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Chemo- and enantioselective hetero-coupling of 
hydroxycarbazoles catalyzed by a chiral vanadium(v) complex
Makoto Sako,a Keigo Higashida,a Ganesh Tatya Kamble,a Kevin Kaut,a,b Ankit Kumar,a Yuka Hirose,a,c 
Da-Yang Zhou,a Takeyuki Suzuki,a Magnus Rueping,b,d Tomohiro Maegawa,c Shinobu Takizawa,*a 
and Hiroaki Sasai*a

The catalytic enantioselective oxidative hetero-coupling of arenols using a chiral vanadium(v) complex has been developed. 
The coupling of hydroxycarbazole derivatives with various arenols provided axially chiral biarenols in high chemo-, regio-, 
and enantioselectivities. The reaction took place under mild conditions and exhibited satisfactory functional group 
tolerance. Aerobic oxidative hetero-coupling with β-ketoesters also proceeded in high chemo- and stereoselectivities under 
the slightly modified reaction conditions.

Introduction
Optically pure biarenol derivatives have played a significant role 
in organic chemistry due to their considerable utilization as 
chiral reagents, ligands, and building blocks.1 To date, 
transition-metal-catalyzed cross-couplings is one of the most 
fundamental approaches to access the axially chiral molecules2 
through a carbon-carbon (C–C) bond formation.2b,2c,3 An 
important issue in recent synthetic chemistry is to provide 
efficient methods to perform chemo-, regio-, and 
enantioselective C–C bond formations avoiding or minimizing 
undesired side-products and toxic wastes, leading to 
environmentally benign chemical syntheses.4 Compared with 
well-established enantioselective oxidative homo-couplings to 
afford C2-symmetric biarenols5, hetero-couplings have the 
advantage to create C1-symmetric6 biarenols. Several 
enantioselective oxidative hetero-couplings of mainly 2-
naphthol derivatives via radical-radical and radical-anion 
pathways, have so far been reported [Cu: Smrčina and Kočovský 
19937, Kozlowski 20038, Habaue 20059, Tu and Tian 2019, 
202110; Fe: Katsuki 201011, Pappo 201612; Ru: Uchida 202013]. 
Although remarkable work has been conducted in this area, 
suppressing homo-couplings and the application of various 
arenols still remain a challenge.

Scheme 1. Reported Chiral Vanadium(v)-catalyzed Oxidative 
Homo-coupling of 2-Naphthols and 3-, 2-Hydroxycarbazoles.

Over the past few decades, chiral vanadium catalysts14,15 were 
utilized in oxidative homo-couplings of 2-naphthols under the 
mild reaction conditions (Scheme 1A).15a,16 Recently, our group 
and Kozlowski group independently extended chiral 
vanadium(v) complexes to the enantioselective oxidative 
homo-couplings of various arenols17,18 such as polycyclic 
phenols,17d,17e resorcinols,17a,18 2- and 3-
hydroxycarbazoles17b,17c,18b,18c (Scheme 1B, 1C), that have not 
been used in the other metal complexes because of their high 
catalyst activities leading to over-oxidation and side-reaction of 
starting material and/or coupling products.19 Despite a 
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potential abilities of vanadium(v) catalysts, no efficient 
enantioselective oxidative hetero-coupling of arenols has been 
reported to date. As part of our ongoing research with chiral 
vanadium(v) catalysis,20 we herein disclose the chemo-, regio-, 
and enantioselective catalytic oxidative hetero-coupling of 
hydroxycarbazoles mediated by chiral vanadium(v) complexes, 
producing unsymmetrical carbazole-based biaryl derivatives 
that can be applied in functional materials and are also found in 
natural products (Scheme 2).21 Additionally, β-ketoesters could 
be utilized as a coupling partner in the aerobic oxidative hetero-
coupling.
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Scheme 2. Oxidative Hetero-coupling of Hydroxycarbazoles 
with Various Arenols and β-Ketoester.

Results and discussion
Reaction optimization and substrate scope

Initially, chiral vanadium(v) catalysts were screened for the 
oxidative hetero-coupling employing a 1:1 molar ratio of 3-
hydroxycarbazole (1a) and 2-naphthol (2a) under air (Table 1). 
The catalyst (Ra,S)-4a having a (R)-BINOL skeleton and a tert-
leucine moiety17b afforded the axially chiral hetero-coupling 
product 3aa in good yield (81%) with a moderate enantiomeric 
ratio (69:31 er) (Entry 1). Homo-coupling products 5a and 6a as 
well as other regioisomers were observed in less than 5% 
yield.22 The diastereomeric catalyst (Sa,S)-4a had a catalytic 
activity comparable to that of (Ra,S)-4a to generate 3aa in 75% 
yield with 61:39 er (Entry 2). During the catalyst screening, bulky 
substituents at the 3′-position on the binaphthyl skeleton of the 
catalyst were crucial for the high enantioselectivity. The 
vanadium(v) catalysts (Ra,S)-4b (R = Me) and (Ra,S)-4c (R = I) 
yielded 3aa in 75:25 er and 72:28 er, respectively (Entries 3 and 
4). Among the more sterically bulky aryl-substituted 
vanadium(v) catalysts (Entries 5–7), (Ra,S)-4f containing a 2,6-
dimethylphenyl group afforded 3aa in 92% yield with 82:18 er 
(Entry 7). Eventually, 1,4-dioxane proved to be a suitable 
solvent, furnishing 3aa in 40% yield along with the unreacted 
starting materials 1a and 2a (Entry 11). In the presence of 
lithium chloride (LiCl) as an additive18c,23 3aa was isolated in 84% 
yield with 94:6 er (Entry 13).
With the optimal reaction conditions in hand, the scope and 
limitations of the substrates were investigated (Scheme 3). A series 
of 3-hydroxycarbazoles containing a methyl (1b), aryl (1c–e), and 
bromo (1f) substituents efficiently reacted with 2a to the 
corresponding products 3aa-3fa (63–85% yields and 89:11–94:6 er).

Table 1. Optimization of the Reaction Conditionsa.

solvent, air
30 °C, time

V catalyst 4
(10 mol%)

HO

2a (1.0 equiv)

HO

N
H

HO

N
H

HO

+

1a

3aa

Entry 4 Solvent
Time
(h)

Yield
(%)b Erc

1 (Ra,S)-4a TCE 24 81 69:31
2 (Sa,S)-4a TCE 24 75 61:39
3 (Ra,S)-4b TCE 24 >95 75:25
4 (Ra,S)-4c TCE 24 73 72:28
5 (Ra,S)-4d TCE 24 84 71:29
6 (Ra,S)-4e TCE 24 76 73:27
7 (Ra,S)-4f TCE 24 92 82:18
8 (Ra,S)-4f toluene 24 79 79:21
9 (Ra,S)-4f diethyl ether 48 49 74:26
10 (Ra,S)-4f THF 48 20 88:12
11 (Ra,S)-4f 1,4-dioxane 48 40 92:8
12d (Ra,S)-4f 1,4-dioxane 96 74 91:9
13e (Ra,S)-4f 1,4-dioxane 96 85 (84) 94:6
aThe reaction of 1a (1.0 equiv) and 2a (1.0 equiv) using the 
vanadium(v) complex 4 (10 mol%) was conducted in a solvent 
(0.1 M for 1a) at 30 °C under ambient conditions (1 atm). bYields 
were determined by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as the internal standard. cEnantiomeric 
ratios (ers) were determined using HPLC (DAICEL CHIRALPAK 
IA). dConducted for 96 h eLiCl (3.0 equiv) was added. fIsolated 
product yield in parentheses. TCE = 1,1,2,2-tetrachloroethane. 
THF = tetrahydrofuran
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The π-expanded hydroxycarbazole, 7H-benzo[c]carbazol-10-ol 
(1g), produced the coupling product 3ga in 72% yield with 87:13 
er. The absolute configuration of 3ga was determined as R 
through X-ray crystallographic analysis. Moderate 
enantioselectivity was observed for 3-hydroxycarbazole 1h, 
having a methyl group on the nitrogen atom. The coupling 
reaction of 1a with 2a in a 1.0 mmol scale also proceeded 
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smoothly to give 3aa in 80% yield with 89:11 er and 3aa with 
high optical purity (98:2 er) was readily obtained after a single 
recrystallization.
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aResults on 1.0 mmol of 1. bAfter a single recrystallization. X-ray 
structure of (R)-3ga with ellipsoids at 50% probability (H atoms 
and ethyl acetate were omitted for clarity).

Scheme 3. Substrate Scope of 3-Hydroxycarbazoles 1a.

Subsequently, various 2-naphthol derivatives 2 were examined 
in the coupling (Scheme 4). The reactions of electron-rich 6-
methoxy- (2b), electron-deficient 6-bromo- (2c), or 6-iodo-2-
naphthol (2d) with 1a provided the desired products 3ab–3ad 
in 76–88% yields with good enantioselectivities (85:15–89:11 
er). Furthermore, 2-naphthols with (pinacolate)boryl and 
phenyl groups at the 6-position efficiently produced 3ae and 3af 
in 78% yield with 93:7 er and in 98% yield with 89:11 er, 
respectively. The reactions with 2-naphthol having a 4-MeO-
C6H4 substituent at 6-position provided 3ag in moderate yield 
and enantioselectivity. The use of 7-substituted 2-naphthols 
2h–2k afforded 3ah–3ak in acceptable yields and 
enantioselectivities. The present catalytic system exhibited 
adequate tolerance towards functional groups such as halogens 
[Br (3fa, 3ac, and 3ak) and I (3ad)] and (pinacolate)boryl (3ae, 
3be, and 3de) groups. Moreover, various combinations of 
coupling precursors 1 with 2 led to the formation of products 
3be, 3bi, 3bj, 3de, 3di, and 3dj (Scheme 5). 4-Hydroxycarbazoles 
(1i-j) and 3-hydorxycarbazole (1k) were also found to be 
appropriate substrates for the hetero-coupling with 2-naphthol 
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derivative (2l), providing C1-symmetric biaryls 3il, 3jl, and 3kl 
respectively, with up to 95:5 er. It was noted that considerable 
chemoselectivity was achieved in the reaction using a 1:1 molar 
ratio of 2-hydroxycarbazole (2a) and 4-hydroxycarbazole (2i) to 
afford the corresponding hydroxycarbazole dimer (3ia) in 64% 
yield with 71:29 er.

Mechanistic studies toward an extension to the other hetero-
coupling

LiCl (3.0 equiv)
1,4-dioxane (0.1 M)

air, 30 °C, 96 h

(Ra,S)-4f
(10 mol%)

2a+1a 3aa

(1.0 equiv)

0

20

40

60

80

100

0 20 40 60 80 100

ee
of

 3
aa

(%
)

ee of (Ra,S)-4f (%)

Figure 1. Ee of 3aa as a Function of Ee of (Ra,S)-4.

In 2018, Kozlowski and co-workers reported mechanistic studies 
on vanadium(v)-catalyzed enantioselective oxidative radical-
radical coupling of phenol derivatives based on a positive non-
linear effect,24 and proposed the formation of a dimeric cluster 
that included a vanadium(v) complex in the C–C bond forming 
step.18b In our catalytic system, the nonlinear effect experiment 
exhibited the linear correlation of the enantiomeric excess (ee) 
of the catalyst with the ee of the product (Figure 1). Therefore, 
our hetero-coupling might proceed through a different 
activation mode compared to Kozlowski’s system. The addition 
of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) to the present 
reaction inhibited the formation of 3aa (20% NMR yield) 
(Scheme 6A). Additionally, when a competing reaction of 1a 
with 2b having a MeO group and 2c containing a Br group was 
examined, 3ab (56% NMR yield) was preferentially formed 
rather than 3ac (17% NMR yield) (Scheme 6B). These outcomes 
might support the nucleophilic attack of 2 on radical cations 
arisen form 1 because the more electron-rich nucleophile 2b 
showed a higher reaction rate than that of 2c.25
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30 °C, 96 h
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TEMPO (0.2 equiv)

3aa
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HO
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Scheme 6. Control Experiments.

A plausible catalytic cycle for the oxidative hetero-coupling of 
hydroxycarbazoles 1 with 2-naphthols 2 is illustrated in Scheme 
7. The condensation of the mononuclear vanadium(v) complex 
(Ra,S)-4f with 1 generates intermediate A. Then, intermediate A 
undergoes a single electron transfer (SET) from the carbazole 
moiety to vanadium(v) to generate conceivable electrophilic 
radical intermediate B, since 1a is more easily oxidized than 
2a.26 This is followed by an intermolecular radical-anion 
coupling to afford intermediate C with the formation of a new 
carbon-carbon bond through the nucleophilic attack of 2-
naphthols. Re-oxidation of vanadium(iv) to vanadium(v) 
proceeds by molecular oxygen in air to give intermediate D. 
After subsequent exchange with 1, hetero-coupling product 3 is 
obtained and intermediate A is regenerated.
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Scheme 7. Plausible Reaction Mechanism for the Oxidative 
Hetero-coupling of 3-Hydroxycarbazoles 1 with 2-Naphthols 2.
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Encouraged by these obtained results, we further investigated 
the effects of different nucleophiles27 on the vanadium(v)-
catalyzed oxidative hetero-couplings. In 2017, Pappo and co-
workers reported an asymmetric coupling of 2-naphthols and β-
ketoesters which have a chiral auxiliary catalyzed by iron 
phosphate complexes via a radical-anion coupling 
mechanism.27b Hence, β-ketoester 7 was employed as a 
coupling partner for 3-hydroxycarbazoles 1 with a vanadium(v) 
catalyst (Scheme 8). Under the slightly modified reaction 
conditions (see Table S6 in SI), the enantioselective oxidative 
hetero-coupling of 1a with 7 using (Sa,S)-4a in chlorobenzene 
successfully provided cyclic hemiacetal product cis-8a having an 
all-carbon chiral quaternary center28 in 85% yield with 93:7 er 
and 2:1 diastereomeric ratio (dr). A series of hydroxycarbazoles 
were converted into the cis-products 8b-d, 8e in moderate to 
good yields with up to 92:8 er and >20:1 dr.29 Hetero-coupling 
products 8f’ and 8g’ were obtained as trans-form (>20:1 dr) due 
to steric hindrance effect of the substituent at 5-position of 1. 
The absolute configuration of 8e was determined as (R,S) 
through X-ray crystallographic analysis.

H
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H
N

R
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O CO2Me
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50 °C, 24 h
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H
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HO CO2Me
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H
N

O

HO
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O

OMe
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HO
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OMe

Me
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CCDC 2025416

S
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X-ray structure of (R,S)-8f with ellipsoids at 50% probability (H 
atoms and ethyl acetate were omitted for clarity).

Scheme 8. Oxidative Hetero-coupling of 3-Hydroxycarbazoles 1 
with β-Ketoester 7.

Conclusions
In summary, we have developed a highly enantioselective and 
catalytic oxidative hetero-coupling of 3-hydroxycarbazoles 1 
with 2-naphthols 2 using a newly developed mononuclear 
vanadium(v) complex (Ra,S)-4f. With a 1:1 molar ratio of the two 
starting materials, this catalytic system successfully and 

efficiently produced hetero-coupling products 3 with up to 98% 
yield and 95:5 er. 4-, 3-Hydorxycarbazoles 1i-k and β-ketoester 
7 were also found to be appropriate substrates for the chiral 
vanadium(v)-catalyzed oxidative hetero-coupling. Further 
mechanistic studies and applications of the biarenol products as 
chiral catalysts or ligands are ongoing in our laboratory.
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