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Effect of Noncovalent Interactions in Ion Pairs on Hypervalent 
Iodines: Inversion of Regioselectivity in Sulfonyloxylactonization 
Yoshihiro Nishimoto,*a,b Masaki Fujie, a Junki Hara a and Makoto Yasuda *a,b

We synthesized novel hypervalent iodines possessing cationic heterocyclic moieties nearby the iodine(III) center. The novel 
hypervalent iodines exhibited a totally different regioselectivity from common PhI(OAc)2 during the sulfonyloxylactonization 
of 2-vinylbenzoic acids. The noncovalent interactions between the sulfonyloxy groups and the cationic heterocyclic moieties 
resulted in a significant change in the regioselectivity, which was revealed by the observation of intermediates and density 
functional theory studies including noncovalent interaction analysis.

Introduction
Organic hypervalent iodine compounds work as efficient 
oxidants and perform unique oxidative functionalizations of 
various substrates such as alkenes, ketones, and alkanes.1 
Modifications of the carbon backbones in organic hypervalent 
iodines strongly improved their properties such as stability, 
reactivity, and selectivity. Typically, the inductive effect of 
substituents is used for tuning the oxidizability (Fig. 1a).1 The 
coordination of functional groups to an iodine center not only 
enhances stability and solubility (Fig. 1b).2,3 The asymmetric 
induction effect by various types of chiral auxiliaries or chiral 
organic backbones has achieved enantioselective oxidative 
reactions (Fig. 1c).1,4 For example, Ishihara and Muñiz reported 
that the hydrogen bond between an amide NH group in a chiral 
auxiliary and an AcO group located at the iodine center 
generated an effective reaction field for an asymmetric 
oxidation of alkenes.5 Recently, Jacobsen, Sigman, Houk, and 
Xue revealed that multiple attractive non-covalent interactions, 
including CH-π and π-π interactions, between styrene 
substrates and the hypervalent iodine framework contributed 
to asymmetric induction in difluorinations of styrenes (Fig. 1d).6 
As described above, hypervalent iodine chemistry has 
progressed with the establishment of control methods of the 
properties and reaction fields. Therefore, to pioneer a novel 
area in tactics for the achievement of selective reactions with 
hypervalent iodine reagents has been of great significance even 
now. Recently, the control of regio- or stereoselectivity via 
noncovalent interactions in designed ion pairs has made 
amazing successes
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Fig. 1 Control of reaction fields on hypervalent iodines

in various fields such as transition metal catalysis,7 phase-
transfer catalysis,8 counteranion-directed catalysis,9 and ion-
paring catalysis10 because the noncovalent attractive forces in 
ion pairs are mainly constructed by electrostatic and induction 
interactions to be considerably long-range and strong by 
comparison with other noncovalent forces.11 In hypervalent 
iodine chemistry, only Breslow reported a C-H chlorination of 
steroids catalyzed by an ion-paired template (Fig. 2a), wherein 
a regioselective chlorination is accelerated by the generation of 
ion pairs between ammonium and sulfonate moieties attached 
on steroids and hypervalent iodines.12 Despite a large potential 
indicated by Breslow, other reaction systems via noncovalent 
attractive forces in ion pairs has been underdevelped even now. 
Thus, we envisioned the application of the noncovalent 
interactions in ion pairs to a dual functionalization of alkenes 
using two different nucleophiles (Nu1 and Nu2) which is a 
significant reaction in hypervalent iodine chemistry (Fig. 2b).1,4 
The control of regioselectivity in the addition of nucleophiles to 
iodonium intermediates is a vital issue for the success of a 
selective double functionalization (Fig. 2b, key step for 
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regioselectivity).13 In our working hypothesis, noncovalent 
interactions between anionic nucleophiles (Nu2) and the 
cationic substituents (R+) of hypervalent iodine molecules affect 
the nucleophilicity in order to control regioselectivity. Herein, 
we report the synthesis of novel λ3-iodanes 1 bearing cationic 
nitrogen-containing heterocyclic moieties nearby the iodine(III) 
center (Fig. 2c). These hypervalent iodines and PhI(OAc)2 
exhibited an opposite regioselectivity in the 
sulfonyloxylactonization of 2-vinylbenzoic acids 2. This is the 
first report of the control of regioselectivity by noncovalent 
interactions in dual functionalization of alkenes with 
hypervalent iodine reagents, which has enormous implications 
in terms of revealing the role of noncovalent interactions in 
hypervalent iodine-mediated reaction systems.

Results and discussion
We chose imidazolium structures as cationic moieties because 
of tolerance to oxidative conditions using hypervalent iodines.14 
Targeted ArI(OAc)2 1a bearing an imidazolium moiety at the 
ortho-position in the ArI structure was prepared from 
commercially available 2-iodobenzoic acid by conventional 

methods (Scheme 1).14 X-ray diffraction analysis of 1a (Fig. 3) 
shows that the structure around the iodine atom adopts a T-
shaped geometry with the benzene ring, which is located in a 
plane of the trigonal bipyramidal structure that occupies an 
equatorial position. Apical positions are occupied by AcO groups 
and both carbonyl oxygens coordinate to the iodine center. BF4

– 
locates near the imidazolium moiety in a solid state. The 
imidazolium plane is almost perpendicular to the benzene ring.

By investigating various oxidative functionalizations using 
1a, we discovered that 1a exhibited an interesting regio-
divergence in tosyloxylactonization of 2-vinylbenzoic acids 
(Table 1). Fujita reported that asymmetric lactonization using p-
toluenesulfonic acid (TsOH) and chiral iodoarene diacetate 
proceeded in a 6-endo cyclization fashion.15 We performed 
lactonization using PhI(OAc)2 and TsOH to preferentially obtain 
the 6-endo product 3a, which is similar to that of Fujita’s 
reagent (4a/3a = 17:83) (Entry 1). Generally, ArI(OTs)OH 
generated in situ is considered an intermediate in tosyloxylation 
using TsOH and iodoarene diacetates.16 Examining Koser’s 
reagent PhI(OTs)OH, the same regioselectivity as 
PhI(OAc)2/TsOH was observed (Entry 2).17 To our delight, 
synthesized hypervalent iodine 1a exhibited a regioselectivity 
that was quite different from common hypervalent iodines to 
produce 5-exo 4a in high-selectively
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Table 1 Comparison of 1a with common hypervalent iodine reagents on the 
regioselectivity of tosyloxylactonization of 2-vinyl benzoic acid 2aa

yield
(4a+3a)

60%8317

96 69%

64%

3a
6-endo

4a
5-exo

regioselectivity (%)

TsOH•+
Ph

IAcO OAc

Ph

ITsO OH 4

TsOH•

(AcO)2I

N

N
Me

Me BF4

1a

+

5a
91 9

NBuMeN

BF4Ph

I OHTsO + 38%8614

Entry

2c

3d

1b

4e

Cl
OH

O2a
Cl

O

OTs

O

+

3a

CH2Cl2
+ Tosyloxylation

Cl

O

O4a

Tosyloxylation reagent

(1.2 equiv)

(6-endo)(5-exo)

reagent

TsO

r.t., 15 h

H2O

H2O

5a

a2a (0.15 mmol), CH2Cl2 (0.5 M), room temperature, 15 h. bPhI(OAc)2 (0.18 mmol), 
TsOH·H2O 5a (0.15 mmol). cPhI(OTs)OH (0.18 mmol). d1a (0.18 mmol), TsOH·H2O 
5a (0.15 mmol). ePhI(OTs)OH (0.18 mmol), N-butyl-N-methylimidazolium 
tetrafluoroborate (0.65 mmol).

(4a/3a = 91:9) (Entry 3).18 Even when CHCl3, PhCl, ClCH2CH2Cl, or 
CH3CN instead of CH2Cl2 was used as solvents, 1a and PhI(OAc)2 
exhibited the high level of 5-exo selectivity and 6-endo selectivity, 
respectively, regardless of the permittivity (Scheme S16 in ESI). In 
addition, we confirmed that the isomerization between 5-exo 
4a and 6-endo 3a did not occur under tosyloxylactonization 
conditions (Scheme S18 in ESI). 1-Butyl-3-methylimidazolium 
tetrafluoroborate was used as an additive in the tosyloxylation 
of 2a using PhI(OTs)OH, and preferentially afforded 6-endo 3a 
(Entry 4). The selectivity (4a/3a = 14:86) approximated that in a 
no-additive examination (Entry 2). Thus, an outer-sphere 
cationic unit is ineffective and the intramolecular imidazolium 
moiety influences the change in regioselectivity.

Table 2 Scope of 2-vinyl benzoic acids in 5-exo tosyloxylactonization using 1aa

1a

(AcO)2I

N
N

Me

Me BF4
or

OH

O

O

O

TsOH·H2O+

2
r.t., 15 h

4 3

O

O
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R R R
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1a
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2b

1a

2c

1a

2d

2e

1a

2f

73%>99

yield
(4+3)

71%56 44

>99

63

71%

30%

90 10

53 47

67%

45%

>99 58%

30 70 66%

90 10 53%

29 71 58%

51%88

64%8 92

90

42 58

80%

83%

93 7

41 59

55%

54%

>99 62%

6 94 62%

>99 67%

54 46 46%

1012
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1a

PhI(OAc)2

4
5-exo

3
6-endo

regioselectivity (%)

1a
PhI(OAc)2

2g

1a

2h

1a

2i

1a

2k

OH

O

OH

O

PhI(OAc)2

PhI(OAc)2

OH

O

OH

O

OH

O

PhI(OAc)2

1a

PhI(OAc)2

Cl F

Me

Br

O2N

2j

yield
(4+3)4

5-exo
3

6-endo

regioselectivity (%)

aMethod with 1a: 2 (0.15 mmol), 1a (0.18 mmol), 5a (0.15 mmol), CH2Cl2 (0.5 M), 
room temperature, 15 h. Method with PhI(OAc)2: 2 (0.15 mmol), PhI(OAc)2 (0.18 
mmol), 5a (0.15 mmol), CH2Cl2 (0.5 M), room temperature, 15 h.

Various 2-vinylbenzoic acids 2 underwent 
tosyloxylactonization mediated by 1a to give 5-exo products 4 
with high selectivity (Table 2). The present 5-exo cyclization was 
compatible to functional groups as demonstrated for fluoro (2d 
and 2g), chloro (2b and 2c), bromo (2j), trifluoromethyl (2e), and 
nitro (2k) ones. The cyclization of electron-neutral (2h), 
electron-rich (2f and 2i), and electron-deficient substrates (for 
example, 2e and 2k) proceeded with high 5-exo selectivity in 
moderate to high yields. When PhI(OAc)2 was applied to the 
tosyloxylation of these substrates (2b-2k), the cyclization did 
not exhibit high 5-exo selectivity but resulted either in 6-endo 
or in no selectivity.
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Table 3 Scope of sulfonic acids in 5-exo sulfonyloxylactonization using 1aa

OH

O

O

O

+

2a
r.t., 15 h

4
5-exo

3
6-endo

Cl

Cl

RO2SO

5
CH2Cl2

1a
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N
N
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I(OAc)2

RSO3H
O

O

RO2SO

Cl

Me SO3H

1a

PhI(OAc)2

5b

1a

5d

1a
5e

80%80

yield
(4+3)

52%13 87

87

89

79%

91%

81 19

19 81

59%

32%

85

28 72

60%

67%

82 18

4 96

62%

67%

15

PhI(OAc)2 11

PhI(OAc)2

4
5-exo

3
6-endo

regioselectivity (%)

1a
5f

1a
5g

PhI(OAc)2

PhI(OAc)2

SO3H SO3HCl

SO3H

SO3H

Et SO3H

89 11

22 78

56%

58%

1a

PhI(OAc)2

5h

20

13

yield
(4+3)

4
5-exo

3
6-endo

regioselectivity (%)

SO3HEt

5c

1a 86

71

63%

62%PhI(OAc)2 29

14

aMethod with 1a: 2 (0.15 mmol), 1a (0.18 mmol), 5 (0.15 mmol), CH2Cl2 (0.5 M), 
room temperature, 15 h. Method with PhI(OAc)2: 2 (0.15 mmol), PhI(OAc)2 (0.18 
mmol), 5 (0.15 mmol), CH2Cl2 (0.5 M), room temperature, 15 h.

The generality of sulfonic acids in 5-exo cyclization using 1a 
was examined (Table 3). Benzene-, p-ethylbenzene-, m-xylene-, 
4-chlorobenzene-, naphthalenesulfonic acids (5b, 5c, 5d, 5e, 
and 5f) as well as TsOH selectively gave the corresponding 5-exo 
products 4. Alkanesulfonic acids 5g and 5h were applicable to 5-
exo selective cyclization. It is noted that PhI(OAc)2 selectively 
led to 6-endo products in reactions using these sulfonic acids in 
contrast to 1a in all cases.

To reveal the effect that the imidazolium moiety exerts on 
regioselectivity, various types of ArI(OAc)2 were applied to the 
tosyloxylation (Table 4). In contrast to 1a, regioisomers 1b and 
1c bearing an imidazolium unit at meta- and para-positions, 
respectively, exhibited 6-endo selectivity. These results indicate 
that the structural arrangement between the iodine atom and 
the imidazolium moiety is an important factor for 
regioselectivity. The imidazolidinium moiety also worked as a 
trigger to lead to 5-exo selectivity (1d). ArI(OAc)2 1e with a 2,6-
dimethylpyridinium moiety at the ortho-position via a 
methylene spacer gave 5-exo 4a although the selectivity was 
slightly decreased. The imidazolium moiety could be recognized 
as bulky and electron-withdrawing, and thus steric and 
inductive effects were investigated. Regardless of the steric 
hindrance of tBu group, ArI(OAc)2 1f gave 6-endo selectivity that 
was the same as that of PhI(OAc)2. ortho-Mesityl-substituted 
ArI(OAc)2 1g afforded 5-exo 4a in slightly preference to 6-endo 
3a, and the selectivity was quite low. A 2,6-dimethylpyridinium 

moiety (1e) was compared with a 2,6-dimethylphenyl moiety 
(1h) connected by a methylene spacer, and the 
regioselectivities were divergent despite having the same steric

Table 4 Effects of substituents on the benzene skeleton of ArI(OAc)2
a

Cl
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O
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O
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O
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+ +
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70%60 40
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43 74%

39 61 33%

57
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5%56 44

yield
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4
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a2a (0.15 mmol), 1 (0.18 mmol), 5a (0.15 mmol), CH2Cl2 (0.5 M), room temperature, 
15 h.
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Scheme 2 Enantioselective tosyloxylactonization using optically active hypervalent 
iodine (R,R)-1d.
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Fig. 4 Observation, isolation and reactivity of intermediate 6

hindrance; 1e and 1h exhibited 5-exo and 6-endo selectivity, 
respectively. Thus, the steric hindrance is not a critical factor in 
5-exo selectivity. para-Substituents were investigated to verify 
electron-withdrawing effects, in which we adopted the para-
position to avoid steric and coordination effects on the iodine 
center. The main product of para-(MeO)CO-substituted 
ArI(OAc)2 1i was 6-endo 3a. The examination of NO2 group-
substituted ArI(OAc)2 1j resulted in a very low yield with no 
regioselectivity. Therefore, we established that the electron-
withdrawing substituents on a phenyliodane backbone do not 
lead to effective 5-exo selectivity. These results suggested the 
importance of cationic moieties near the iodine(III) center in a 
manifestation of 5-exo cyclization. 2-Vinyl benzoic acid 2b was 
subjected to the reaction conditions with optically active 
hypervalent iodine (R,R)-1d (Scheme 2). The corresponding 5-
exo product 4b was obtained in 69:31 e.r., which suggests the 
cationic nitrogen-containing heterocycle worked as a chiral 
auxiliary.

The reaction of ArI(OAc)2 with TsOH·H2O generally produces 
ArI(OTs)OX (X = Ac or H) species that serve as intermediates in 
various reactions.1 When 1a and TsOH·H2O were mixed in 
CH2Cl2, the generation of AcOH was confirmed by in situ 1H NMR 
(Scheme S1 in ESI). After evaporation of the volatiles and 
washing with Et2O, the mixture of ArI(OTs)OH and ArI(OTs)OAc 
(= ArI(OTs)OX 6) was isolated (Fig. 4A). The 1H NMR spectra in 
Fig. 4B compares ArI(OTs)OX 6 with 1a and PhI(OTs)OH. 
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spectroscopy

Chemical shifts of the Ts signals in 6 differed from those of TsOH 
but were quite similar to those of PhI(OTs)OH. According to the 
spectra comparison, ArI(OTs)OX 6 is considered an 
intermediate. In fact, the tosyloxylation of 2a using isolated 6 
afforded almost the same result as that of the 1a/TsOH·H2O 
system (Fig. 4C and Scheme S3 in ESI).19

To gain insights into intermediate 6, a density functional 
theory study (see ESI for full details) was performed with 
ArI(OH)OSO2Ph o-7 (Ar = 2-benzoimidazoliumylphenyl) used as 
a model of 6 (Fig. 5A). The o-7 has two energetic local 
minimums, and conformer o-7-A is more stable than o-7-B by 
3.57 kcal/mol. Noncovalent interaction analysis20 shows that in 
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o-7-A the Me group of the imidazolium moiety and the phenyl 
ring of the PhSO3 group generates a cation−π interaction 
surface.21,22,23 In addition, the same Me group forms an 
effective cation-oxygen interaction10 with the oxygen atom of 
the PhSO3 group, which is evident from the large isosurface. In 
minor conformer o-7-B, the π−π interaction of the PhSO3 group 
with the iodobenzene framework helps stabilize the 
conformation. Notably, the I-O1 bond of o-7-A (2.222 Å) is 
elongated by comparison with that of o-7-B (2.208 Å), which 
suggests that the iodine center in o-7-A is activated via the 
noncovalent interactions between the imidazolium moiety and 
the PhSO3 group. In contrast to o-7, the most stable conformers 
of other regioisomers, meta-substituted m-7 and para- 
substituted p-7, are the structures involving a π−π interaction 
like o-7-B (Schemes S25, S26, and S30 in ESI). This type of π−π 
interaction is a main factor in stabilizing the conformation of 
Koser-type reagents supported by crystalline structures,24 and 
calculation studies.25 
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Additionally, we calculated the conformation of mesityl-
substituted 8, which has almost the same steric demand around 
the iodine atom as that of o-7 (Fig. 5B). A local-minimum 
conformer possessing efficient interactions of mesityl and 
PhSO3 groups like 8-A was not found, and the optimized 
conformer 8-B includes a π−π interaction like o-7-B. Thus, it is 
quite unusual that o-7-A would be a more stable conformer 
than o-7-B with a π−π interaction, which indicates that only the 
imidazolium moiety at the ortho position favorably attracts the 
PhSO3 group via cation−π and cation-oxygen interactions.26 
When ArI(OAc)(p-EtC6H4SO3) 9, which was generated from the 
reaction of 1a with 4-EtC6H4SO3H27, was observed by 1H NMR 
spectroscopy, the two Me groups on nitrogen atoms are 
anisochronous and each of singlet signals appear at 3.44 and 
3.83 ppm (Scheme 3).28 The signal of MeA group interacting with 
p-EtC6H4SO3 group would shift upfield compared with that of 
MeB group due to cation-π interactions.29

Tsuzuki revealed strong noncovalent attractive forces in ion 
pairs such as imidazolium trifluoromethanesulfonate by ab 
initio calculation, and found that electrostatic and induction 
interactions were contributors.10 Thus, we thought, in the 
present sulfonyloxylactonization, the sulfonyloxy anion 
dissociating from the iodine atom and acting as a nucleophile 
was restrained by noncovalent interactions with the 
imidazolium moiety. Generally, sulfonyloxy groups on iodine(III) 
atoms are kicked out either by intramolecular coordinative 
functional groups or by external ligands.30 Thus, when adding γ-
pyrone 10 as an external ligand, we observed the behavior of 
the 4-EtC6H4SO3 group of 9 by using 1H NMR spectroscopy (Fig. 
6A). Imidazolium sulfonate 12 was used as a reference 
compound to evaluate the interaction of the imidazolium cation 
with 4-EtC6H4SO3

– because two kinds of protons of the benzene 
ring of the 4-EtC6H4SO3 group in 12 appear at a more upfield 
than those in Bu4N salt 13 (Fig. 6B, Charts A and B).31,32 The 
treatment of 9 (Chart D) with γ-pyrone 10 as an external ligand 
caused a downfield shift of signals of 10, which shows that the 
carbonyl oxygen coordinated to the iodine center (Chart C).33 
More importantly, signals of the 4-EtC6H4SO3 group appeared in 
a more upfield compared with those of 9, and the chemical shift 
values approximated those of 12.34 Therefore, these results 
suggest that 4-EtC6H4SO3

– is kicked out and trapped by a 
noncovalent interaction with the imidazolium moiety, which 
generates complex 11.30d,35

We propose a plausible reaction mechanism based on 
mechanistic studies (Scheme 4A). ArI(OAc)2 1a reacts with 
TsOH·H2O to give ArI(OTs)OX 6 (X = H or Ac) (step I).36 Notably, 
the imidazolium moiety strongly attracts the TsO group via 
cation-π and cation-oxygen interactions in 6 (Fig. 5A). The 
noncovalent attractive interactions lead to abstraction and 
effective trap of TsO– by the imidazolium moiety to generate the 
more electrophilic species 14 with trapped TsO– (step II), and 
disturb the generation of 14´ with naked TsO–. The electrophilic 
addition of 14 to the alkene moiety of 2b gives iodonium 
intermediate 15 (step III).37 A nucleophilic attack of the carboxyl 
group prior to TsO– occurs at the benzylic carbon atom to afford 
intermediate 16 (step IV) because TsO– is trapped by 
noncovalent attractive forces of the imidazolium moiety, which 

is supported by the experimental results shown in Fig. 6. Finally, 
a substitution of the iodine atom by TsO– produces 5-exo 4b 
(step V). In the case of step IV’, a substitution of the iodine atom 
by the TsO– in 15 gives intermediate 17, and 6-endo 3b is 
afforded as a minor product (step V’). On the other hand, a path 
involving species 14´ with naked TsO– could be also possible, 
giving 6-endo 3b because naked TsO– in prior to the carboxyl 
group can attack iodonium intermediate 15. But, the 
noncovalent attractive interactions in 6 lead to effective trap of 
TsO– to disturb the generation of 14´. Therefore, the 
noncovalent attractive interactions between TsO and 
imidazolium moieties in 6 is critical to the regioselectivity. In the 
present sulfonyloxylactonization, carboxylic acids with 
electron-withdrawing groups gives excellent regioselectivity, 
and the regioselectivity in the reactions using carboxylic acids 
with electron-donating groups is slightly decreased (Table 2). 
Electron-donating groups in carboxylic acids enhance the 
stability of the corresponding iodonium intermediate to 
increase the rate of steps IV and IV´ so the regioselectivity 
slightly deteriorates. In the case of PhI(OTs)OX 18 (Scheme 4B), 
naked TsO– preferentially attacks the iodonium moiety in 
intermediate 20 to give 6-endo 3b. Therefore, the trapping of 
TsO– by noncovalent interaction with the cationic imidazolium 
moiety significantly changes the reaction course.

Conclusions
In conclusion, we discovered that the noncovalent interaction 
between the sulfonyloxy group and the cationic nitrogen-
containing heterocyclic moiety substituted in the hypervalent 
iodines caused specific regioselectivity in the 
sulfonyloxylactonization of 2-vinyl benzoic acids. Hypervalent 
iodines bearing an imidazolium moiety exhibited 5-exo 
cyclization selectivity in contrast to the 6-endo selectivity shown 
by PhI(OAc)2. 1H NMR spectroscopy established ArI(OTs)OX 6 as 
the intermediate. DFT studies clarified the trapping of the 
sulfonyloxy group by the imidazolium moiety via noncovalent 
interactions such as cation-π and cation-oxygen interactions, 
which allowed a significant change in regioselectivity.
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