We determine the complete morphology diagram for varying inter-fiber spacing and
liquid volume and find a region of bistability that spans both the column regime and the droplet
regime. We further present a simulation protocol that allows to probe the hysteresis of transitions
between different shapes. The results provide insights into energies and forces associated with
shape transformations of droplets on fibers that can be used to develop fiber-based materials and
microfluidic systems for manipulation of liquids at small scale.

1 Introduction

Liquid-fiber interactions play an important role in many natural
and engineered processes including wetting and drying of hair
or feathers1,2, wicking of fabrics3, coalescence filtration4, and
fiber coating5. Advances in fabrication of functional fibers also
make it possible to use droplet-fiber system as building blocks for
micro- and nanofluidic systems6–8. The wetting and spreading
of droplets on complex substrates is governed by surface interac-
tions, interfacial tension and capillarity. The driving mechanisms
have been extensively studied on flat homogeneous and patterned
substrates9, going back to Young’s work on liquid bridges be-
tween flat plates10. Although considerable progress has been
made9, a complete theoretical description of wetting transitions
remains challenging due to the inherent multiscale nature of the
contact line. On real substrates, contact angle hysteresis due to
surface roughness or chemical heterogeneity further complicates
the understanding even for flat surfaces. Recent advances in-
clude, for example, the study of wetting phenomena in triangular
grooves11,12 and wedge geometries13.

a Department of Materials Science and Engineering, Clemson University, Clemson, SC
29634, USA
∗ E-mail: uschill@clemson.edu
† Electronic Supplementary Information (ESI) available: Simulation movies of
spreading droplets, retracting columns, and morphological transitions are provided
as supplementary files. See DOI: 00.0000/00000000. The data and code used to
generate the figures in this manuscript can be freely accessed and executed through
Code Ocean. See DOI: 00.0000/00000000

The configuration of a liquid droplet adsorbed to a surface
is characterized by the contact line, i.e., the boundary between
the wetted and unwetted regions of the surface. On a homoge-
neous flat surface, a droplet will assume a spherical cap shape
with a radius determined by the contact angle and the line ten-
sion. The situation is more complicated on complex surfaces
and continues to attract theoretical and experimental studies of
various geometries including cylindrical fibers3,14–20, ribbon-like
fibers21,22, and spherical beads23–25. Droplets on fibers can as-
sume equilibrium shapes that cannot be realized on planar sub-
strates. The shape is in general not axisymmetric and cannot be
described by a single curvature radius. Hence, unlike on a planar
surface, a vanishing contact angle is not a sufficient condition for
spreading. A droplet on a single fiber can assume two distinct
equilibrium shapes: a barrel shape if the droplet volume normal-
ized by fiber radius is large or the contact angle is low, and a
clam-shell shape if the droplet size is small or the contact angle
is high26,27. McHale and Newton28 have used analytical and fi-
nite element calculations to determine the surface free energies
of droplet configurations and found that for large droplet volume
or small contact angle, the barrel shape is energetically preferred
while for small droplet volume or large contact angle, the clam-
shell shape has a lower energy. Their results suggest that the
stable barrel shape droplets are characterized by an inflection an-
gle where the curvature radius changes its sign. While both cur-
vature radii remain positive at the apex, at the contact line one
curvature radius changes sign to reduce the excess Laplace pres-
sure. However, the absolute stability of barrel-shaped droplets is
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ultimately still an open question as the accuracy of the energy
obtained from finite element calculations depends on resolution
making it difficult to precisely ascertain the region where barrel-
shapes have lower energy than clam-shells, as noted by McHale
and Newton28.

Fiber materials consist of many fibers and a liquid droplet can
be in contact with two or more fibers simultaneously leading to
competing surface interactions. A proto-model for the spread-
ing of droplets attached to multiple fibers is a parallel pair of
cylinders forming a “fiber rail”. For this arrangement it has been
observed that, if the spacing between the fibers is sufficiently
small, a droplet of wetting liquid will spontaneously spread out
in the inter-fiber space to form a liquid column of constant cross-
section29. This wicking transition is reversible, i.e., if the fiber
spacing is increased above a threshold, the liquid column will re-
tract into a droplet bridge. The first analytical description of the
shape of a liquid bridge between two parallel fibers with a small
spacing was given by Princen30, who determined the existence re-
gion of the column as a function of fiber distance. Similar to the
case of a single fiber, however, the regions of stability of differ-
ent liquid configurations described by Princen’s equation remain
unspecified.

Keis et al.6 have experimentally investigated the spontaneous
spreading or retraction of droplets on fiber rails. They deter-
mined the critical inter-fiber distance by a dynamic method and
found that the wicking kinetics can be described by the Bosan-
quet law31 at very short times and the Lucas-Washburn law32,33

at later times. Protiere et al.19 conducted experiments with paral-
lel fibers of varying fiber distance and radius, liquid volume, and
contact angle, and studied the transition between a hemispherical
drop shape and a liquid column. They found that the transition
depends on the geometry as well as the liquid volume, and ob-
served a region where both the barrel drop and the liquid column
are stable. This suggests that the transition from one morphol-
ogy to the other exhibits hysteresis. By comparing the surface
energy of a column to that of a spherical droplet, a curve above
which the droplet energy is smaller than the column energy can
be found for each volume. This curve estimates the boundary of
the region with stable droplets and it was found to be close to
the drop-to-column transition observed in experiments. Protiere
et al. hypothesized that the hysteresis is unrelated to contact line
pinning or elastic effects, however, the simple energetic model
cannot explain the origin of the hysteretic behavior or the size of
the hysteresis loop.

Several authors have presented numerical simulations of the
3D shape of liquid bridges between two fibers to predict the cap-
illary forces as a function of fiber distance17,20,34,35. Virozub et
al. employed the Surface Evolver package to minimize numeri-
cally the surface free energy per unit length of the liquid config-
uration. They used an analytical expression to calculate the re-
sultant forces, energies, and torques exerted by the liquid bridge
on the fibers. The results suggest that stable symmetric bridges
are favored at small fiber distance, whereas larger contact angles
lead to coexistence of stable asymmetric and unstable symmetric
configurations. The region of stability and transitions between
the shapes were not further discussed. Aziz and Tafreshi20 re-

ported experiments and numerical calculations of the mechanical
forces between two fibers connected by a liquid bridge. The de-
pendence of the force on fiber spacing was studied for parallel
and orthogonal fiber configurations, and the detachment force of
a pendant bridge was determined as a function of liquid volume.
The numerical simulations always started with a cuboid-shaped
droplet and the column to droplet transition was thus not ob-
served in this setup. Wu et al.17 and Bedarkar et al.35 extended
the surface energy formulation by McHale and coworkers to the
case fiber rails and also employed the Surface Evolver package
to investigate the wetting morphology of droplet for varying liq-
uid volume, fiber spacing, and contact angle. The results indicate
that the dependence of the wetting length on the contact angle
is strongly affected by the liquid morphology. Wu at al.17 consid-
ered an additional bridge state, where the droplet shape does not
engulf the fibers but only partially wraps the outside surfaces. The
critical droplet volume where the surface energy of an engulfing
barrel shape and the partially wrapping droplet bridge are equal
were determined using Surface Evolver. The numerical minimiza-
tion of the surface energy allows to express the critical condition
for absolute stability as a family of characteristic wetting curves
in the volume-distance parameter space. The partially wrapping
bridge state, which can exist for larger fiber distances, is different
from the liquid column observed in experiments6,19. Therefore,
the wetting curves obtained by energy minimization do not nec-
essarily capture the absolute minimum morphology. The transi-
tions between different liquid configurations and the associated
hysteresis thus remain incompletely understood.

An alternative to determining the stable liquid configuration by
minimization of the surface energy is to consider the correspond-
ing Young-Laplace equation. In a stable configuration, the excess
Laplace pressure is constant everywhere across the droplet sur-
face. Such a configuration is metastable if its surface energy is
higher than another stable morphology with the same volume. A
morphology transition is thus associated with an energy barrier
that corresponds to overcoming Laplace pressure. However, since
measuring excess pressure for small liquid volumes is challeng-
ing, the connection between the surface energy landscape and
capillary pressure in the context of morphology transitions has
not been investigated in detail in previous works.

To fill this gap, we use multicomponent lattice Boltzmann sim-
ulations to investigate the morphology of liquid wetting on a fiber
rail. The multicomponent lattice Boltzmann method36–39 belongs
to the class of diffuse interface methods, where the interface be-
tween immiscible fluid components has a finite width controlled
by the interaction strength between fluid components. The width
of the interface introduces a length scale that can take over the
role of the slip length, thus implicitly resolving the Huh-Scriven
paradox, i.e., the divergence of the dissipation rate that arises
from application of the no-slip boundary condition. The diffuse
interface width can also be reconciled with the scaling regimes
for moving contact lines40 and connects to the sharp interface de-
scription in terms of the Cox-Voinov relation41. Within the LBM,
The interfacial tension between the fluids and the contact angle
of the three-phase line can be controlled by tuning the interaction
parameters between different fluid species and the surface42. Ap-
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(a)
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(c)

Fig. 1 Schematic illustration of different equilibrium shapes of liquid droplets on fiber rails. A top view is shown on the left, while the side and
cross-sectional views are shown on the right. (a) A barrel shaped droplet fully engulfs the fibers in liquid. (b) A droplet bridge wraps partially around
the fibers and forms contact lines on the surface of the fibers. The height and the cross-sectional area of the droplet bridge can vary along the wetting
length. (c) A liquid column is similar to the droplet bridge with a constant height and cross-sectional area.

parent phenomena such as contact angle hysteresis and surface
slip can in principle be incorporated by explicitly modeling rough
or patterned surfaces43. The method is thus suitable to model the
interactions of wetting liquids with homogeneous fiber surfaces.
We study the dynamic spreading and retraction of liquid volumes
on fiber rails. The simulations confirm the existence of three pos-
sible configurations, barrel-shaped droplet, droplet bridge, and
liquid column. The wetting length and capillary pressure of the
liquid column configuration is validated against theoretical analy-
sis and experimental measurements. Starting from different con-
figurations, we observe spontaneous capillary motion and identify
two bistable regions in the morphology diagram. We investigate
the transitions from metastable shapes to lower energy config-
urations by applying an external force to overcome the energy
barrier, which allows us to estimate the critical Laplace pressure
associated with the energy barrier. Our simulations and analysis
advance the understanding of liquid spreading on fibers and can
be used to enhance designs of filtration devices or microfluidic
systems for manipulation of small amounts of liquids.

The remainder of the manuscript is organized as follows. In
section 2, we briefly review the thermodynamics of interfaces and
introduce the multicomponent lattice Boltzmann model. We re-
port the analysis of the simulation results in section 3. The con-
clusions of our work are discussed in section 4.

2 Mathematical and numerical methods

2.1 Surface morphology

The equilibrium contact angle � between a liquid interface and a
solid substrate is controlled by three surface tensions, solid-liquid

SL, solid-vapor 
SV , and liquid-vapor 
, and can be expressed by
Young’s equation

cos� =

SV − 
SL



. (1)

The three surface tensions determine the equilibrium spreading
coefficient

Seq = 
SV −(
SL+ 
). (2)

If Seq ≥ 0, the contact angle is zero and the liquid will spread
out as a film on the substrate. Conversely, if Seq < 0, the liquid
will assume a configuration with a finite contact angle �. The
Laplace excess pressure Δp at a point on the interface is given by
the Young-Laplace equation

Δp = 

(

1
R1

+ 1
R2

)

, (3)

where R1 and R2 are the principal curvature radii. In general, R1
and R2 vary across the surface. The surface free energy E can be
written in the form

E = 

(

ALV −ASL cos�
)

, (4)

where ALV and ASL are the liquid-vapor and solid-liquid interfa-
cial areas. To determine the equilibrium morphology, the surface
energy has to be minimized subject to given constraints such as
constant liquid volume and substrate geometry, e.g., fiber sur-
faces. Explicit solutions are only available for simple situations
such as a spherical droplet on a flat surface, an axisymmetric
droplet on a fiber26, or liquid column on a fiber rail19. In general,
the solutions to the nonlinear problem require numerical proce-
dures.

For the case of two parallel fibers, the geometric parameters
include the fiber radius and the inter-fiber distance. In the discus-
sion of our results below, we categorize three possible equilibrium
configurations for liquid wetting on fiber rails: a barrel-shaped
drop similar (but not axisymmetric) to an unduloid on a single
fiber, a droplet bridge that partially wets the outside surfaces of
the fibers, and a liquid column with a constant cross section. The
three configurations are shown in Fig. 1. To illustrate the distinc-
tion between these configurations, the perpendicular and parallel
cross sections at the barycenter of the liquid volume are depicted
in Fig. 1. The barrel drop fully engulfs the fibers and has an al-
most circular cross section near the center. The cross section of
the droplet bridge and barrel drop vary along the fiber direction
which makes it more difficult to describe them analytically. The
droplet bridge has a convex cross section while the liquid column
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can have both convex and concave perpendicular cross sections.
The liquid column is flat in the parallel direction except near the
menisci, hence the cross section is nearly constant and one of
the principle curvatures vanishes. The previous approaches for
describing the shapes mathematically are typically based on the
functional relationship between the wetting length and capillary
pressure15,19,30. While the column morphology has been studied
in some detail in theory and experiment, there have been few at-
tempts to determine the wetting length and capillary pressure of
barrel shapes and droplet bridges on fiber rails.

2.2 Lattice Boltzmann method

The lattice Boltzmann method is a versatile multiscale method
for computational fluid dynamics beyond simple Newtonian liq-
uids44. Over the last few decades, various methods have emerged
that make the LBM applicable to complex fluids including mul-
tiphase/multicomponent fluids36–39. In contrast to traditional
CFD methods, the dynamics of the fluid is described on a kinetic
level and the Navier-Stokes equation emerges as the hydrody-
namic limit of an asymptotic expansion. The kinetic description
offers a way to dial in specific physico-chemical interactions at the
mesoscale which enables coupling of different fluid components
and molecular solutes. The dynamics of the fluid is described by
the lattice Boltzmann equation

fi(x⃗+ℎc⃗i, t+ℎ) = f∗i (x⃗, t)

f∗i (x⃗, t) = fi(x⃗, t)−
∑

j
Λij

[

fi(x⃗, t)−f
eq
i (�, u⃗

∗)
]

,
(5)

where x⃗ are discrete positions in space on a cubic lattice with
lattice spacing a, ℎ is a discrete time step, and c⃗i are discrete ve-
locities such that ℎc⃗i connects lattice sites. The fi are local pop-
ulations representing the mass density of fluid associated with
velocity c⃗i, and the matrix Λij represents a collision operator that
relaxes the populations towards a discrete Maxwell-Boltzmann
equilibrium f eq

i . In this work, we employ the three-dimensional
D3Q19 lattice that uses 19 velocities connecting nearest and next-
nearest neighbors of the cubic lattice. The equilibrium distribu-
tion is taken as the third-order expansion

f eq
i (�, u⃗

∗) = �wi[1+
c⃗i ⋅ u⃗∗

c2s
+
(c⃗i ⋅ u⃗∗)2

2c4s
− u

∗2

2c2s

+
(c⃗i ⋅ u⃗∗)3

6c6s
−
u∗2(c⃗i ⋅ u⃗∗)

2c4s
],

(6)

and the common Bhatnagar-Gross-Krook (BGK) collision oper-
ator Λij = �ij� with a single relaxation time � is used. The
method recovers the incompressible Navier-Stokes equation with
a kinematic viscosity � = c2s (� −ℎ∕2), where cs = 1∕

√

3 a∕ℎ is the
(pseudo-)speed of sound of the lattice. In the implementation
used in this work, the hydrodynamic variables are obtained as

moments of the post-collisional LB populations

� =
∑

i
f∗i , (7)

�u⃗ =
∑

f∗i c⃗i. (8)

The distinction between u⃗ and u⃗∗ is used to accommodate mo-
mentum source terms arising from interactions between different
fluid components as introduced in the next subsection.

2.2.1 Multicomponent lattice Boltzmann

Multiple fluid components can be incorporated in the lattice
Boltzmann method by using multiple sets of populations f�i
where � indexes the components. Following Shan and Chen36,37,
the interactions between different components or phases are
modeled by a non-local interaction forces F⃗ �(x⃗, t) given by

F⃗ �(x⃗, t) = − �(x⃗, t)
∑

�̄
g��̄

∑

x⃗′
 �̄(x⃗′, t)(x⃗′− x⃗), (9)

where g��̄ is an interaction coefficient and  �(x⃗, t) = (��(x⃗, t)) are
the Shan-Chen pseudo-potentials representing an effective mass.
The sum over x⃗′ runs over the neighboring lattice sites that are
connected to x⃗ by a discrete velocity vector x⃗′ − x⃗ = ℎc⃗i. The
pseudo-potentials are monotonous functions of density that are
taken in the form

 �(x⃗, t) =  [��(x⃗, t)] = �0
(

1−exp[−��(x⃗, t)∕�0]
)

(10)

with a reference density �0. In the implementation used in this
work, the interaction forces are incorporated in the collision op-
erator by shifting the velocity in the equilibrium distribution by

Δu⃗�,∗(x⃗, t) = �
F⃗ �(x⃗, t)
��(x⃗, t)

. (11)

The post-collisional hydrodynamic velocity is shifted accordingly
by

Δu⃗�(x⃗, t) = ℎ
2
F⃗ �(x⃗, t)
��(x⃗, t)

(12)

consistent with the usual half-step correction for the force. The
interaction coefficient g��′ controls the miscibility of the compo-
nents: a positive value represents repulsive interactions that lead
to demixing. The interaction potential implies a non-ideal equa-
tion of state of the form45

p(x⃗) =
∑

�
��(x⃗)c2s +

1
4
∑

�,�̄
g��̄

∑

x′
[ �(x⃗) �̄(x⃗′)

+ �̄(x⃗) �(x⃗′)](x⃗− x⃗′)2.

(13)

The interfacial tension between the two components, e.g. liquid
and vapor, arises from46


��̄ = ∫ (pn−pt)ds (14)

and can be calibrated to a desired value by adjusting the inter-
action strength g��̄ . It is worth noting that in the conventional
Shan-Chen model employed here it is not possible to tune the
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surface tension and the density ratio independently46. However,
this makes it possible to estimate the interfacial tension from the
density difference42


��̄ = g��̄
�� −��̄

2
. (15)

To describe liquid-solid interactions, it is convenient to treat the
solid as a virtual component and introduce a liquid-solid interac-
tion force analogous to the liquid-liquid interactions42

F⃗ �s (x⃗, t) = −gs,� �(x⃗, t)
∑

x⃗′
 (��s )(x⃗

′− x⃗)s(x⃗′, t), (16)

where s(x⃗′, t) is 1 if x⃗ is a solid site and 0 if it is a fluid site, gs,� is
the interaction strength between fluid component � and the solid
wall, and ��s is a virtual fluid density. The liquid-solid interfacial
tension can be calibrated by the interaction strength and a density
parameter Δ� such that ��s = �

�±Δ�, which leads to 
s,� =±gs,�Δ�
and42,47

cos� =
2(gs,� +gs,�̄)Δ�
g��̄(�� −��̄)

. (17)

This provides a convenient way to tune the contact angle through
the virtual wall density. If the same interaction strength is used
for fluid-fluid and fluid-solid interactions gs,� = gs,�̄ = g��̄ , the es-
timated contact angle depends only on the density parameter Δ�.
It was shown in Ref. 48 that the contact angle � follows a linear
dependence on the parameter Δ�. In practice, the contact angle
can be calibrated through geometric measurements for a droplet
on a flat substrate or in a duct47.

In addition to the interaction force, mid-link bounce-back
boundary conditions are applied to obtain a hydrodynamic no-
slip boundary condition for the fluid velocity at the surface. For
details on the the pseudo-potential lattice Boltzmann model, we
refer the reader to the review by Chen et al.49.

2.2.2 Simulation setup

We used the parallel lattice Boltzmann code LB3D50 to perform
simulations of liquid droplets on fiber rails. The simulations were
performed in rectangular domain of 150 × 150 ×Nz lattice sites
with periodic boundary conditions in all directions. The fibers
were modeled as rigid cylinders of radius r = 10a with no-slip
boundary conditions employed through a standard bounce-back
scheme at the surface. The length Nz of the domain in the direc-
tion parallel to the fibers was chosen to accommodate the wetting
length and ranges from 600 to 1500 lattice sites. We have checked
that an increase of the domain size does not change the measured
final wetting length and shape of the liquid droplet.

The BGK relaxation time �� for both fluids was set to 1ℎ such
that there is no viscosity contrast between the liquid phases. The
Shan-Chen coupling strength g��̄ was set to 0.14 �0a2∕ℎ2 to ob-
tain the desired phase separation while maintaining numerical
stability. This value leads to an interface thickness of around 6
lattice sites. The corresponding surface tension was determined
by preliminary simulations of a static droplet in a 1503 domain
and fitting Laplace’s law which yielded 
 = 0.1655 �0a3∕ℎ2. The
contact angle was set by tuning the virtual wall density �s and

measuring the contact angle of a droplet on a flat surface. The re-
sults reported in this work are based on a contact angle � = 0 for
complete wetting. The fiber surfaces are smooth and chemically
homogeneous such that there is no contact angle hysteresis.

The main parameters that determine the liquid morphology on
fiber rails are the droplet volume V and the inter-fiber distance
d. We have used two initial conditions for the droplet configu-
ration, a spherical droplet and a column-like droplet. The initial
densities of the two fluid components were set to the values deter-
mined in the Laplace-test for a spherical droplet. The column-like
droplet is taken as a cylindrical column with spherical caps and is
placed such that it only wets the inside surfaces of the two fibers.
In order to compare the simulation results to experimental mea-
surements and theoretical expressions, we use the fiber radius r to
obtain dimensionless variables for the inter-fiber distance d̄ = d∕r,
droplet radius R̄ = R∕r and droplet volume V̄ = V ∕r3. The time
scale of the simulations is determined by the viscosity � of the LB
fluid. We use a viscous/capillary time scale to obtain a dimen-
sionless time t̄ = t�
∕(�r). It is worth noting that one could also
use an inertial/capillary time scale

√

�R3∕
, however, our main
focus is on the stable liquid morphologies where the choice of the
time scale is of lesser interest.

Since the multicomponent LBM is a diffuse-interface model, the
liquid interface spans several lattice sites. We define the position
of the interface between two fluid components as the location
where the order parameter � = �� − ��̄ is zero. When measuring
the liquid volume in the final configuration, we observed a slight
decrease compared to the volume of the initial droplet. This de-
crease was always less than 4% and therefore considered negli-
gible. During the simulations, we monitored the Laplace pres-
sure Δp and the surface free energy E. The Laplace pressure
is measured by taking the difference between the fluid pressure
Eq. (13) at the center of the liquid drop and the pressure at the
boundary of the simulation domain. Since the fluid densities are
constant sufficiently far away from the interface, this calculation
corresponds to the pressure drop across the diffuse interface. The
free energy is calculated based on the liquid-liquid and liquid-
surface interfacial areas. The areas are calculated by integrating
the lattice data over the � = 0 isosurface. We used the criteria

|

|

|

|

Δp(t)−Δp(t−1000ℎ)
Δp(t)

|

|

|

|

< 10−5

|

|

|

|

E(t)−E(t−1000ℎ)
E(t)

|

|

|

|

< 10−5
(18)

to determine that the final equilibrium configuration had been
reached.

3 Simulations of liquid spreading on fiber
rails

3.1 Spreading of spherical drop

To investigate the wetting behavior and the equilibrium morphol-
ogy of liquid droplets on fiber rails, we first consider the spreading
of an initially spherical droplet deposited on two fibers, as shown
in Fig. 2a. We varied the inter-fiber spacing d and the droplet vol-
ume V . Inspection of the final shape reveals three possible equi-
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d = 1.0  V = 597.14

d = 1.7  V = 601.54

d = 1.7  V = 1296.71

(a)

(b)

(c)

(d)

1e4
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t1 t2 t3(e)

1e4200
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E
/(

r2 )
(f)

0.0 0.5 1.0 1.5 2.0
t/( d/ ) 1e4

0.3

0.4

p(
r/

)

(g)
d = 1.0  V = 597.14
d = 1.7  V = 601.54
d = 1.7  V = 1296.71

Fig. 2 Simulation snapshots of the time evolution of a liquid droplet spreading on a fiber rail. (a) The droplet is initialized with a spherical shape.
(b) Transition from a barrel droplet to a liquid column. (c) Transition from a barrel droplet to a droplet bridge. (d) Stable barrel droplet. The right
panel shows the time evolution of (e) the wetting length, (f) the surface energy, and (g) the Laplace pressure of the droplet.
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librium configurations: liquid column, droplet bridge, and barrel-
shaped droplets as illustrated in Fig. 2b-d. During the spreading
process, the initially spherical configuration morphs quickly into
a barrel shape the consecutively continues to spread out on the
fiber rail. For the complete wetting case (� = 0) considered here,
the critical fiber spacing beyond which no column configuration
exists is dc =

√

2 ≈ 1.4119. For fiber spacings d = 1.0< dc shown in
Fig. 2b, we observe the continuous spreading of the liquid droplet
along the fibers, indicated by an increase of the wetting length
and a deformation of the cross-sectional shape of the droplet. As
d increases to 1.7, the liquid does not spread into a liquid column
but instead attains a droplet-bridge configuration for smaller vol-
ume V = 601.54, whereas the droplet remains in a barrel-shape
configuration for larger volume V = 1296.71.

The time evolution of the wetting length, surface energy and
Laplace pressure calculated from the simulation snapshots is
shown in Fig. 2e-f. Fig.2e shows the increase of wetting length
in the direction parallel to fiber rails. The capillary motion of liq-
uid droplet comes to rest when the Laplace pressure across the
curved interface is constant everywhere. The decay of the sur-
face energy and excess pressure is continuous for the cases that
reach a droplet bridge or a barrel shape as the final configura-
tion. The surface energy of the barrel shape is higher than that
of the droplet bridge due to the larger liquid interface ALV . For
the cases that reach a liquid column as the final configuration,
we observe noted increase of excess pressure following the ini-
tial decay. This is accompanied by a decrease of the principal
curvature in the direction perpendicular to the fiber orientation
axis, as illustrated by the cross-sections in the side view. Inspec-
tion of the cross-sections over time reveals that at time t = t2,
the cross section is circular and tangent to the two fibers, while
the interface in the parallel direction is nearly flat in the center.
Based on these observations, the peak Laplace pressure can be
estimated as Δp = 
∕(d+2r). We conclude that the peak pressure
corresponds to a disjoining pressure required to detach the liquid
interface from the outside of the fibers such that it can form a
contact line on the fiber surface leading to the final column con-
figuration. Following time t = t2, the excess pressure shows slight
oscillations that are associated with the decay of capillary surface
waves resulting from the detachment of the interface. The sur-
face energy continues to decrease monotonically and reaches the
stationary value sooner than the excess pressure. This suggests
that the pressure oscillations are in fact a transient effect result-
ing from the liquid motion. Since here we are primarily interested
in the stability of the final configuration, we have not investigated
these oscillations further.

3.2 Retraction of liquid column

To account for the possibility of metastable configurations, we
next consider the retraction of a liquid column. The initial config-
uration is a cylindrical column of liquid placed between the fibers
as shown in Fig. 3a. The liquid volume of the column matches the
droplet volume used in the previous section. We varied the inter-
fiber spacing d and liquid volume V over the same range. In-
spection of the final interfacial morphology reveals that the same

types of equilibrium shapes can be reached, as illustrated in Fig.
3b-d. During the retraction process, we initially observe a rapid
deformation of the menisci at the end of the columns driven by
the excess pressure. This is evident in the variation of the excess
pressure during the initial stage as shown in Fig. 3g. Following
this initial relaxation, the surface energy and excess pressure (Fig.
3f and g) vary slowly. The surface energy increases slightly as the
bulk energy decreases due to the change of the excess pressure
across the meniscus. This suggests that a liquid column config-
uration is reached shortly after the start of the simulation. We
do not observe a distinct signature of the transition from column
to droplet bridge. The retracting column either reaches a droplet
bridge with the interface attached to the outside of the fibers or
a barrel shape that completely engulfs the fibers with liquid. For
cases that reach a barrel shape configuration, the retraction of
the column proceeds slowly until at time t = t2, a barrel drop is
formed. We observe that the bridge is formed asymmetrically
as shown in Fig. 3d. An asymmetric liquid bridge was also re-
ported by Aziz et al.20 in both experiments and numerical en-
ergy minimization. Since we do not consider gravity forces in our
simulations, the observation suggest that the asymmetric shape
is energetically favorable at the given spacing and droplet vol-
ume. Non-axisymmetric capillary bridges can indeed form when
the volume of the liquid is greater than the volume required to
form an axisymmetric spherical bridge25. The transition from
the liquid bridge to the barrel shape thus shows some analogy to
the roll-up of a droplet on a single fiber into a clamshell shape28.
The formation of the barrel shape is evident in the evolution of the
wetting length, surface energy and excess pressure, which show a
sudden decrease around time t2. The observations suggests that
after the initial relaxation to a liquid column, the transition from
column configuration to liquid bridge occurs through slow recon-
figuration of the contact line and menisci, followed by a quick
wrapping of the liquid around the fibers when the barrel droplet
forms. The energy associated with the detachment of the con-
tact line from the fibers constitutes an energy barrier that we will
probe in section 3.4.

The

3.3 Equilibrium morphology

The two different initial conditions allow us to probe whether the
equilibrium configuration of the droplet depends on the starting
point in configuration space. In experiments19, two possible be-
haviors were observed when the fiber distance d was varied at
a given droplet volume V . For small volumes, the droplet shape
changes reversibly from a barrel droplet to a column configura-
tion. At larger volumes, the behavior becomes hysteretic with
two distinct critical distances for the drop-column transition upon
increasing the spacing and the column-drop transition upon de-
creasing the distance. In our simulations, we investigate the be-
havior for varying droplet volume V at a given fiber spacing d.
Using the two different intial conditions described above allows
us to probe whether the equilibrium configuration of the droplet
depends on the starting point in configuration space and at which
combinations of d and V both a drop and a column configuration
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Fig. 3 Simulation snapshots of the time evolution of a liquid column retracting on a fiber rail. (a) The droplet is initialized with a sphero-cylindrical
shape. (b) Stable liquid column. (c) Transition from a liquid column to a droplet bridge. (d) Transition of a liquid column to a barrel-shaped droplet.
The right panel shows the time evolution of (e) the wetting length, (f) the surface energy, and (g) the Laplace pressure of the droplet.
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can exist.

3.3.1 Wetting length

Fig. 4a shows the wetting length l and equilibrium excess pres-
sure for liquid column configurations as a function of the inter-
fiber spacing d. We report results for inter-fiber spacings
0.9 ≤ d ≤

√

2 = dc . For these fiber spacings d > �∕2−1, the cross
section of the liquid column is generally convex. Concave cross
sections are indeed observed at lower fiber spacings, however,
simulations at lower spacings require increased resolution to ex-
clude inaccuracies in the measurement of the Laplace pressure
due to the diffuse interface thickness. The fiber range considered
here exhibits the main obsvervations of our study. For the liq-
uid column configuration, the cross-sectional area is constant and
the wetting length and equilibrium excess pressure can be calcu-
lated analytically19, cf. appendix A. In Fig. 4 we plot the wetting
length and excess pressure calculated from the simulations along
with the analytical prediction. The simulation results show ex-
cellent agreement with the theoretical values over the range of
inter-fiber spacings and liquid volume.

The wetting length of droplet bridge and barrel shape configu-
rations are shown in Fig.4b as a function of the liquid volume V .
At small liquid volumes, both the initialization with a spherical
droplet or a liquid column reach a liquid bridge morphology. The
wetting length increases with the liquid volume, until the volume
becomes sufficiently large to form a barrel droplet with a smaller
wetting length. The transitions are clearly visible in the plot and
depend on the initial configuration of the liquid. For a given fiber
spacing, an initially spherical droplet remains in a droplet-like
configuration below a critical volume V dc and spreads into a col-
umn configuration above V dc (solid lines in Fig.4b). Conversely,
an initial column-like configuration remains in a liquid column
above a critical volume V cd and retracts into a droplet-like con-
figuration below V cd (dashed lines in Fig.4b). The column-to-
droplet transition occurs at a alrger volume than the droplet-to-
column transition, i.e., V cd > V dc. A similar hysteretic effect was
observed in experiments that varied the fiber spacing at constant
volume19,51. Both the upper and the lower critical volume show
a dependence on the fiber spacing d. The hysteresis loop becomes
larger as the inter-fiber spacing decreases, whereas below d = 1.0
no hysteresis is observed for the studied drop volume range. We
investigate the energy barrier associated with this effect in more
detail below.

3.3.2 Morphology diagram

The main results for the equilibrium droplet shapes on fiber rails
are summarized in the morphology diagram in Fig. 5. The fi-
nal shapes observed in the simulations over the parameter space
(d,V ) are indicated by symbols (⋄ for liquid columns, ◦ for droplet
bridges, ▵ for barrel droplets, and ⭐ for bistable points). A sup-
port vector classification (SVC in scikit learn) was used to identify
the shaded regions of the morphology diagram. In region (I), only
column configurations are found as the final shape of both the
spreading droplet and the retracting column. In region (II), only
droplet-bridge morphologies are stable. The boundary between
regions (I) and (II) is in agreement with the theoretical prediction

200 400 600 800 1000 1200
V

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

d dc

(I)

(II) (III) (IV)

Fig. 5 Morphology diagram in the parameter space of liquid volume and
fiber spacing. The symbols denote the different stable shapes observed
in simulations. (⋄) are stable column configurations found in region (I);
(◦) are stable droplet bridges found in region (II); (▵) are stable barrel
droplets found in region (IV); the (⭐) in region (III) denote bistable cases
where the final shape depends on the initial configuration. The shaded
regions were obtained using a support vector classification trained with
the simulation data.

dc =
√

2. In region (IV), only barrel-drop configurations are found
as the final morphology. A bistability region (III) is found between
the column/bridge and barrel regions, where the final stable mor-
phology depends on the initial configuration. A similar bistable
region was reported by Protiere et al.19 based on experiments.
In comparison, we find the boundary between the column and
the bistable region at slightly higher volumes V, which is most
likely due to the absence of gravity in our simulations. Our sim-
ulation results largely agree with previous experimental data and
confirm the existence of metastable morphologies for droplets on
fiber rails and hysteresis of the morphological transitions. In addi-
tion, we find that the bistable region extends beyond the column
region to larger fiber spacings d > dc , where it represents a com-
petition between liquid bridges and barrel-shaped droplets. This
transition has not been investigated in detail in experiments due
to the difficulty of distinguishing between droplet bridge and bar-
rel shapes. Our simulation results provide an approximation of
the boundary of the full bistable region and the critical volumes
at which the transitions occur.

3.3.3 Bistable region

To investigate in more detail the transitions between liquid col-
umn/bridge and barrel-shape configurations, we consider the
time evolution of the surface energy and Laplace pressure for
varying liquid volume at two different inter-fiber spacings above
and below dc . The plots in Fig.6 show the wetting length, surface
free energy and capillary pressure evolution for spreading and
retraction in the bistable and stable regions at d = 1.2 and 1.7.

Fig. 6a shows a comparison of the drop-to-column and column-
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to-drop transitions at d = 1.2 < dc for varying values of V . Below
the critical volume, only the liquid column morphology is stable.
Hence the equilibrium surface energy and excess pressure are in-
dependent of the initial configuration. During the transition from
droplet to column the excess pressure passes through a peak fol-
lowed by slight oscillations, as described before. For a liquid vol-
ume V = 1104.55 in the bistable region, the final morphology is ei-
ther a droplet or a column depending on the initial configuration.
Accordingly, the excess pressure evolution of the initial drop con-
figuration does not display the signature of the drop-to-column
transition. The surface energy of the column configuration (solid
line) is lower than that of the droplet configuration (dashed line),
which indicates that the barrel shapes are metastable and the col-
umn morphology is the globally stable configuration.

Fig. 6b shows a comparison of the drop-to-column and column-
to-drop transitions at d = 1.7 > dc . At V = 601.54 below the lower
critical volume, both the spherical drop and the column initializa-
tion lead to a liquid bridge with the same surface energy in the
final configuration. At V = 1296.71 above the upper critical vol-
ume, both initializations lead to a barrel shape in the final config-
uration, where the column-to-drop transition shows the signature
described before. At V = 1105.37 in the bistable region, the spher-
ical drop leads to a final barrel-shape while the column leads to
final liquid bridge. The surface energy of the barrel drop is slightly
lower than the liquid bridge, indicating that in the bistable region
above dc , the liquid bridge is metastable and the barrel-shape is
the globally stable configuration.

It is worth noting that the results are reported here for the com-
plete wetting case (� = 0) and it can be expected that the contact
angle will affect the boundaries between different regions and
the size of the bistable region. For instance, the analytical treat-
ment of the liquid column by Princen30, cf. appendix A, indicates
that the critical fiber spacing for the drop-to-column transition
decreases with increasing contact angle. Experiments conducted
by Sauret et al.51 suggest that for a partially wetting liquid, the
bistable region becomes larger as a larger contact angle hinders
the spreading of the liquid thereby increasing the hysteretic ef-
fect.

Experiments further suggest that within the bistable region, the
effect of gravity may play a role as the Bond number Bo = �gd∕

is generally larger than unity in this region. The gravity force can
prevent the spreading of the liquid into the column configuration
thus stabilizing the barrel drop configuration. Preliminary sim-
ulations for finite contact angle and with gravity forces seem to
confirm the experimental observations. However, comprehensive
simulations to quantify the effect of contact angle and gravity on
the morphology diagram and energy landscape are beyond the
scope of the present work.

3.4 Driven morphological transitions

The comparison of the surface energy of the different shapes in
the bistable region indicates that there is an energy barrier be-
tween the droplet-like configurations and the column-like con-
figurations. It is therefore interesting to characterize the energy
landscape of the liquid morphology on fiber rails. As we have

seen in Fig.4a and b above, the wetting length l is an appropriate
parameter to distinguish the possible equilibrium shapes. Hence
we plot the evolution of the surface energy E over the wetting
length l(t) in Fig. 7, where the time t becomes a parameter along
the curves, and a metastable shape corresponds to an end point
with a finite energy difference E −Emin. To estimate the energy
barriers associated with metastable states, we induce the shape
transition by applying an external force to the droplet as illus-
trated in Fig. 7e. To induce the drop-to-column transition, we
applied a constant compressive force of g = 7×10−5 �0a∕ℎ2 to the
droplet in the direction perpendicular to the plane separating the
fibers. Conversely, to induce the column-to-drop transition, we
applied a tensile force of g = 2×10−4 �0a∕ℎ2 to the liquid bridge.
This force is applied temporarily to increase the free energy until
the shape starts to relax spontaneously into a different configura-
tion.

Fig. 7a shows the surface energy at d = 1.2 < dc in the column
region for three different liquid volumes. In this region the liq-
uid column configuration is the absolute stable shape. For the
two lower volumes, the initial droplet transitions spontaneously
to the column configuration with a unique equilibrium wetting
length. As noted above, the surface energy increases slightly dur-
ing this process which is offset by the pressure contribution to the
bulk energy. For the larger volume, the initial droplet reaches a
metastable barrel-shape with a smaller wetting length than the
equilibrium column configuration. The metastable state can be
driven across the energy barrier as indicated by the dotted line
such that it reaches the stable column configuration at a larger
wetting length. The energy barrier is small compared to the en-
ergy difference between the barrel shape and the column config-
uration.

The energy landscape for d = 1.7 > dc in the droplet region is
shown in Fig. 7b for three different liquid volumes. Outside the
bistable region, both the spherical droplet and the column ini-
tial configurations transition spontaneously to the stable droplet
bridge or barrel shape morphology with a unique equilibrium
wetting length. For the liquid volume V = 1105.37 in the bistable
region, the initial column maintains reaches a droplet bridge con-
figuration. It can be driven across the energy barrier by a tensile
force that stretches the bridge into a bulge (cf. Fig. 7e) that can
then transition into a droplet configuration. Although the energy
difference between the droplet bridge and barrel droplet config-
urations is small in this case, the energy barrier indicated by the
dotted line in the figure is larger than the barrier for the drop-
to-column transition. This energy barrier is associated with the
bulge-like deformation of the droplet that is required to detach
the contact line from the outside surfaces of the fibers. The dif-
ference in the energy barriers together with the smaller region of
stability for the barrel-shape configuration suggests that column
configurations are easier to observe in experiments. The analysis
of the lattice Boltzmann results can thus provide insights into the
dynamical evolution of the surface energy during spreading and
retraction of droplets on fiber rails that can not be obtained with
conventional energy minimization techniques.
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4 Conclusions
We have studied the morphology of liquid droplets on fiber rails
using lattice Boltzmann simulations and compared the results
to semi-analytical model calculations. We simulated both the
spreading of an initially spherical droplet and the retraction of
an initial liquid column at various volumes and inter-fiber spac-
ings. The simulations revealed the existence of metastable shapes
and hysteresis of the transitions between drop-like and column-
like shapes. By analyzing the time evolution of the wetting
length, surface energy, and Laplace pressure we identified the
metastable and stable configurations in the parameter space. The
presented morphology diagram in the fiber-distance/volume pa-
rameter space is consistent with reported experimental results19.
In addition to previous results, we also found a bistable re-
gion in the droplet regime beyond the critical inter-fiber spac-
ing dc =

√

2. This new bistable region corresponds to transitions
between droplet-bridges and barrel-shaped droplets. We have in-
troduced a simulation protocol that allows to probe the energy
barrier and constructed an energy landscape by tracking the mor-
phology transitions in terms of the wetting length.

Our results provide a quantitative analysis of the shape tran-
sitions of liquid droplets on fiber rails. The insights can be used
to design enhanced fiber materials for filtration and separation
of liquids. For instance, hierarchical porous fibers with a mul-
tiscale pore structure could be developed to enhance wicking of
liquid into small pores while avoiding clogging of the large-scale
pore structure. The general principles of morphological transi-
tions and hysteresis may also find applications in soft robotics.
For example, the knowledge of the forces/energies required to
induce shape transformations can be used to develop fiber-based
manipulators for liquid volumes at small scale.
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A Analytical treatment of liquid column
To revisit the analysis of the liquid column19,30, we consider the
geometry shown in Fig. 8. Neglecting the distortion of the cross

section near the ends of the column, the wetting length l = V ∕A
can be obtained from the liquid volume V , which then allows to
calculate the surface energy of the column configuration30

Ecol =
4V
A


[

R
(�
2
−�−�

)

−�r
]

, (19)

where the arc lengths of the segments have been expressed
through the fiber radius r, the radius of curvature R, and the
angle � between the connecting line of the fibers and the three-
phase contact line, cf. Fig 8. For a small increase dL in wetting
length, the surface energy Eq. (4) increases by

dE = 

[

4R
(�
2
−�−�

)

−4�r
]

dl, (20)

The liquid column is characterized by the Laplace excess pressure

Δp


= 1
R
. (21)

By equating dE to the work done against the excess pressure, we
obtain the force balance

4�r−4R
(�
2
−�−�

)

= A
R
, (22)

where A is the cross-sectional area. The area A can be expressed
in terms of the angle � and the radius of curvature R through the
geometric relation

A = 4Rrsin� cos(�+�)

−2r2 (�−sin� cos�)

−2R2
[

(�
2
−�−�)− sin(�+�)cos(�+�)

]

.

(23)

Another geometric relation exists between R, �, the fiber radius
r, and the inter-fiber spacing 2d

R = r+d− rcos�
cos(�+�)

(24)

such that for given values of r, d and �, the solution for � can be
obtained from the condition

R2
[

(�
2
−�−�)+ sin(�+�)cos(�+�)

]

+2rR [sin� cos(�+�)−�]

+ r2 (sin� cos�−�) = 0.

(25)

Eq. (24) shows that as the fiber spacing increases, the radius of
curvature decreases and changes sign, corresponding to the sur-
face changing from curved inwards to curved outwards. Eq. (25)
also determines the critical inter-fiber spacing dc beyond which
no stable liquid column configuration exists. Ref. 19 discussed
the case of zero contact angle � = 0, where dc =

√

2r.

If the height of the column varies over the wetting length, the
angle � will depend on the coordinate of the pinning point (x,y)
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Fig. 8 Schematic illustration of the cross-sectional geometry of a liquid
column between two parallel fibers.

of the contact line �

y = d+ r− rcos� (26)

x = rsin�+Rsin(�+�)−R. (27)

We assume that the geometry is still described by the curvature
radius R of the meniscus in the cross-sectional plane as in Fig. 8.
If the shape profile dz∕dy of the contact line is known, we can
obtain the liquid-fiber and liquid-liquid interfacial areas and the
liquid volume by integrating

ALV = ∫

�2

�1
4R

(�
2
−�−�

) dz
dy
rsin� d� (28)

ALS = ∫

�2

�1
4r� dz

dy
rsin� d� (29)

V = ∫

�2

�1
Adz
dy
rsin� d�. (30)

The surface energy of the circular cross-section region can then
be calculated using Eq. (4).
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