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Abstract: This article describes the synthesis of  VLC-PUFA 32:6 n-3, D2-labeled 32:6 n-3, and the uptake of 32:6 n-3 into 
mouse retinal tissue.

Introduction 
VLC-PUFAs are fatty acids that contain ≥24 carbon atoms and 
consist of an interesting combination of saturated and 
unsaturated hydrocarbon subunits.1 They exist in membranes 
as phospholipids and are present in very low concentrations in 
the retina and testes.2,3,4 Generally VLC-PUFAs do not come 
from dietary sources but are instead generated endogenously 
from the chain extension of long chain fatty acids, typically  
docosahexaenoic acid (DHA), arachidonic acid (AA), or 
eicosapentaenoic acid (EPA) by the enzyme ELOVL4 (elongation 
of very long chain fatty acids-4).5 Our interest in these targets 
not only came from their intriguing structures but also from the 
substantial but still anecdotal evidence that suggests that they 
play a role in age-related macular degeneration (AMD) and 
Stargardt’s disease.

Figure 1. VLC-PUFA 32:6 n-3

As the name suggests, AMD is a degenerative eye disease that 
leads to blurred or loss of vision in the center of the visual field.6 
In light of our aging population, that AMD mostly afflicts the 
elderly makes this disease a significant problem. In general, 
there are two forms of the disease, wet and dry. While therapies 
have been effective in some patients suffering from choroidal 
neovascularization (CNV) a form of wet AMD,7 these same 

therapies have not been effective for other forms of AMD.8 Not 
only are there currently no therapies for dry AMD, but the 
etiology of the disease is not well understood.9 Along these 
lines, it is interesting that the symptoms associated with 
Stargardt’s disease, a hereditary disease caused by mutations 
on the ELOVL4 gene, are similar to those seen in the dry form of 
AMD.10 These mutations have been shown to lead to the down-
regulation of the ELOVL4 enzyme and, as a consequence, the 
presence of lower concentrations of VLC-PUFAs in the retina.11 
It is also worth noting that VLC-PUFA concentrations are lower 
in patients who suffer from AMD.12 Thus, although the evidence 
is anecdotal at this point, arguments can be made for VLC-
PUFAs playing a role in AMD. To date, the lack of a ready supply 
of VLC-PUFAs has kept researchers from gaining a better 
understanding of their role in both healthy eyes and patients 
suffering from AMD.13 In an effort to overcome this, we set out 
to synthesize and study one member of the VLC-PUFA family, 
C32:6 n-3 (1) along with a deuterium labeled analog of 1.14

When we began our efforts, we were aware of two independent 
syntheses of our initial target, VLC-PUFA C32:6 n-3.15 One 
synthesis came from Raman and co-workers and involved the 
coupling of a cuprate derived from THP protected 10-bromo-1-
decanol and an alkyl bromide derived from DHA. In a similar 
fashion to Raman, a synthesis from Maharvi and co-workers 
involved the coupling of a saturated C-10 sulfone with a 
polyunsaturated tosylate derived from DHA. Attractive to both 
approaches was that the generation of the requisite 32 carbon 
chain involved the coupling of two readily available precursors. 
As part of our overall plan involved tracking the uptake of 
synthetic VLC-PUFAs from a dietary source to the retina, a 
problem with both of these approaches had to do with the 
challenge of using them to synthesize labeled substrates. In 
spite of this, we did initially explore the Raman synthesis but 
were unable to repeat the reported coupling reaction. We did 
not pursue the Maharvi route both because of our desire to 
generate labeled material and because we envisioned that the 
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requisite reductive desulfonation would be limiting. Thus, we 
sought out a modified synthetic strategy to these targets. This 
work is described here.

Methods and Discussion

Concerns that we had when planning our synthetic approach to 
the VLC-PUFA substrates were centered around their 
susceptibility to oxidation and/or olefin 
isomerization/migration. Because of this, we felt that it was 
necessary to generally avoid strongly oxidizing, reducing, and 
acidic conditions. The approach to 1 that we ultimately 
identified was related to those mentioned above with one small 
but significant difference. We set out to examine the coupling 
of a masked decanoic acid nucleophile with a docosahexaenoic 
acid (DHA) derived aldehyde. Not only might the coupling 
protocol employing the aldehyde be more successful and 
amenable to scale-up but the resulting 2° alcohol would serve 
as a precursor to an isotopic (D) label during the subsequent 
deoxygenation sequence. Mindful of these goals and in an 
attempt to avoid a late-stage oxidation we generated the 
coupling precursor 2 representing the saturated VLC-PUFA 
subunit from 10-bromodecanoic acid (Scheme 1).16 DHA 
derived aldehyde 4 was synthesized from DHA or the 
corresponding ester by employing a reduction, oxidation 
sequence. The addition of the Grignard reagent derived from 
orthoester 2 to aldehyde 4 gave the desired 2° alcohol 5 but in 
low yield and as an inseparable mixture with the product of 
homo coupling of the Grignard reagent from 2. Reduction of the 
mesylate that came from 5 allowed us to access orthoester 
protected VLC-PUFA 6 in a modest 14% overall yield for the 
three steps. In contrast to our problems with the coupling 
chemistry, the hydrolysis of the orthoester proved uneventful 
and provided VLC-PUFA 32:6 n-3 1 in 83% yield over the final 
two steps. The analytical data (1H NMR, 13C NMR, HRMS, GC-
MS) for 1 matched both the reported data and authentic 
samples of 1. What diminished our enthusiasm for this 
approach was its relatively low efficiency (8 steps, 6% overall 
yield). We attributed the efficiency problem to both the 
dimerization problem and the somewhat surprising instability 
of the orthoester. In our hands it turned out to be particularly 
sensitive subsequent to its coupling with DHA. For example, the 
C-32 orthoester containing substrates generally underwent 
decomposition when exposed to any acidic conditions including 
SiO2 during chromatography. These issues seemed to be even 
more problematic on scale up.

Scheme 1. 1st Generation Synthesis of VLC-PUFA 32:6 n-3

In light of the difficulties mentioned above, we sought out an 
alternate approach to 32:6 n-3 that avoided the orthoester and 
settled on THP protected bromodecanol 7. The obvious 
downside to the use of 7 was that it would require a late-stage 
oxidation reaction. Regardless, we were pleased to find that the 
C-32 THP protected substrates were generally better behaved 
than the orthoesters had been in our hands. For example, the 
coupling of the Grignard reagent from 7 with DHA aldehyde 4 
afforded 8 in 73% yield and was successfully carried out on a 
multi-gram scale. Mesylate formation gave 9. Reductive 
removal of the mesylate gave 32:6 n-3 alcohol 10 after THP 
acetal hydrolysis. We were somewhat surprised when the 
oxidation of 10 proved to be challenging. The use of Raman’s 
protocol and CrO3 and H5IO6 resulted in unrecognizable 
mixtures of products. Reagents like TEMPO or PhI(OAc)2 either 
resulted in the decomposition of 10 or the recovery of starting 
material, presumably due to solubility issues.17 We eventually 
found that a two-step procedure that combined a Swern 
oxidation with a subsequent Oxone® oxidation gave VLC-PUFA 
32:6n-3 in 46% yield from 10. Overall, the synthesis of 1 
required 6 steps from 7 and was achieved in 29% overall 
yield.18,19 To date we have used this sequence to generate >10 
g of 1 for uptake and visual acuity studies.14
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Scheme 2. 2nd Generation Synthesis of VLC-PUFA 32:6 n-3

As was stated above, one of the advantages of the coupling with 
DHA derived aldehyde 4 was that the resulting alcohol could be 
converted into an isotopically labelled VLC-PUFA whose uptake 
could be tracked using mass spectrometry.20 To this goal, we 
targeted C-11 bis-deuterated VLC-PUFA 14. The treatment of 
the ketone that comes from the oxidation of alcohol 8 with 
LiAlD4 resulted in mono-deuterated alcohol 12. Mesylate 
formation and a second LiAlD4 reduction allowed us to access C-
11 bis-deuterated alcohol 13 after THP acetal hydrolysis. 
Oxidation per our previously established conditions gave bis-
deuterated VLC-PUFA 14. We are currently examining the 
properties of 14 including its uptake into the retina.

Scheme 3. Synthesis of C-11 bis-Deuterium VLC-PUFA 32:6 n-3

In view of the physiological benefits of VLC-PUFAs and the 
dysfunction associated with low retinal levels of VLC-PUFAs, we 
examined the bioavailability of synthetic 32:6 n-3 delivered to 
mice via gavage feeding.21 The mice received a single dose of 11 
mg of 32:6 n-3 and were sacrificed at 0, 6, and 12 h (n=2 
mice/time interval). As shown in Figure 2, even though 
peripheral tissue like serum, Red Blood Cells (RBC), and the liver 
do not normally contain VLC-PUFAs, in our studies VLC-PUFAs 
became detectable in the serum 6 h after oral administration 
and reached their highest concentration after 12 h. We were 
also excited to find a significant increase in 32:6 n-3 in the retina 
12 h after feeding. VLC-PUFAs remained undetectable in the 
liver, brain, and RBC membranes throughout the 12 h time 
frame. Additional studies in wild type and EVOVL4 knock-out 
mice are ongoing.
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Figure 2. Bioavailability of VLC-PUFA 32:6 n-3. (a) Serum and retinal uptake of 32:6 
n-3 after single-dose gavage feeding of 11 mg/mouse (n=2 mice/time point). N.D. = non-
detectable.

Conclusions
In conclusion, described here has been a synthesis of VLC-PUFA 
32:6n-3 and a deuterium labelled derivative of this compound 
from the coupling of saturated and polyunsaturated precursors. 
This approach has the advantage of being amenable to multi-
gram scale-up and that it should be amenable to the synthesis 
of other members of the VLC-PUFA family. In addition to the 
synthesis, we have studied the bioavailability of VLC-PUFAs and 
have observed a rapid increase in retinal VLC-PUFAs in response 
to acute supplementation. This result clearly demonstrates that 
orally administered VLC-PUFAs are bioavailable to ocular 
tissues. In addition to optimizing the synthesis, studying the 
properties of VLC-PUFA 32:6 n-3, and examining labelled 
derivatives, we are currently examining the synthesis and 
properties of other members of the VLC-PUFA family. These 
efforts will be communicated in due course.
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