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Mechanochemical induction of wrinkling morphogenesis
on elastic shells

Andrei Zakharova∗ and Kinjal Dasbiswasb∗

Morphogenetic dynamics of tissue sheets require coordinated cell shape changes regulated by global
patterning of mechanical forces. Inspired by such biological phenomena, we propose a minimal
mechanochemical model based on the notion that cell shape changes are induced by diffusible
biomolecules that influence tissue contractility in a concentration-dependent manner – and whose
concentration is in turn affected by the macroscopic tissue shape. We perform computational simula-
tions of thin shell elastic dynamics to reveal propagating chemical and three-dimensional deformation
patterns arising due to a sequence of buckling instabilities. Depending on the concentration thresh-
old that actuates cell shape change, we find qualitatively different patterns. The mechanochemically
coupled patterning dynamics are distinct from those driven by purely mechanical or purely chemical
factors. Using numerical simulations and theoretical arguments, we analyze the elastic instabilities
that result from our model and provide simple scaling laws to identify wrinkling morphologies.

1 Introduction
Morphogenetic events during embryo development involve tissue
shape changes that are driven by mechanical forces1,2. A proto-
typical example is the folding of sheets of epithelial cells through
the constriction and shape change of individual cells by actively
contractile forces generated by myosin molecular motors in the
cytoskeletal network on the cell surface3,4. The myosin motor
activity is in turn triggered by complex chemical signaling cas-
cades secreted by the cells themselves which create a spatiotem-
poral pattern of active mechanical forces in the tissue sheets5.
The chemical signaling itself can be affected by mechanical cues
such as forces6 and deformations7,8. Inspired by the natural spa-
tiotemporal control of shape change in biological tissue sheets,
we are motivated to ask how such bio-inspired feedback can be
used to realize self-actuated patterning of soft materials.

Thin elastic plates and shells constitute a fundamental class of
soft matter that exhibit sensitive response to stimulii changes be-
cause of the geometric nonlinearity of their mechanical proper-
ties9. Tissue morphogenesis can inspire the design of such slen-
der structures that change shape in a programmable way. Desired
shapes can be attained by pre–patterning the internal structure,
for example via metric change10–12, controlled intrinsic curva-
ture13,14, pre–stress15, or be self-organized, for example, through
a propagating chemical reaction coupled with mechanical defor-
mations16–21. The latter approach provides reconfigurable con-
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formations in contrast with frozen-in patterns, and resembles the
shape changes during morphogenesis with anisotropic deforma-
tions including different types of mechanical instabilities, such as
creases, wrinkles, folds, and ridges22.

Instabilities in spherical shells are of special interest because of
their diverse applications and non-trivial behavior from a mathe-
matical perspective. Examples of thin shells that exhibit wrinkling
morphology abound in nature and range from pollen grains and
viral capsids to organoids and organs such as brain and develop-
ing embryo at the “blastula” stage2 (monolayer of cells arranged
in a shell surrounding a fluid-filled lumen). Several studies have
examined buckling behaviour of spherical shells due to exter-
nal pressure23,24, confinement25, differential growth26,27, and
demonstrated that patterns arising on curved surfaces are quite
different from those on planar surfaces. Curvature-controlled
structure formation encompasses a broad class of phenomena in
physical28,29 , biological30 and chemical systems31.

In comparison to synthetic materials, living matter can show
more complex cycles of feedback and control where chemical
and mechanical signalling are tightly coupled. Inspired by this
inherently mechanochemical basis of pattern formation in bi-
ological tissue32, we consider the dynamics and steady state
of shapes induced by chemical gradients in thin elastic shells,
where the chemical is itself affected by the sheet curvature. In
analogy with tissue patterning by gradients of morphogens, dif-
fusible biomolecules that induce cell fate changes slowly in a
concentration-dependent manner during embryogenesis33, we
have posited “mechanogens” as biochemical agents that affect the
cell mechanical state34,35. They can do so by enhancing or relax-
ing the cell cytoskeletal contractility, which is a more physical
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change in comparison to the usual genetic changes wrought by
morphogen gradients. Candidate mechanogens could be chemi-
cal factors, such as Ca2+ ions, proteins, ATP or drugs, that regu-
late actomyosin contractility and cytoskeletal remodeling. While
disentangling the various chemical signals and their interactions
with mechanics is challenging in vivo, recent experiments in vitro
with reconstituted cytoskeletal gels that exhibit molecular mo-
tor activity-driven buckling and wrinkling36–38 realize such ac-
tive elastic processes in a controlled setting. These biological ma-
terials, along with synthetic materials such as liquid crystal elas-
tomers39 and gels40, in principle, allow for the spatial control
of mechanical deformation and shape actuation through external
chemical, electrical or optical stimuli41.

In this work, we explore how in-plane stresses induced in a thin
elastic sheet by gradients of chemical signals (“mechanogens”)
can be relaxed by energetically less costly out-of-plane deforma-
tions. We thus seek to demonstrate how a short range chemi-
cal activation leads to long range elastic response and subsequent
pattern formation. Unlike models for tissue folding that are based
on differential apical-basal constrictions that lead to wedge-shape
of the constituent cells42,43, our model is based on a sponta-
neous curvature arising due to in-plane incompatibility between
domains of different tension – an effect that is similar to differ-
ential growth and also occurs in principle in contractile biological
tissue. We show that depending on key parameters, such as a
threshold of activation of cell mechanical response by the chemi-
cal gradient and the thickness of the elastic sheet, we can access
qualitatively different patterns such as ridges and spots. Further,
the mechanical feedback on the chemical gradient results in pat-
tern propagation from an initial local region of activation. While
inspired by tissue morphogenesis, these results may also be appli-
cable to synthetic gels provided such a feedback can be set up.

The structure of the paper is organized as follows. We first
define governing equations for a model involving mechanochem-
ical interactions and give an estimation of the time scales that al-
low simplifying assumptions. In Sec.3, we demonstrate patterns
arising due to feedback between chemical production and elastic
instabilities, and explore the parameter space identifying qualita-
tively different stationary shapes. In Sec.4, we discuss the buck-
ling and wrinkling instabilities, and provide simple scaling laws
for the observed patterning. In the Appendix, we describe the dis-
cretized elastic energy, the numerical methods applied to perform
simulations of model dynamics, and provide supplementary sim-
ulation results obtained for parameter values different from those
in main text.

2 Mechanochemical model for tissue shape
change

Inspired by the biochemical patterning of mechanical forces in
thin layers of tissue, we introduce a model of chemical-induced
pattern formation in thin elastic sheets. We consider the situa-
tion of a thin monolayer of cells tightly adhered to each other
and surrounded by extracellular fluid, as shown in the schematic
in Fig.1a. The cells change their shape in response to diffusible
chemical signals (which we term “mechanogens”) in the extracel-

(a)

(b) (c)

Fig. 1 (a) Schematic of buckling of a tissue sheet in response to chem-
ical signals (mechanogens) that bind to receptors on the apical (up-
per) surface of cells and trigger change in cell contractility, and there-
fore cell shape (in this case, the aspect ratios as a result of force bal-
ance42). Outward tissue curvature in turn stimulates the release of
mechanogens into the extracellular fluid, where they can diffuse and in-
fluence cell contractility. In simulations, the tissue layer is represented
by the mid-surface (black dashed line) that reproduces macroscopic de-
formations. (b) Schematic of the mechanochemical feedback consid-
ered in our model. (c) Thresholded dependence of cell contractility on
mechanogen concentration,Λ(c), assumed in Eq.(2) at b = 100, which
gives rise to domains of differential tension and buckling of the tissue
sheet.

lular fluid, that are secreted by the cells themselves, and that bind
to receptors on the cells’ apical (top) surfaces and trigger changes
in the contractile tension of their actomyosin cytoskeleton. For
concreteness, we consider mechanogens that relax contractility
and increase cell apicobasal surface area while reducing their lat-
eral surface area to conserve volume. The resulting spatially in-
homogeneous in-plane expansion of the tissue sheet causes the
region exposed to higher chemical signal to buckle out of plane.
We then explore the role of mechanochemical feedback (Fig.1b),
that is, the chemical concentration is in turn affected by the tissue
mechanical state, specifically its curvature.

The cell monolayer, that could be freely suspended or adhered
to a thin basal substrate, is modeled as a continuum elastic shell
with uniform properties throughout its thickness. We assume that
over the short timescales of interest, the mechanical response of
the sheet to induced stresses is elastic and ignore the viscous dissi-
pation and fluid flows that could result from cell rearrangements
and motility. Then the mid-surface of the thin shell can be repre-
sented as a two-dimensional surface embedded in 3D space that
allows a convenient description for large, out-of-plane deforma-
tions and calculation of the deformed 3D shape. The mechanical
free energy of deformed elastic shells is determined by contribu-
tions from the stretching energy Us, which is proportional to the
shell thickness, h (here, determined by cell size), and arises due
to in-plane compression or extension of the shell, and the bend-
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ing energy Ub, which is a result of curvature and scales as h3 44.
Since thickness is usually small compared to shell size (h� R),
the stretching energy cost dominates that of bending, meaning
that it is more favorable to bending than to stretching. For an
isotropic and linear elastic material, the stretching and bending
elastic energy of a deformed elastic shell is given in terms of the
strain tensor εi j and curvature κi j respectively, as44,

U =Us +Ub =
1
2

∫
dA
(

λε
2
ii +2µε

2
ik

)
+

1
2

∫
dAB[(κxx +κyy)

2−2(1−ν)(κxxκyy−κ
2
xy)], (1)

where λ ,µ are the two-dimensional Lamé coefficients related
with a two-dimensional Young’s modulus Y =

4µ(µ+λ )
2µ+λ

, which in
turn depends on the 3D elastic modulus of the material, E, and
thickness of the shell as Y = Eh. The in–plane strain εik de-
pends on the local contraction or expansion, which in living tis-
sues is caused by actomyosin contractility with an effective con-
tractile tension, Λ. For simplicity, we assume an inverse depen-
dence of in-plane expansion on contractility, so that, the shell ex-
pands in-plane when contractility decreases. The second term
in Eq. 1 corresponds to the bending energy of the shell where
B = Eh3/[12(1− ν2)] is the bending stiffness with ν as the Pois-
son ratio of the material. κi j is the curvature strain accounting
for out-of-plane displacements, which arise as a result of the ten-
dency to reduce stretching. We describe Eq.(1) with a discretized
model based on an irregular triangular mesh suited to our nu-
meric simulations. This is described in detail in the Appendix
A. The discretization of the bending energy corresponds to the
general form given in the second term in Eq. 1. The in–plane
stretching is modeled by associated energy costs of deforming the
triangles and their edges in the mesh, which effectively captures
both the in–plane shear and area deformations contained in the
first term in Eq. 1. Although this type of discretization corre-
sponds to an unspecified choice of the relative values of the two
2D Lamé coefficients in the corresponding continuum medium,
it adequately captures the competition of bending and stretching
and the resulting pattern is expected to be robust to the choice of
relative weights of in–plane shear and area deformation modulii.
We note that both the stretching and bending stiffness, Y and B,
can be spatially inhomogeneous if the tissue shell does not main-
tain uniform thickness. We treat both possibilities in our model:
where h is uniform, and where h depends on local in-plane area
changes to keep the tissue volume constant.

To relate the elastic shell model to chemical signals, we note
that several recent studies have identified that a change in
the concentration of signaling agents (“mechanogens”) induces
change in tissue contractility45. Thus, it is natural to consider a
dependence on concentration c of the tissue surface contractility
Λ(c), that develops in the actomyosin belt and tends to constrict
the cell apical surface, and plays the role of a physical “line ten-
sion” in determining cell shape. The contractility change in re-
sponse to the chemical signal could be either positive or negative
depending on the specific chemical.

Additionally, developing tissue is usually subdivided into dis-

crete regions of different cells according to thresholds in con-
centration of morphogen gradients46, which lead to the clas-
sic "French flag" pattern of gene expression induced by mor-
phogens47. Although such compartmentalization is not general
in physical systems, it is natural and common in living organ-
isms. Inspired by patterns in biological tissues, we assume non-
linear coupling between chemical pattern and mechanical stress,
and impose the response in contractility strength using a sigmoid
function,

Λ(c) = (Λmaxec∗b +Λminebc)/(ec∗b + ebc), (2)

where c∗ defines the concentration threshold at which contractil-
ity changes from its maximal to minimal value, Λmax and Λmin,
respectively, and b is the steepness that prescribes the width of
transitional zone. This gives non-linear dependence of contrac-
tility on concentration leading to sharp interfaces between re-
gions of different contractility (Fig.1c). The mathematical form
of this sigmoid dependence of Λ(c) is a specific choice we make to
demonstrate our model predictions. A different choice that leads
to a similar sharp transition in contractility is expected to lead to
qualitatively similar patterns, because mechanical buckling phe-
nomena are generic and do not rely on specific biomolecules.
What is ultimately important for the mechanical deformations in
our model, which follow from the general theory of thin elastic
shells, is the existence of domains of unequal contraction, which
can arise in practice through different biophysical mechanisms in-
cluding cell surface area changes as well as cell division-induced
expansion. Further, differential expansion can arise even if Λ

changes linearly with concentration, c, (as opposed to the as-
sumed sigmoid dependence) because cell shape was shown to be
a bistable function of Λ in Ref. 42.

Cell shape in living tissue is determined by a balance of me-
chanical forces arising from actomyosin contractility at both
cell apical and lateral surfaces as well as cell-cell and cell-
substrate adhesion42, all of which can in principle be affected
by mechanogens. Following previous works that assume incom-
pressibility, that is the conservation of cell volume, the local area
expansion caused by the chemical is accompanied by a reduc-
tion of the thickness. The case of coupling between concentration
and lateral, instead of apical tension, has similar but reverse ef-
fect, causing thickness increase and surface area contraction with
c, due to volume conservation. Dependencies of cell shape on
chemical concentration alternative to Eq.(2) can therefore occur.
However, even in scenarios where the cell volume can change or
if the tissue retains its thickness and expands in-plane through
cell division, the surface contractility, Λ, remains a convenient ef-
fective parameter that allows in–plane area changes required for
tissue buckling. Henceforth, we omit microscopic details of in-
dividual cell shapes and their interactions, but, rather, consider
the tissue sheet as a continuum and model the consequences of
differential contractility along its plane.

On the other hand, it was shown experimentally that pro-
duction rate of the signaling regulating developmental gene ex-
pression is coupled to mechanical stress48–50. Similar observa-
tions indicate the higher expression of morphogens at regions
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of high curvature51. We close the mechano-chemical feedback
loop by assuming that production of chemicals is coupled to
the local curvature. Though such a dependency is written on
general grounds, we provide as an example a plausible mecha-
nism for the curvature-dependent release of chemicals shown in
Fig. 1a. Within this assumed picture, gaps can open between cells
as the tissue bends and a curved shape (non-zero deviation of
mean curvature from its intrinsic value) allowing the release of
mechanogens into the extracellular fluid52. It was shown that
even the interstitial flow is small, it still biases the local gradients
around cells53. Since epithelial cells have apicobasal polarity54,
meaning that the upper and lower sides of the tissue sheet are
not chemically the same, we consider that only upward bend-
ing (positive curvature) is effective in mechanogen production.
For example, if receptors are localized on the apical (upper) sur-
face, then concentration only on this surface needs to be consid-
ered. Recent experiments55 have demonstrated a similar scenario
for morphogen gradients arising in regions of high curvature and
spreading only on one side of the epithelial layer due to the dif-
ference in morphogen-receptor interactions on different sides. We
also assume the usual uptake of mechanogens which leads to their
removal from the extracellular space leading to a linear degrada-
tion rate. The mechanogens can be transmitted along the surface
of tissue by diffusion in the extracellular fluid, forming concentra-
tion gradients. The time evolution of the chemical concentration
on the upper side of the shell is then governed by the equation

∂tc = D∇2c+ Θ(H̃)wH̃
1+H̃/Hs

−βc, (3)

where D is the diffusivity, H̃ = H−H0 is the effective mean cur-
vature accounting for deviations of geometric curvature, H, from
the intrinsic curvature of the undeformed shell, H0, and Θ(H̃)

is the Heaviside function such that production takes place only
when the deviations are outward (H̃ > 0). This assumption is
aimed to guarantee a stable pattern17,43 and consistent with ex-
periments48. Thus, Hs is a characteristic curvature at which the
chemical production saturates to a rate given by wHs, and β is
the rate of degradation. The maximum local steady state concen-
tration at a region of high curvature, H̃ � Hs, is then given by
cmax = wHs/β .

The chemical kinetics given by the diffusion, production and
degradation rates defined in Eq.(3) are typically slower than elas-
tic stress propagation. For constant production rate, the timescale
to reach a steady state in concentration is given by β−1, which
for morphogens in developing tissue has been measured to be
of the order of hours56. This is at least one order of magnitude
slower than the time scale for contractility and tissue length re-
modeling in epithelial cell sheets, which is of the order of min-
utes57–59. The strain relaxation by out-of-plane deformations is
assumed to be the fastest process in the mechano-chemical loop
we consider. We assume that the elastic energy relaxes through
the overdamped dynamics given by, γ∂u/∂ t = −δU /δu, where
u is the material displacement. We consider viscous damping by
the surrounding fluid and neglect any possible viscous remodel-
ing of the tissue material60. For a sheet of characteristic size, R,
immersed in a fluid of viscosity, η , the frictional drag on the sheet

goes as γ ∼ ηR. A small out-of-plane deformation δx leads to a
bending elastic restoring force that can be estimated from Eq.(1)
to be E · hR2 · h2(δx/R2)2 · δx−1 ∼ Eh3δx/R2. By balancing this
against a viscous drag force of ηRδx/τel, we can estimate a char-
acteristic timescale for the relaxation of the elastic deformation
energy, τel ∼ (η/E) · (R/h)3. For the typical material properties
of a suspended epithelial monolayer61 (E ∼ 10 kPa, η ∼ 1 Pa·s,
R/h∼ 102), we get τel ∼ 101−102s.

Finally, the feedback loop has a coupling between tissue de-
formations and the chemical production rate. Since the produc-
tion rate is associated with opening interstitial gaps, we assume a
very small delay in this process, but the following chemical rear-
rangements are slowed down due to limited diffusion discussed
above. Thus, slow modes of chemical rearrangements evolve on a
longer time scale, while fast modes of mechanical conformations
follow them quasi–statically, accordingly to Haken’s slaving prin-
ciple: ”fast modes are slaved by slow modes”62. This separation
of timescales allows us to reproduce the tissue morphing dynam-
ics in simulation by implementing an iterative procedure. Starting
from the reference equilibrium configuration, a small perturba-
tion in concentration is introduced, which leads to a local con-
tractility change. The stress is updated according to the altered
contractility, and since the mechanical response is fast, we find
actual three-dimensional shapes by minimizing the elastic energy
Eq.(1). As the system reaches a mechanical equilibrium, the con-
centration profile is updated by a small time step taking into ac-
count the new shape that prescribes a new production rate. The
iterative process continues till the change in concentration pro-
file, which is coupled with reshaping, vanishes. Since the pattern
develops on a domain of finite size, the dynamics slows down and
eventually becomes stationary.

We also tested the emergent dynamics and patterns assuming
comparable timescales for mechanical remodeling and chemical
rearrangements. In this case we performed a steady-state dy-
namics by sequential computations of mechanical and chemical
equilibrium states. Iteratively repeating the update, the system
dynamics eventually converged. This approach is more computa-
tionally time-consuming and does not allow to reproduce dynam-
ics with a time scale related to a measurable parameter. However,
it still captures the same resulting configurations as in computa-
tions when we assume the separation of time scales described
earlier. This demonstrates that even if our assumption of separa-
tion of time scales is not true in a given experimental system, the
approach we use captures the final steady states in the system we
consider. However in general, the mechanical response might be
slowed, for example due to a delay between signal and contrac-
tility change or as a result of viscous drag in elastic relaxation, in
which cases it requires simultaneous updates.

3 Results
Although Eqs.(1)–(3) are in principle valid for elastic shells of
any shape, we now proceed with a shell of spherical geometry for
the sake of concreteness. Consider a spherical shell of uniform
radius R and small thickness h� R in the undeformed state, rep-
resenting a developing tissue sheet. Assume the tissue remains
at a spontaneous curvature, H0 = 1/R, without any residual, in–
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Fig. 2 Steady states of a spherical shell colored according to the local
concentration at different threshold c∗ and the initial thickness h. Pat-
terns emerge as a consequence of a small initial chemical perturbation
at a pole of the sphere (the central point in the top views). Higher
concentration regions are associated with greater positive (outward) cur-
vature. Simulations performed at D = 0 and the initial radius R = 30,
other parameters are listed in Table 1.

plane stress. Thus, without any further perturbation, the total
elastic energy of the spherical shell is vanishing and it remains
in a stationary, mechanical equilibrium state. Then we introduce
an initial small point perturbation of the chemical profile defined
by a Gaussian function with the spot size comparable to the shell
thickness, d = h, and magnitude of the order of the upper concen-
tration limit c= cmax ( Fig.3 at t = 0), causing a local point–like in-
homogeneity in contractility. The shell now has two domains: an
outer one with a higher initial contractility (Λmax), and a smaller,
inner one with higher chemical concentration and reduced con-
tractility (Λmin) that is associated with in–plane expansion and
tendency to develop larger surface area. Thus, being constrained
by the outer domain, the inner region is under compressive stress.
With the shell experiencing in–plane incompatibility, it deforms
to reduce stretching and is prone to bending. The macroscopic
manifestation of this incompatibility is out-of-plane deformations
of the shell due to buckling instability. The dynamics of defor-
mations depends on mechanical properties of the sheet, coupling
between concentration and contractility, and the diffusivity of sig-
naling species. A full list of the parameters we use in our simula-
tions is recapitulated in Table 1. We find that the resulting pattern
is sensitive to varying thickness, h, and the concentration thresh-
old, c∗, at which contractility transitions to its lower value. The
threshold c∗ determines the nonlinear mechanical response that
links chemical inputs to shape change actuation. Varying this pa-
rameter leads to qualitatively different shapes.

We first aim to explore the feedback between curvature and lo-
cal chemical production as a cue for spatial patterning. To see
this, we assume vanishing diffusion D = 0, such that production
is balanced by linear degradation locally. The simulated spheres
at R = 30 reveal that, even in the absence of diffusion, coupled
mechanical deformations and chemical production result in prop-
agating patterns, as shown in Fig.2. We find that when thickness
h≥ 1 and threshold c∗ ≤ 0.3, the initial excitation makes the state
unstable and the shape becomes distorted via buckling instabil-
ity. At small h, the shell can develop larger amplitude and smaller
wavelength out-of-plane deflections for the same bending energy

cost63, since curvature goes as κ ∼ A/λ 2. In this case (lower row
in Fig.2), only a single localized bulge develops in the inner do-
main of lower contractility, while the outer region with the larger
contractility retains its shape. Increasing thickness, h, leads to
smaller out-of-plane deflections at a given compressive load lead-
ing to a smaller curvature and longer length scale deformations
that extend out of the initial perturbation spot63. In this case, the
positive mechanochemical feedback allows the pattern to prop-
agate because the deflected region has higher curvature which
leads to chemical production, which in turn drives the incompat-
ibility responsible for out-of-plane deflection.

For lower concentration threshold, c∗ = 0.05, there is more me-
chanical stress and incompatibility since the inner region over
which the shell relaxes its contractility is larger. In this case, the
shell adopts a pattern of almost uniformly distributed spots of
high concentration, where each spot locally deforms the shell to a
bulged shape. The spot size and separation between spots is seen
to increase with h. The scaling law and underlying mechanism
is discussed in Sec. 4. At intermediate c∗ and thickness lower
than h = 4, the emergent bulges form ridge-like lines that prop-
agate in random directions if the initial perturbation is symmet-
ric, but demonstrate a preferred direction when the initial spot is
elongated due to non-axisymmetric perturbation. The transition
between spotted and ridge structures is continuous, for exam-
ple at 0.1 < c∗ < 0.2, mixed regimes occur with more than one
ridge or consisting both types of patterning. In case of a high
c∗ and h, the shell is stable to the initial perturbation because
the buckling-induced curvature developed at a given thickness is
small and does not cause enough chemical production required
for contractility change. In this case, the chemical concentration
level eventually decreases at steady state due to linear degrada-
tion in Eq.(3), making contractility uniform over the shell.

The time series for patterns of two representative cases are de-
picted in Fig.3. A typical evolution in both cases starts with a
small perturbation in the concentration that leads to a local de-
crease in contractility followed by area expansion and buckling.
As curvature increases with buckling, it causes production en-
hancement, and as a result the size of the initial bulge grows.
Then a ring of higher concentration is formed at a short distance
from the initial spot (t = 35 and t = 2500 in Fig.3a,b, respectively),
which at low threshold c∗= 0.05 breaks into multiple bulges along
the ring (t = 70 in Fig.3a). Each high concentration spot becomes
wider following the same dynamics as the initial bulge, and cre-
ates another row of bulges (t = 100 in Fig.3a). The process even-
tually slows down and terminates when the pattern occupies the
entire spherical shell, with uniformly distributed spots (t = 100000
in Fig.3a), except at the site of the initial imperfection.

In the case, c∗ = 0.15, the ring formed around the initial per-
turbation does not generate a contractility change in that region.
For a given thickness, the concentration at the secondary ring is
constant at different c∗, but spots emerge only at a low thresh-
old. Thus, when the ring does not break into multiple spots, an
initial bulge continues instead to split into two separate bulges
(t = 2500 in Fig.3b) and this division propagates along the shell
creating ridge-like deformations. The lines of bulges retain their
position and strongly distort the spherical shell shape when com-
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Fig. 3 Evolution of propagating chemical patterns and equilibrium shapes of a spherical shell at diffusion D = 0, the initial thickness h = 2.0, radius
R = 30, and different thresholds (a) c∗ = 0.05, and (b) c∗ = 0.15. Concentration fields are shown in top view while the right–most panel shows the shape
of the deformed shell in side view as a color map indicating the local radius (the distance to the center of mass). Simulation snapshots demonstrate
occurring elastic instabilities: buckling to a bulge at the initial perturbation resulting in increased concentration and widening the spot ((a) t = 35),
bulge splitting ((a) t = 75 and (b) t = 2500), buckling at secondary ring ((a) t = 70) and wrinkling along the ring ((a) t = 100). The ridge-like propagating
pattern (b) arises at higher c∗ when curvature at the secondary ring does not cause enough production to exceed the threshold of contractility change,
whereas it becomes spotted (a) at lower c∗ by means of wrinkling at the secondary ring.

pared with the uniformly distributed spots at a lower c∗.

Although the bulges can be organized into very different pat-
terns, the common feature of both types of patterns is the for-
mation of separate bulges. The reason for bulge formation is the
high mean curvature when the shell develops cap-like shapes with
positive curvature in two orthogonal directions coupled to higher
local production of chemical at these bulges. Wrinkles or folds
with curvature only in one direction, provide a weaker feedback
and do not cause contractility change, thus bulges become even-
tually round-shaped even if they were elongated at earlier stages
of evolution (t = 1000 in Fig.3a).

The assumption of cell volume conservation causes the shell to
become thinner in regions where in-plane contractility is lower.
We now show that even if cell volume is not conserved and the
shell remains at uniform thickness, similar spotted patterns can
occur. In Fig.4a, we display stationary shapes for spheres with
c∗ = 0.1 and of uniform thickness (shown for two different shells
with varying thickness, h). We notice that the pattern can now be
propagated at smaller thickness for the same contractility change.
This is because the inner region with Λmin remains at the initial
thickness and is therefore thicker now than the corresponding
volume-conserved case. This leads to smaller out-of-plane de-
flection and curvature and the critical initial shell thickness at
which propagating patterns result is lower than for the volume-
conserved shells presented before.

So far in this paper, we have considered pattern formation at
vanishing diffusion rate valid for slow chemical spreading. Now
we allow the spreading of chemicals in a thin fluid layer surround-
ing the shell and with thickness comparable to that of the shell to
examine the effect of diffusion. For a single-cell layer of epithe-
lium tissue, the typical thickness is h ∼ 10µm, which corresponds
to a unit of length in our simulations. The typical degradation
rate for morphogens ∼ 0.01/s56 that gives a characteristic time in
our simulations 1/β . Thus, a unit modelling diffusion (D = 1 in
simulation units) corresponds to 1µm2/s, which is close to the ex-

Fig. 4 (a) Chemical patterns arising on a spherical shell of fixed uni-
form thickness h at D = 0,c∗ = 0.1,R = 30. Shells obeying the volume
conservation condition at increased diffusion (b) lead to larger spot size
D = 1.5,h = 2,c∗ = 0.05,R = 30, than seen in Fig.3a. (c) Concentration
and curvature at nodes of mesh on sphere depending on polar angle with
the initial perturbation at the pole. The state corresponds to t = 35 in
Fig.3a. The secondary peak at a nonzero polar angle represents the sec-
ondary ring that forms as a result of the buckling instability around the
initial perturbation at the pole.

perimentally measured diffusion of morphogens in extracellular
fluid56. By performing simulations at a different D and keeping
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other parameters constant, we found that the patterns, which ap-
pear at D > 0, show only quantitative change compared to D = 0.
In Fig.4b we demonstrate the concentration field and 3D shape
at large diffusion D = 1.5, which significantly exceeds the diffu-
sion rate in real biological systems. One can see that spot size is
enlarged even though the maximum concentration decreases due
to spreading. However, an increased diffusion D > 0.4 leads to a
propagating pattern with multiple spots at h = 1,c∗ = 0.15, while
it remains in the single bulge equilibrium state at D = 0 (bottom
line in Fig.2), thus, providing a qualitatively different shape. As
expected, diffusion helps to scale up spot size and propagate the
pattern by spreading the chemical more uniformly over the sur-
face.

Note that without coupling between deformations and chemi-
cal production, the initial perturbation does not lead to a prop-
agating pattern. The feedback is clearly seen in Fig.4c, where
higher curvature, H̃, (red data points) is followed by increased
concentration (green data points). Eq.3 at D = 0 in a steady state
(production is the same as degradation) defines the relation be-
tween curvature and concentration c=wH̃/β (1+H̃/Hs). It allows
to find concentration at given β ,w,Hs (Table 1) and curvature,
and see if it is higher than the threshold c∗. If H̃ is small, or c∗ is
high, not enough chemical is produced to change contractility and
pattern does not develop spots at the secondary ring and propa-
gate as a ridge. In Fig. 4c one can see that concentration signifi-
cantly exceeds the threshold c∗ = 0.05 in the vicinity of the initial
perturbation at small polar angle and then decreases as curvature
H̃ becomes negative. A small increase in H̃ at a larger angle leads
to the secondary peak in c and the formation of bulges at small
c∗ (the inset to Fig.4c). However, this secondary peak does not
cause a contractility change at higher threshold, e.g. c∗ = 0.15, for
which c� c∗, as seen in Fig.3b. If the production term in Eq.(3) is
independent of the shape change, the concentration will decrease
with time due to a linear degradation, followed by decreasing do-
main of low contractility, and eventually the initial buckling will
disappear. Also, in the case of a constant source of chemicals
without feedback, the system will approach a steady state resting
at a balance between production and degradation. This last sce-
nario will also give rise to a pattern with wrinkles in the expanded
domain. The wrinkles will decay and will have increasing wave-
length away from the interface, leading to a qualitatively different
type of pattern64.

4 Analysis of Elastic Instabilities
We now seek insight into the mechanism of formation of the pat-
terns shown in Fig.2 and its dependence on concentration thresh-
old and shell thickness. In particular, we would like to understand
why the spotted pattern arises at small c∗ whereas the initial bulge
subdivides into two separate bulges forming the linear ridge pat-
tern at intermediate c∗,

We distinguish three different elastic instabilities that occur
successively in the shell. First, the initial perturbation in chemi-
cal field associated with the contractility change leads to buckling
and formation of the initial bulge that attains different shapes de-
pending on c∗ (t = 35 in Fig.3a and t = 2500 in Fig.3b). At the
same time, a ring of larger curvature and concentration appears

Fig. 5 (a) Scheme of buckling instabilities for the initial bulge and
the secondary ring. (b) Wrinkling instability in a disk of contractility
Λ = 15 with the inner circle of lower contractility Λ = 10 and decreased
thickness demonstrating different number of wrinkles depending on the
initial thickness and size of the inner circle at (b) h = 2, R2 = 2, (c) h = 2,
R2 = 3, and (d) h = 0.25, R2 = 3. (e) The profile of the shell middle line
in the vicinity of inner circle (only one half is shown due to symmetry)
along the radial direction depicted by the white dashed line in (b) where
the difference between deflections in two domains is comparatively small.
Dotted line is the initial planar shape, while it develops a spherical cup
shape in region with low contractility (red line) and small out-of-plane
displacements in the outer region (purple line), which bring about the
appearance of the secondary ring of radius Rr.

at a short distance from the initial bulge. Finally, for the spot-
ted patterns occurring at low c∗, this secondary ring breaks into
multiple equally separated bulges (t = 70 in Fig.3a).

Let us examine the instability that occurs first, which causes the
initial bulge on the shell. This is also similar to the third instabil-
ity in the sequence described above, where the secondary ring
develops wrinkles. For simplicity and in order to focus on the
mechanical deformations alone, we numerically test the elastic
instabilities on a piece of the spherical shell assumed to be nearly
flat, which can be considered as a disk of radius R1 and initial
thickness h. While the disk in an undeformed, reference state has
initial uniform contractility Λmax, we consider the deformations
induced by an inner, circular domain of radius R2 <R1 whose con-
tractility is lowered to Λmin, as depicted in Fig.5a, mimicking the
effect of a higher chemical concentration in the initial spot. Sim-
ilar to simulations on a sphere with natural curvature 1/R, we
assume that the sheet is flat in the initial state H0 = 0, the bound-
ary is constrained against deflections to avoid boundary effects
on the pattern but it is allowed for in-plane displacements, elastic
properties are isotropic, and, finally, the contractility is constant
in time. By prescribing values of Λmax and Λmin we avoid solving
the chemical concentration updates in Eq.(3), and perform min-
imization of the elastic energy Eq.(1) to investigate the buckling
processes involved in the formation of the initial pattern. The in-
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ner circle expands laterally in both radial and circumferential di-
rection due to the lower contractility Λmin, as it tries to reach an
optimal radius R2 = R2(Λmax/Λmin), and decreases its thickness
to a value h due to the volume conservation. It is also confined
by the outer region that does not change its area and remains
at the initial thickness. The biaxial compression caused by this
constraint can be fully or partly removed by buckling. The buck-
led shape depends on the elastic and geometric properties of the
shell and in an equilibrium state satisfies the minimum of elastic
energy Eq.(1).

Deformations caused by confinement in the radial direction
alone can be described as the classical Euler buckling of a plate in
response to an in–plane stress in one direction. In this case a plate
buckles to a spherical shell, when compressive stress exceeds the
critical value63 σcr = K2B/(R2

2h), where K = 2.3 is a geometric
constant for the first buckling mode when ends of the plate are
not allowed to rotate. Using R2 = 1,h = 2 and the relation be-
tween biaxial stress and strain, we obtain a critical strain εcr≈ 0.1,
which is much smaller than the strain ε = Λmax/Λmin−1 = 0.5 ex-
erted due to the contractility change in an unconstrained shell,
and thus, the inner circle exhibits buckling. However, it was
demonstrated that the buckling of a circular plate under biaxial
compressive load leads to more complicated morphologies due to
compression in circumferential direction65,66. Several wrinkles
arise along the interface between two domains, demonstrating
non-axisymmetric buckling modes as σcr increases, while it re-
mains spherical at the lowest eigenmode with smooth deflections
and nearly circular boundaries at low σcr value.

The characteristic wrinkling wavelength, λ , of an axially com-
pressed, suspended, thin sheet is given by the scaling relation,
λ ∼

√
h/ε1/4, that arises from the constrained minimization of

elastic energy of plates under tension67. To examine how the
wrinkling within the expanded inner region in our setup scales
with its size and the thickness of the disk, we study the equilib-
rium shape of disks with varying R2 and h. Simulated disks of
initial thickness h = 2 with an inner circle of reduced contrac-
tility which leads to biaxial expansion by ε = 0.5, and a smaller
thickness h/(ε +1)2 to satisfy the volume conservation condition,
develop the first wrinkling instability in the azimuthal direction
at R2 = 1.95 with λ ∼ 6.12. By varying R2, we find that the sub-
sequent transitions to three and four wrinkles occur at R2 = 2.9
and R2 = 3.9, respectively, corresponding to the same character-
istic wrinkling wavelength, λ . This is consistent with the theory
expression from67 and with our simulations on a spherical shell,
reproducing the same bulge shape (t = 750 in Fig.3a). Two typi-
cal examples of buckling instability resulting in different number
of wrinkles with increasing R2 are depicted in Fig.5b-c. Decreas-
ing h at constant R2 = 3.0 leads to increased number of wrinkles
with wavelength scaling as λ ∼ h1/2 in agreement with Ref.67.
To illustrate this, we show the disk shape at a smaller h = 0.25 in
Fig.5d, where eight wrinkles of a larger curvature appear near the
boundary of the inner circle that relax toward the center. At the
parameters we use to obtain the results reported on a spherical
shell in Fig.3, two wrinkles tend to form within the initial central
bulge. Since the initial perturbation in simulations on a sphere is
chosen to be small with width of order h, this first leads to buck-

ling with no azimuthal wrinkles, and than two wrinkles appear
when the bulge increases in radius. Each wrinkle generates in-
creasing concentration due to higher curvature along it, which in
turn causes bulge division by developing positive Gaussian curva-
ture in two spots at the wrinkle tips instead of the single initial
one.

Buckling and transition to the bulge shape causes propagat-
ing deformations in the outer region generating curvature of both
signs (Fig.5e). Near the interface, the shell has inward deflections
to accommodate the gentle slope in the transition region between
the thin bulge region and thick planar domain, and it also has a
small positive jump in curvature exhibiting oscillatory behavior
along the radial direction on a disk or along the polar direction
on a sphere (Fig.4c). Unlike the simple Euler buckling of a slen-
der column, the out-of-plane deflections must be small because
they are associated with stretching or compression of the shell in
the azimuthal direction, and are thus constrained and oscillate
about the initial state leading to the secondary ring. The position
of the secondary ring, Rr does not define the final spot separa-
tion but slightly disturbs the spot distribution around the initial
perturbation, as seen in Fig.2 at c∗ = 0.1.

The region of positive curvature forming a ring in the outer
domain leads to a higher production of chemical and subsequent
contractility change if c > c∗, which can be satisfied only at small
c∗. The resulting local expansion of the sheet causes, in turn, an-
other shape instability due to a local biaxial expansion at the sec-
ondary ring. Thus, multiple wrinkles appear along the ring to sat-
isfy the incompatibility and forming the next ring at a larger polar
angle. These wrinkles arising within the expanded ring break into
bulges that are seen as spots in the final pattern.

For this spotted pattern (that occurs, for example, at c∗ = 0.05),
we estimate both the spot size and separation, and show how the
pattern arising from the buckling instability scales with chang-
ing thickness. Assuming the shape of spots is close to circu-
lar, we calculate the average spot radius as

√
Al/πNsp, where

Al = ∑A j,Λ(A j)< Λmax is the total surface area of regions of the
shell with low contractility, and Nsp is the total number of spots.
The results for simulated spheres of different thicknesses are de-
picted in Fig.6a along with linear and square root dependencies.
The dependence of average spot radius on the initial shell thick-
ness demonstrates the same λ ∼ h1/2 scaling, both in the case
of shells that maintain uniform thickness as well as those which
conserve volume. The data is offset by a constant for the volume
conservation cases, because the actual shell thickness is reduced
at the spots. The pattern does not propagate when h < 0.125 and
h < 1.3 for the uniform and nonuniform thickness, respectively,
but the shells do exhibit the buckling instability at the location of
initial perturbation. On the other hand, the shell is stable to small
perturbations at large h and returns to the initial spherical shape
of uniform radius.

To obtain a characteristic wavelength of the pattern, we esti-
mate the distance between spots (in Fig.6), which is computed
as 2(

√
Atot/πNsp−

√
Al/πNsp), where Atot is the total shell area

in deformed state. One can see that the spot separation in both
cases is in a good agreement with67 scaling as λ ∼ h1/2. Since
the domain of high contractility remains at the initial thickness in
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(a) (b)

(c) (d)

Fig. 6 Dependence of (a) spot size and (b) spot separation on the
shell thickness, h, for the volume conserved (h decreases with in-plane
expansion) case and for uniform h all over the shell. The plots are with
respect to the initial undeformed value of h in the volume conserved
cases. (c,d) Spot separation as a function of the system size R and strain
ε for the volume conserved case. (a-d) Parameters are set to D = 0,c∗ =
0.05,R = 30,ε = 0.5,h = 2, otherwise correspond to the horizontal axis.

both the cases considered, they show the same dependence on h.
The simulated spheres reveal that spot separation and spot size

also depend on the sphere radius R. Fig.6c depicts the numeri-
cal results of spot separation together with different power law
dependencies. It shows a satisfactory agreement with prediction
of characteristic deformation length on shells scaling44 as ∼

√
R,

unlike deformations in plates that do not depend on the system
size.

So far, the contractility change Λmax/Λmin associated with bi-
axial expansion ε was kept constant. However, ε also determines
the characteristic wavelength of wrinkles. Simulations at various
ε show that a decreased ratio leads to a much larger spot size
and separation, obeying the scaling λ ∼ ε−1/4 (Fig.6d), and thus,
demonstrating the robustness of patterns to varying model pa-
rameters. This dependence is different from wrinkling of a plate
attached to a soft substrate, where wavelength depends only on
thickness and the ratio between layer stiffness68. We provide ad-
ditional computational results for patterning with large bulges in
the Appendix C.

Since the ridge pattern does not occur over an extensive range
of parameter space, it is difficult to establish a reliable scaling
unlike the spotted patterning. Comparison of results at constant
c∗ = 0.2 and 2 ≤ h ≤ 3 shows a non-linear increase in the total
area with lower contractility.

We also note that the global structure of the spotted pattern
is constrained by topology in analogy with the packing and crys-
tallization of particles on curved surfaces69–71. The wrinkling

pattern can be considered as a triangular lattice tessellation of a
spherical surface with bulges at the vertices, which allows only
finite number of configurations with equi–spaced vertices as de-
fined by the Euler characteristic72. Any defect in this tessellation,
for example a bulge with a different number of neighbors that
makes the lattice irregular, causes an increase of elastic energy.
Such a bulge changes its shape (the initial bulge in Fig.3a), or
eventually merges with another bulge (small bulges at the sec-
ondary ring in Fig.3a), to reduce the elastic stress and accom-
modate the characteristic wavelength of spot separation. On the
other hand, we note that the ridge-like structures (Fig.3b) resem-
ble scars on spherical crystals73, but arise from a completely dif-
ferent physical mechanism. The scars are high-angle grain bound-
aries which develop as a row of alternating disclinations associ-
ated with positive and negative Gaussian curvature, whereas our
linear rows of bulges do not require any crystalline order.

We have thus shown that the pattern formation can be under-
stood from the mechanics of elastic instabilities. Although, these
are driven by local expansile stresses that are in turn induced by a
propagating chemical concentration, considerable insight into the
kinetic pathway and final patterns can be obtained by analyzing
the buckling and wrinkling transitions in terms of thin shell elas-
tic theory for a prescribed differential tension created by a fixed
chemical gradient.

5 Discussion
Morphogenetic folding in biology encompass a wide variety of
buckling mechanisms ranging from those driven by individual cell
shape changes in local regions to those stemming from differen-
tial growth rates in neighboring tissue regions74. While the de-
tails differ, all these processes require a spatial patterning of the
tension or the growth rate in the tissue, which is typically accom-
plished by biochemical gradients and resulting gene expression in
biology.

It is conceivable that there are multiple biophysical pathways
through which mechanics can affect the chemical profile that
imprints mechanical gradients (and which we therefore term
“mechanogens”), such as through in-plane stresses that affect cell
shape and membrane tension and therefore, the uptake and pro-
duction of mechanogens34. Furthermore, a mechanogen can also
in principle stimulate or suppress cell contractility, and thus lead
to local contractions and expansions. In the absence of direct
experimental evidence of such a candidate mechanogen and its
effect on cell mechanics in a specific biological setting, we ex-
plore, here one such plausible mechanism in a specific, simplified
setting as proof-of-concept.

In our model system, wrinkling results from differential
changes in the in-plane area of the cells in response to
mechanogens whose production is stimulated by tissue curva-
ture. This positive mechanochemical feedback drives a propagat-
ing pattern of wrinkles on the surface of a thin elastic shell that
are associated with both high curvature and high mechanogen
concentration. We note that while this realizes a new pathway
for obtaining a spotted pattern morphology on a spherical surface
compared to those realized through purely mechanical means,
such as by buckling of pressurized shells24,75, or by purely chem-
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ical means, such as through phase separating chemical factors on
the surface of shells modeling pollen grains76, the linear ridge-
like morphology is very different. Unlike ridges appearing in an
elastic material that is attached to a compliant substrate and sub-
jected to a large compression77–79, we have shown that similar
but high-aspect-ratio patterns can be developed in a single-layer
unconstrained system due to dynamic localized expansion. Such
patterns are of particular interest due to potential applications in
tissue engineering and fabrication of functional surfaces, for in-
stance hydrophobic coatings80. This study also provides a possi-
ble pathway for diverse surface patterning in naturally occurring
shells, for example the spikes, pores and ridges on pollen grains
and viral capsids70,76,81, and may also have implications for de-
formations of cell membranes which are fluid in-plane but are
endowed with curvature elasticity82.

Our mechanochemical model realizes an excitable medium,
where a local initial stimulus is propagated through the medium
because a localized chemical fluctuation results in a global me-
chanical response. This is therefore a complementary proposal
to that of Turing patterns which arise from the chemical interac-
tions of a fast and a slow diffusing chemical species. We have
shown that the mechanochemical feedback between one chemi-
cal species which acts as a local activator, and the global mechan-
ical response of elastic shell, can result in propagating and tun-
able pattern formation that does not require interactions between
multiple chemical species with very different diffusivity. More-
over, we show that buckling deformations provide long-ranging
interactions that cause spontaneous propagation of chemical sig-
nalling patterns without requiring any diffusion.

Given the complexity of biological tissue, we propose that a
first experimental exploration of these ideas should be in an in
vitro context, such as in organoids (collections of cultured cells in
vitro that mimic organs), where recent progress has been made
in studying mechanical wrinkling83 or in cell cytoskeletal extracts
such as actin gels embedded with contractile myosin motors36,
which can be combined with chemical gradients that induce dif-
ferential mechanical stresses. The details of the mechanochemi-
cal feedback are likely to be different from that assumed here, but
our modeling approach is general and could be easily modified to
capture these scenarios.
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Fig. 7 Geometry of discretized shell that is constituted as a collection
of nodes with positions xi connected by links li j, where each node spans
an area Ai around it.

A Details of the discretized model
The elastic energy defined by Eq.(1) is discretized on a triangular
mesh with each node denoted by i and triangles denoted by α.
The length of a bond connecting the ith and jth nodes is written
as li j. Each bond is spring-like and resists any change in its length,
whereas each triangle has area elasticity. Both changes in bond
length and area are penalized by an elastic energy cost given by
the local 2D stiffness which in turn depends on the local thickness.
The total stretching energy in a discrete form is then written as,

U d
s =

1
2 ∑
〈jk〉
〈A〉 jkE〈h〉 jk

(
l jk

l jk
−1

)2

+
1
2 ∑

α

Aα Ehα

(
Aα

Aα

−1
)2

,

(4)

where stretching energy reconstitutes the continuum limit up to
particular choice of the Lamé coefficients assuming Y ∼ Eh. The
first term in Eq. 4 gives the elastic energy cost of stretching of the
bonds where 〈 jk〉 denotes a sum over all bonds. The actual thick-
ness and area at bonds are calculated as an approximate average
over the two triangles that share the bond: 〈h〉 jk = (hα + hβ )/2,
and 〈A〉 jk = (Aα +Aβ )/3, where Aα and Aβ are the areas of the
two triangles that share the bond, and 1/3 appears because each
triangle contributes to three sides. The second term represents
the area elasticity of the triangles, where Aα and hα are the actual
area and the actual thickness associated with the α th triangle.

In our simulations, the preferred bond lengths, l jk and, as a
consequence, the preferred triangle areas Aα are modified by
the nonuniform in-plane contractility Λ(c), which is prescribed
by Eq.(2). For simplicity, we assume an inverse proportional-
ity between contractility and length change, and define this by
l jk = l0

jk(Λ
0/Λ(c)), where l0

jk is the length at the initial contractility

Λ0 (that is chosen to be Λmax in the simulations). The preferred
area changes as Aα = A0

α (Λ
0/Λ(c))2 relatively to the initial value

A0
α . In the case of nearly incompressible materials, a change in the

optimal area is expected to induce a corresponding change in the
optimal thickness in accordance with the Poisson’s ratio, ν , of the
material. For very thin shells, such changes are negligible and we
can work with the uniform thickness approximation. In our com-
putations, we keep triangle thickness hα at the initial thickness
h0 to model the case of uniform thickness, or we assume volume
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Parameter Description
E = 106 Young’s modulus
ν = 0.5 Poisson ratio
Λmax = 1 Maximal contractility
Λmin = 0.65 Minimal contractility
b = 100 Width of transitional zone between do-

mains with Λmax and Λmin
Hs = 0.05 Characteristic curvature at which the

chemical production saturates
w = 15 Production rate
β = 1 Degradation rate
γ = 100 Friction coefficient

Table 1 Parameters used in simulations

conservation at ν = 1/2 that implies an inverse dependence of
thickness change on the in-plane area change. In this latter case,
we calculate the actual triangle thickness as hα = h0A0

α/Aα , where
h0, A0

α are the initial undeformed thickness and triangle areas, re-
spectively. Not all triangles are equal in area in a non-uniform
mesh, but the thickness is assumed uniform in the undeformed
state.

The bending energy corresponds exactly to the second term in
Eq.(1) and reads as

U d
b =

1
2 ∑

nodes,i
〈A〉iBi

(
4(Hi−H0)

2−2(1−ν)(Ki−2HiH0 +H2
0 )
)
,

(5)

where the local bending stiffness, Bi depends on the local thick-
ness, hi, which is computed by averaging over the triangles shar-
ing the node. The energy vanishes in planar configuration if
there is no spontaneous curvature of the sheet, H0 = 0, and at
H0 = 1/R if the undeformed shape is a spherical shell of radius
R. The local curvature at each node is computed representing
curvature strain via the mean and Gaussian curvatures. The
discrete Gaussian curvature Ki = (2π −∑α ρα

i )/〈A〉i is expressed
through the sum of all angles, ρα

i , subtended at the node i by
all triangles that share this node, 〈A〉i = ∑Aα/3 is the approxi-
mated area associated with the node. The mean curvature Hi

is calculated taking half of the mean curvature normal opera-
tor Hi = ∑((xi−x j)(cotθ 1

i j +cotθ 2
i j))/(2〈A〉i) defined over adjacent

nodes, where θ k
i j(k = 1,2) are the two angles opposite to the bond

li j in the two triangles sharing the bond84 (Fig.7). The sign of
the mean curvature coincides with the sign of Hi · xi, being posi-
tive when Hi oriented outward of the spherical shell.

We assume overdamped dynamics and the positions of nodes
xi in the discretized shell are found by minimizing the elastic en-
ergy, U , defined in the main text, by following the pseudo-time
evolution equations: γ∂xi/∂ t =−δUd/δxi. Here, γ is the friction
coefficient associated with energy dissipation during elastic de-
formation, which can be caused by the surrounding fluid as well
as viscous remodeling of the tissue material.

B Numerical methods
We numerically investigate out-of-equilibrium dynamics of a de-
formed tissue sheet by solving Eqs.(2)–(5) using spatially unstruc-
tured finite-volume discretizations. The medium of uniform thick-
ness in initial state is triangulated on an irregular mesh consisting
of 25 000 nodes satisfying the Delaunay condition using the mesh
generator Distmesh85. The number of nodes remains constant
and no remeshing takes place. The discretization allows to treat
three-dimensional deformations following the physical displace-
ment of the nodes constituting the vertices of triangles. The elas-
tic energy (4,5) is minimized over the positions of all nodes using
the conjugate gradient algorithm with tolerance chosen as 10−4%
of energy gain by executing a minimization step. The elastic en-
ergy gradients are calculated by sequential virtual displacement
of nodes along each coordinate and then we perform iterative
simultaneous update of all node positions. Once the system ap-
proaches its mechanical equilibrium, a small time step (dt = 0.01)
using an explicit Euler forward scheme is performed in the dy-
namic equation (3) leading to new concentrations. Then using
Eq.(2) contractility at each node is computed that allows to find
new optimal triangle side lengths respectively to given contractil-
ity.

The spatial derivatives in diffusion equation (3) are calcu-
lated based on local approximation using the divergence theo-
rem (Green-Gauss) gradient scheme86. We apply the node based
method to find concentration at nodes. The concentration at node
i is calculated as an average over concentration in adjacent tri-
angles ci =

∑cα/d
∑1/d which is weighted according to the distance d

between node and the center of the triangle α (Fig.7). The con-
centration values cα at triangles are governed by Eq.(3). To find
the gradients at the center of a triangle, the Green-Gauss theorem
is used, which states

∫
cn dS =

∫
∇c dV , where c is the concentra-

tion scalar field. Then the integrals over the volume V and sur-
face S enclosing the volume can be replaced by an approximation
of gradients at triangle accounting for fluxes trough the sides of
triangle87 given by (∇c)α = 1

Vα
∑c f n f s f , where c f is the concen-

tration in the center of each triangle’s side that is an average over
two node values, n f is the normal to the triangle side, s f = li jhi j

is the side area, and summation is assumed over the three trian-
gle’s sides. For chemicals diffusing along the sheet’s surface in a
layer of unit thickness, hi j can be chosen of unit length and thus
Vα = Aα for 2D diffusion.

C Patterning with large spots
In addition to the patterning on a spherical shell considered in
the main part of this Communication, we explored the parameter
space to demonstrate how the system can be tuned to produce
target patterns and to study robustness of the mechanochemical
feedback. Since the wavelength of wrinkling instability depends
on both thickness and contractility change, the spot size and sep-
aration increase by reducing Λmax/Λmin and increasing h. How-
ever, larger wavelength is associated with smaller amplitude of
deformations, and so to make the pattern propagating, the thresh-
old c∗ has to be low to compensate for the decreased curvature
in Eq.(3). Starting with a single small point–like perturbation
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Fig. 8 Simulation snapshots of spontaneous pattern formation on a
spherical shell at h = 3,R = 30,D = 0, decreased contractility change
Λmax/Λmin = 1.1 and concentration threshold c∗ = 0.05. The evolution
reveals a fast phase of a spotted pattern formation followed by a slow
coarsening. At the steady state (t = 100000), only a few spots of high
concentration with large radius remain, consistent with the theoretically
predicted67, λ ∼

√
Rh/ε1/4, scaling.

in concentration, the resulting patterns demonstrate only a few
uniformly distributed large spots of circular shape (Fig.8). Un-
like patterning with smaller structures, here the time evolution is
much slower, but demonstrate similar coarsening that results in
only several large, equi–spaced bulges on the shell surface. The
global structure is constrained by topology and defined by the
Euler characteristic72. Thus, the sphere with large characteristic
spot separation accommodates a finite number of spots at given
sphere radius. At Λmax/Λmin = 1.1,h = 3 and R = 30, the spot
separation is of the order of the sphere radius and the shell de-
velops a regular dodecahedral shape with 20 bulges at vertices.
Simulations at various Λmax/Λmin demonstrate spot separation
and radius that follow λ ∼

√
Rh/ε1/4 scaling. For instance, at

Λmax/Λmin = 1.15 and Λmax/Λmin = 1.2 the sphere demonstrates
average spot separation ∼ 0.9R and ∼ 0.85R, respectively. Note
that concentration saturation level is lower than in Fig.2-4 be-
cause the developed curvature is smaller and as a result produc-
tion decreased.
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