Organic \& Biomolecular Chemistry

Synthesis of \mathbf{a}-(aminoethyl)- $\mathrm{a}, \boldsymbol{\beta}$-enones via alkyne azaPrins cyclization and their synthetic application to pyrrolidines

Journal:	Organic \& Biomolecular Chemistry
Manuscript ID	OB-COM-01-2021-000072.R1
Article Type:	Paper
Author: Submitted by the	02-Mar-2021
Complete List of Authors:	Amemiya, Sho; Tokyo University of Agriculture and Technology, Division of Applied Chemistry, Institute of Engineering Okemoto, Shingo; Tokyo University of Agriculture and Technology, Division of Applied Chemistry, Institute of Engineering Tsubouchi, Akira; Tokyo University of Agriculture and Technology, Applied Chemistry Saito, Akio; Tokyo University of Agriculture and Technology, Division of Applied Chemistry, Institute of Engineering

Received 00th January 20xx,
Accepted 00th January 20xx
DOI: 10.1039/x0xx00000x

Synthesis of α-(aminoethyl)- α, β-enones via alkyne aza-Prins cyclization and their synthetic application to pyrrolidines

Sho Amemiya, ${ }^{\text {a }}$ Shingo Okemoto, ${ }^{a}$ Akira Tsubouchi ${ }^{a}$ and Akio Saito *a
We developed a synthetic method of α-(aminoethyl)- α, β-enones from aryl-substituted homopropargyl sulfonamides and aldehydes, representing the first synthesis of conjugated enones via alkyne aza-Prins cyclization. These products could be converted into pyrrolidines by a formal 5-endo-trig cyclization.

Introduction

The intramolecular addition of alkenes to iminium ions, which is known as the aza-Prins cyclization, provides one of the most powerful tools for the synthesis of nitrogen-containing heterocycles. ${ }^{1 a-d}$ Hence, the aza-Prins cyclization and its variants using alkynes (alkyne aza-Prins cyclization) have been frequently employed in alkaloid synthesis. ${ }^{1 d, e}$ In the most cases of the alkyne aza-Prins cyclization, alkynes linked with $N, O-$ acetals 2 or other precursors of iminium intermediates ${ }^{3}$ were selected as a substrate. Whereas, the intermolecular reactions of alkynyl amines ${ }^{4}$ or amides ${ }^{5}$ with carbonyl compounds have been less studied albeit straightforward alternative procedures. Furthermore, although the aza-Prins cyclization using δ unsubstituted ${ }^{5 a, b}$ or δ-hydroxyethyl-substituted ${ }^{5 c}$ homopropargyl sulfonamides were known as the synthetic methods of the 4 -functionalized piperidines ($\mathrm{R}^{1}=\mathrm{H}$ or $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, Scheme 1a), systematic studies on the reactions of δ-substituted substrates had not been achieved.
Recently, as a part of our studies on efficient syntheses of cyclic compounds by the acid-promoted reactions of alkynes and carbonyls or imines, ${ }^{6}$ we reported first synthesis of pyrrolidines with the introduction of functional groups by the aza-Prins cyclization of δ-substituted homopropargyl sulfonamides with aldehydes ($\mathrm{R}^{1}=$ alkynyl, Ph, Me Scheme 1a). ${ }^{7,8}$ Our continuous research on the alkyne aza-Prins cyclization led to finding a highly stereoselective synthesis of α-(aminoethyl)- α, β-enones, which are versatile and useful synthetic intermediates, ${ }^{9}$ via alkyne aza-Prins cyclization/ring cleavage sequence (Scheme 1b). To our surprise, although there some reports on one-pot syntheses of cyclic compounds from alkynyl alcohols and aldehydes through the ring cleavage of Prins cyclized

[^0]intermediates, ${ }^{5 d, 6 e, 10}$ the synthetic methods of conjugated enones by Prins cyclization and its variants including alkyne azaPrins cyclization have been unknown. Herein, we report the novel synthesis of conjugated enones from aryl-substituted homopropargyl sulfonamides and aldehydes along with the formation of pyrrolidines by base-mediated cyclization of the enone products in formal 5-endo-trig mode, which is prohibited by Baldwin's rules ${ }^{11}$ (Scheme 1b).
(a) Alkyne aza-Prins cyclization of homopropargyl amides

(b) Alkyne aza-Prins cyclization/ring cleavage sequence (this work)

Scheme 1. Synthesis of heterocycles by alkyne aza-Prins cyclization.

Results and discussion

According to our previous work on the alkyne aza-Prins reaction, ${ }^{7}$ unlike alkynyl- or Me-substituted homopropargyl sulfonamides, the Ph -substituted substrate $\mathbf{1 a}$ was treated with benzaldehyde ($\mathbf{2 a}, 2$ eq.) in the presence of HOTf ($\mathrm{Tf}=\mathrm{CF}_{3} \mathrm{SO}_{2}, 2$ eq.) in DCM (dichloromethane) at room temperature to give enone 3aa (65\%) as a main product (Table 1, entry 1). Therefore, we initially focused our efforts on the screening of acids in the
reaction of 1a with $\mathbf{2 a}$ in DCM (entries 1-5, see ESI for more details). The use of TMSOTf (TMS = trimethylsilyl) instead of HOTf afforded the similar result to entry 1 giving rise to the desired product 3aa in 60\% yield along with aza-Prins cyclized product 4 in 11% yield (entry 2). Unfortunately, FeCl_{3} (1 eq.), which was used in alkyne Prins cyclization of δ-unsubstituted homopropargyl sulfonamides, ${ }^{5 a}$ did not show good result (entry 3). In addition, a combination of MgBr_{2} and TsOH^{12} gave a complex mixture that did not include 3aa (entry 4). Whereas, in the case of BF_{3}-complexes, the formation of 3aa depends on the type of complexes (entries 5 and 6) and $\mathrm{BF}_{3} \cdot \mathrm{MeCN}$ led to the improved yield of 3aa up to 79% (entry 6). Also, compared to other solvents (entries 7-9), MeCN was effective on the reaction using TMSOTf or HOTf to produce 3aa in good yield without the detection of 4 (entry 10 or 11). This is likely because of moderate basicity of MeCN. ${ }^{13}$

Table 1. Screening of acids and solvents.

${ }^{a}$ Isolated yields or recovery. ${ }^{b}$ Only E-isomer of 4 was obtained. ${ }^{c}$ Conditions: rt for 2 h and then $80^{\circ} \mathrm{C}$ for 4 h in 1,2-dichloroethane. ${ }^{d}$ Chloride analogue of 4 was formed in 8% yield. ${ }^{e} \mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$ (2 eq.) and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (2 eq.) was used. ${ }^{f}$ Additive: MeOH (2 eq .). ${ }^{g} Z-$ isomer (4\%) was included. ${ }^{h} Z$-isomer (8%) was included.

Based on the above described results (Table 1, entries 5, 9 and 10), the scope of the formation of enones 3 from arylsubstituted homopropargyl sulfonamides 1a-c and various aldehydes 2a-I was investigated (Table 2). By using TMSOTf in MeCN (method A), sulfonamides 1a successfully reacted with aromatic aldehydes bearing electron-donating groups at orthoor para-position to give the corresponding enones 3ab, 3ac and 3ae in 68-79\% yields (entries 2, 3 and 5). On the other hand, in the cases of aromatic aldehydes bearing electron-withdrawing groups at ortho- or para-position, $\mathrm{BF}_{3} \cdot \mathrm{MeCN}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (method C) led to good yields of 3af, 3ag and 3ai (79-85\%, entries 6, 7 and 9). For the reaction with meta-substituted aromatic aldehydes, HOTf in MeCN (method B) was effective (3ad, 84\%; 3ah, 60\%; entries 4 and 8). Although all the methods could not be applied to aliphatic aldehydes such as CyCHO (Cy =
cyclohexyl) and EtCHO (entries 11 and 12), which gave complex mixtures, ${ }^{\text {t }} \mathrm{BuCHO}$ afforded the desired enone 3 aj in 42% yield (method C, entry 10). To our delight, in the most cases of the 4-methoxyphenyl-subtituted $\mathbf{1 b}$, regardless of the kind of aldehydes and the methods A-C, the enones 3ba, 3bb and 3bi were obtained in excellent yields (method B or C, 96-98\%, entries 13-15). Whereas, although the yields of enones 3ca, 3cb and 3ci derived from 4-nitrophenyl-subtituted 1c were reduced (entries 14-16), method B gave the enones 3ca and 3cb in 40% and 63% yields, respectively (entries 16 and 17). Notably, the $E-$ enones $\mathbf{3}$ were obtained as a single stereoisomer in all cases (Table 1 and 2).

Table 2. Scope of alkyne aza-Prins cyclization.

1a ($\mathrm{Ar}=\mathrm{Ph}$)
1b $\left(\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$
1c $\left(\mathrm{Ar}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$

			Yields $^{a}(\%)$ by Method \mathbf{A}, \mathbf{B} or \mathbf{C}		
entry	3	R	\mathbf{A}	\mathbf{B}	\mathbf{C}
1	3aa	Ph	81	75	79
2	3ab	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	68	61	26^{b}
3	3ac	$2-\mathrm{MeC}_{6} \mathrm{H}_{4}$	79	60	68
4	3ad	$3-\mathrm{MeC}_{6} \mathrm{H}_{4}$	66	84	65
5	3ae	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	77	76	58
6	3af	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	56	33	79
7	3ag	$2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	6	36	85
8	3ah	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	32	60	12
9	3ai	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	43	51	81
10	3aj	${ }^{t} \mathrm{Bu}$	30	18	42
11	3ak	Cy	0	0	0
12	3al	Et	0	0	0
13	3ba	Ph^{c}	92	79	$\mathbf{9 7}$
14	3bb	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	95	98	95
15	3bi	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	91	91	96
16	3ca	Ph_{2}	30	40	5
17	3cb	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	59	63	0
18	3ci	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	0	trace	trace

${ }^{a}$ Isolated yields. ${ }^{b}$ Recovery of 1a: 38\%. ${ }^{c} \mathrm{Cy}=$ cyclohexyl.

The stereochemistries of E-enones 3 were confirmed by their NOESY spectra. As shown in Figure 1, NOE correlations between aliphatic protons $\mathrm{H}^{\mathrm{a}}(2.92 \mathrm{ppm})$ and $\mathrm{H}^{\mathrm{b}}(3.22 \mathrm{ppm})$ of aminoethyl group and meta-protons H^{d} (7.33 ppm) of anisyl group, and between vinylic proton H^{c} (7.14 ppm) and orthoprotons H^{e} (7.67 ppm) of benzoyl group are observed in spectrum of 3ab. In spectra of 3aa, 3ad, 3ae, 3ag, 3ah and 3aj, although the observation of NOE correlations between vinylic protons like H^{c} and ortho-protons like H^{e} of benzoyl group are difficult because those protons are overlapped with other aromatic protons, those of aliphatic protons like H^{a} and H^{b} of aminoethyl groups and protons of β-substituents are observed. On the other hand, spectra of other enones $\mathbf{3}$ show similar NOE
correlations to those of 3ab. Thus, those products $\mathbf{3}$ were determined as E-isomers.

Figure 1. NOESY spectrum of 3ab.

As an alternative route for the formation of α, β-enones, there is a possibility of metathesis reaction between the alkyne moiety of homopropargyl tosylamides $\mathbf{1}$ and aldehydes 2. ${ }^{6 \mathrm{a}-\mathrm{d}, 14}$ However, N -Me-substituted substrate $\mathbf{5}$ a reacted with aldehyde 2a using methods A-C to give a complex mixture and the corresponding enones 6 were not formed (Scheme 2). In cases of $\mathbf{5 c}$, the substrates $\mathbf{5 c}$ were only recovered in $78-96 \%$. These results suggested that the present synthesis of enones 3 would require the generation of the iminium intermediate from the N unsubstituted $\mathbf{1 a - 1 c}$ and aldehydes $\mathbf{2}$.

Scheme 2. Control experiments using N-methyl tosylamides 5.

On the other hand, when aza-Prins cyclized product 4 was treated with TMSOTf or HOTf (2 eq.) in MeCN, the corresponding enone 3aa was obtained in excellent yield (quant. or 96%, Scheme 3). These results would support the involvement of alkyne aza-Prins cyclization in the present synthesis of enones 3. Furthermore, since the addition of $\mathrm{H}_{2} \mathrm{O}$ in the presence or absence of acid resulted in the formation of enone 3aa ($39-43 \%$, recovery of 4: 22-29\%), $\mathrm{H}_{2} \mathrm{O}$ would partially participate in the conversion of 4 to 3aa. Unfortunately, although the sole use of 1 eq. of acid afforded some products,
which may be intermediates, along with 3aa (9-10\%, recovery of 4: 23-39\%), these products were converted into 3aa after the purification using column chromatography and thus these structures cannot be determined. Considering that 2 eq. of acid led to full conversion of 4 to 3aa, aza-Prins cyclized intermediates would be converted into enones $\mathbf{3}$ as soon as the formation of 4 (while there is an excess amount of acid) in the present synthesis of enones 3 .

TMSOTf / HOTf (2 eq.), $X=0 \quad$ quant. (4: 0\%) / $96 \% ~(4: ~ 0 \%)$ TMSOTf / HOTf (1 eq.), $X=1$ 43\% (4: 29\%) /41\% (4: 22\%) TMSOTf $/$ HOTf (0 eq.), $X=1 \quad 39 \% ~(4: 22 \%)$ TMSOTf / HOTf (1 eq.), X = 0 9\%* (4: 39\%)* / 10\%* (4: 23\%)*
*Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis using an internal standard

Scheme 3. Control experiments using aza-Prins cyclized product 4.

On the basis of these results and our previous reports of the alkyne aza-Prins cyclization, ${ }^{7}$ a proposed mechanism for the present synthesis of α, β-enones $\mathbf{3}$ using methods \mathbf{A} and \mathbf{B} is shown in Scheme 4. In this mechanism, a condensation of tosylamide moiety of 1 with the acid-activated aldehydes lead to iminium ions Int-A. And then, Int-A undergo an intramolecular addition of alkenes with exocyclic vinyl formation likely due to the the stabilization of vinyl cation in INT-B by aryl group followed by the addition of TfO^{-}to the generated vinyl cation giving rise to aza-Prins cyclized intermediates Int-C (4 in the case of 3aa). Subsequently, an acid activates the sulfonylamide group of Int-C to give allyl cation Int-D through the ring cleavage of the pyrrolidine framework. Finally, the addition of $\mathrm{TfO}^{-}, \mathrm{H}_{2} \mathrm{O}$ or TMSOH to Int-D and then elimination of acid in hemiacetals Int-E afford α, β-enones 3.

Scheme 4. Proposed mechanism for synthesis of enones 3.

Since the strong electron donation and cation stabilization effect of 4-methoxyphenyl group of $\mathbf{1 b}$ smoothly promoted the cyclization of Int-A as well as ring-opening of Int-C to Int-D, enones 3ba, 3bb and 3bi were formed in the excellent yields (Table 2, entries 13-15). On the other hand, in cases of CyCHO and EtCHO (Table 2, entries 11 and 12) bearing α-protons, INTA may be converted into enamines INT-F to give complex mixtures via side reactions of INT-F. Notably, the reaction using method C would proceed via the similar mechanism (Scheme 4) mediated by $\mathrm{HOBF}_{3}{ }^{-}$instead of TfO^{-}.

Formal 5-endo-trig cyclization of α-(aminoethyl)- α, β-enones

As a synthetic application of α-(aminoethyl)- α, β-enones 3, organobase-mediated cyclization of enones $\mathbf{3}$ to pyrrolidines $\mathbf{7}$ was attempted. Since Michel-type addition of tertiary amines or phosphines to enones has been known to afford the corresponding enolates, ${ }^{15}$ we expected the formal 5 -endo-trig cyclization of $\mathbf{3}$ via a deprotonation of tosylamides by the generated enolate anions INT-G and subsequent intramolecular addition of tosylamide anions to β-carbons of INT-H in 5-exo-tet mode (Scheme 5, path a).

Scheme 5. Proposed mechanism for synthesis of pyrrolidines 7.

As shown in Table 3, among the attempted amines and phosphines (2 eq.), relatively strong bases such as DBU (1,8 diazabicyclo[5.4.0] undec-7-ene, $\mathrm{p} K_{\mathrm{a}}=24.1$ in MeCN, ${ }^{16 \mathrm{a}}$ entry 1) and TMG (1,1,3,3-tetramethylguanidine, $\mathrm{p} K_{\mathrm{a}}=23.4$ in MeCN, ${ }^{16 \mathrm{~b}}$ entry 2) promoted the desired cyclization of enones 3aa in MeCN at room temperature within 24 h . Particularly, by using DBU, the corresponding pyrrolidines 7aa was obtained in 90\% yield (entry 1). Although TBAOH (TBA = tetrabutylammonium) also promoted the similar cyclization of enones 3aa at room temperature, this reaction would proceed via an alternative route (Scheme 5, path b). In the alternative route, $\mathrm{OH}^{-}\left(\mathrm{p} K_{\mathrm{a}}=\right.$ 30.0 in DMSO) ${ }^{16 c}$ directly absorbs the proton of tosylamide group ($\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{PhSO}_{2} \mathrm{NH}_{2}=16.1$ in DMSO) ${ }^{16 \mathrm{c}}$ of $\mathbf{3}$ to afford INT-J, which is in equilibrium with the kinetically preferable 5 -exo-trig cyclized intermediate INT-K due to leaving ability of tosylamide anion. Thus, once the unpreferable 5 -endo-trig cyclization of INT-J proceeds, the following protonation of INT-L with the tosylamide group of $\mathbf{3}$ gives rise to pyrrolidines $\mathbf{7}$. The similar mechanism was proposed in the inorganic base-promoted 5-endo-trig cyclization of α-(aminoethyl)- α, β-enoates. ${ }^{17}$ On the
other hand, DBU ($\mathrm{p} K_{\mathrm{a}}=13.9$ in DMSO) ${ }^{16 \mathrm{~d}}$ is difficult to absorbs the proton of tosylamide group but the deprotonation by the enolate anions INT-G $\left(\mathrm{p} K_{\mathrm{a}}\right.$ of acetophenone $=24.7$ in DMSO) ${ }^{16 \mathrm{c}}$ would be possible. Therefore, DBU-mediated cyclization of $\mathbf{3}$ is considered to proceed via path a.

Table 3. Screening of bases.

Entry	Base	$\mathrm{p} K_{\mathrm{a} \text { MeCN }}{ }^{\text {a }}$	Temp.	$7 \mathbf{a a}^{\text {b }}$ (\%)	$3 \mathbf{a a}^{\text {c }}$ (\%)
1	DBU	24.1 (13.9)	rt	90	0
2	TMG	23.4	rt	38	51
3	TMG	above	$80^{\circ} \mathrm{C}$	97	0
4	$\mathrm{Et}_{3} \mathrm{~N}$	18.5 (9.0)	rt	0	80
5	DABCO	18.3 (8.9)	rt	0	93
6	DABCO	above	$80^{\circ} \mathrm{C}$	6^{c}	85
$7{ }^{\text {f }}$	${ }^{\text {n }} \mathrm{Bu}_{3} \mathrm{P}$	15.1	rt	0	78
8	$\mathrm{Ph}_{3} \mathrm{P}$	8.8	rt	0	quant.
9	$\mathrm{Ph}_{3} \mathrm{P}$	above	$80^{\circ} \mathrm{C}$	0	91
10	TBAOH	- (32.0)	rt	68	0

${ }^{a}$ Values show $\mathrm{p} K_{\mathrm{a}}$ of conjugated acids in MeCN. Values in parentheses show those in DMSO. See ref. 16. ${ }^{b}$ Isolated yields. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis using internal standard.

Furthermore, the use of DBU could be applied to the cyclization of the other enones $\mathbf{3}$ to produce the pyrrolidines 7ab, 7ai and 7ba in excellent yields ($87-98 \%$, Scheme 6). Although the yields of $\mathbf{7 c a}$ was reduced possibly due to the inefficient deprotonation of tosylamides by the enolate anions INT-G, 7ca was obtained in 69% yield. Notably, the trans-pyrrolidines 7 were obtained as a single stereoisomer in all cases.

7 (Ar ${ }^{1}, \mathrm{Ar}^{2}$): Yields
7aa (Ph, Ph): 90\%
7ab (Ph, 4-MeOC $\mathrm{C}_{6} \mathrm{H}_{4}$): 87%
7ai (Ph, $4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$): 96%
7ba ($4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{Ph}$): 98% 7ca (4- $\left.\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{Ph}\right): 69 \%$

Scheme 6. DBU-mediated cyclization of 3.

The stereochemistries of trans-pyrrolidines 7 were confirmed by their NOESY spectra. As shown in Figure 2, NOE correlations between 3 -proton H^{a} (3.86 ppm) of pyrrolidine ring and metaprotons H^{c} (7.29 ppm) of anisyl group, and between 2-proton H^{b} (5.04 ppm) and ortho-protons $\mathrm{H}^{\mathrm{d}}(7.69 \mathrm{ppm}$) of benzoyl group are observed in spectrum of 7ab. In spectra of 7aa and 7ba, although the observation of NOE correlations between 3proton H^{a} and protons like H^{c} of phenyl groups are difficult because protons of phenyl groups are overlapped with other aromatic protons, those of 2-protons like H^{b} and ortho-protons like H^{d} of aryloyl groups are observed. On the other hand,
spectra of other pyrrolidines 7ai and 7ca show similar NOE correlations to those of $\mathbf{7 a b}$. Thus, those products $\mathbf{7}$ were determined as trans-isomers.

Figure 2. NOESY spectrum of 7ab.

Conclusions

A synthetic method of α-(aminoethyl)- α, β-enones was developed using the alkyne aza-Prins cyclization of arylsubstituted homopropargyl sulfonamides and aldehydes. These products could be easily converted into pyrrolidines by formal 5 -endo-trig cyclization using DBU, which would proceed via intramolecular addition of Michael adduct intermediates INT-H in 5-exo-tet mode. Although the ring-cleavage of pyrrolidines using alkyl halides and base has been known as the similar synthesis of α-(aminoethyl)- α, β-enones, ${ }^{9 \text { a }}$ our method provides the products with high stereoselectivity. Studies on the domino reaction via alkyne aza-Prins cyclization are underway.

Experimental

Materials and methods.

All reactions were carried out under an argon atmosphere. N -(4-Arylhomopropargyl) tosylamides $\mathbf{1 a}-\mathbf{c}^{18}$ and aza-Prins cyclized product 4^{7} were prepared by the method reported in the literatures. Acids, bases and aldehydes $\mathbf{2 a - m}$ are commercially available. Solvents were purchased as the "anhydrous" and used without further purification. For the TLC analysis, Merck precoated TLC plates (silica gel 60 F254) were used. Column chromatography was performed on silica gel 60 N (63-200 $\mu \mathrm{m}$, neutral, Kanto Kagaku Co., Ltd.). Medium-pressure liquid chromatography (MPLC) was carried out on YAMAZEN WPrep 2XY. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured at 500 (or 300) and 125 (or 75) MHz in CDCl_{3}, and the chemical shifts are given in ppm using $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ in CDCl_{3} for ${ }^{1} \mathrm{H}$ NMR and
CDCl_{3} (77.0 ppm) for ${ }^{13} \mathrm{C}$ NMR as an internal standard, respectively. Splitting patterns of an apparent multiplet associated with an averaged coupling constant were designed as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broadened). IR spectra were obtained on a JASCO FT/IR6200. Mass spectra and HRMS were recorded on a JEOL MStation MS700 (double-focusing magnetic sector) by FAB methods or Bruker Daltonics micrOTOF-Qll by electrospray ionization (ESI).

General procedure for synthesis of compounds 3

Method A or B: To a solution of $\mathbf{1}$ (1a, $119.8 \mathrm{mg} ; \mathbf{1 b}, 131.8 \mathrm{mg} ; \mathbf{1 c}$, $137.8 \mathrm{mg} ; 0.4 \mathrm{mmol})$ and aldehyde $\mathbf{2}(0.8 \mathrm{mmol})$ in $\mathrm{MeCN}(2.5 \mathrm{~mL})$ was added TMSOTf ($144.5 \mu \mathrm{~L}, 0.8 \mathrm{mmol}$) or HOTf ($70.2 \mu \mathrm{~L}, 0.8 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After being stirred at room temperature for 24 h , the reaction mixture was quenched with sat. NaHCO_{3} and extracted with AcOEt. The organic layer was dried over MgSO_{4} and concentrated in vacuo to dryness. The residue was purified by MPLC to give 3.
Method \mathbf{C} : According to the similar procedure to method \mathbf{A} or \mathbf{B} (albeit reaction time is 16 h$), \mathrm{BF}_{3} \cdot \mathrm{MeCN}(518 \mu \mathrm{~L}, 0.8 \mathrm{mmol})$ and DCM $(2.5 \mathrm{~mL})$ were used as an acid and as a solvent, respectively.

Characterization of compounds 3.

(E)-N-(3-Benzoyl-4-phenylbut-3-en-1-yl)-4-
methylbenzenesulfonamide (3aa): $R_{\mathrm{f}}=0.20$ (hexane: AcOEt $=3: 1$). A, 131.4 mg (81%); B, 121.6 mg (75%); C, 128.0 mg (79%). Brown solid. MP: $113-115{ }^{\circ} \mathrm{C}$. IR (KBr) vcm^{-1}; 3289, 1644, 1326, $1152 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm; $7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (dd, $J=8.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.35$ $(\mathrm{m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H})$, $5.15(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{td}, J=6.9,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} ; 199.6,144.9$, 143.2, 137.9, 137.5, 136.9, 134.7, 132.2, 129.7, 129.6, 129.14, 192.12, 128.8, 128.3, 127.0, 42.1, 27.7, 21.5. HRMS (ESI): m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 428.1291$; found 428.1285 .
(E)-N-[3-Benzoyl-4-(4-methoxyphenyl)but-3-en-1-yl]-4-
methylbenzenesulfonamide ($\mathbf{3 a b}$): $R_{\mathrm{f}}=0.14$ (hexane: $\mathrm{AcOEt}=3: 1$). A, $117.8 \mathrm{mg}(68 \%)$; B, 107.0 mg (61%); C, 46.0 mg (26%, recovery of 1a: 38%). Yellow solid. MP: $102-104{ }^{\circ} \mathrm{C}$. IR (KBr) $\mathrm{v} \mathrm{cm}^{-1}$; 3265,1599 , $1324,1260,1159,1031 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} ; 7.70(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}$, $J=8.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.14(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 3.22(\mathrm{td}, J=6.9,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$; 199.8, 160.5, 145.3, 143.1, 138.3, 136.9, 135.2, 131.8, 131.3, 129.6, 129.5, 128.2, 127.0, 126.9, 114.2, 55.3, 42.0, 27.7, 21.4. HRMS (FAB): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 436.1583; found 436.1592.
(E)-N-[3-Benzoyl-4-(o-tolyl)but-3-en-1-yl]-4-
methylbenzenesulfonamide (3ac): $R_{\mathrm{f}}=0.31$ (hexane: $\mathrm{AcOEt}=3: 1$). A, 133.2 mg (79%); B, 100.6 mg (60%); C, 114.6 mg (68%). Yellow solid. MP: 113-115 ${ }^{\circ} \mathrm{C}$. IR (KBr) vcm ${ }^{-1}$; $3272,1645,1332,1162 .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} ; 7.78(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, \mathrm{J}=8.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H})$, 7.28-7.19 (m, 6H), $4.94(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{td}, J=6.9,6.0 \mathrm{~Hz}, 2 \mathrm{H})$,
$2.71(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) ס ppm; 199.4, 144.5, 143.1, 138.4, 137.9, 136.8, 136.3, 134.3, 132.2, $130.3,129.6,128.7,128.3,128.0,127.0,125.9,42.2,27.4,21.5,20.1$ (note that two carbon peaks overlap with each other). HRMS (ESI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 442.1447$; found 442.1422 .
(E)-N-[3-Benzoyl-4-(m-tolyl)but-3-en-1-yl]-4-
methylbenzenesulfonamide (3ad): $R_{\mathrm{f}}=0.29$ (hexane: $\mathrm{AcOEt}=3: 1$). A, 111.1 mg (66\%); B, 141.3 mg (84%); C, 108.3 mg (65\%). Brown solid. MP: 92-94 ${ }^{\circ} \mathrm{C}$. IR (KBr) v cm ${ }^{-1}$; 3263, 1634, 1334, 1156. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} ; 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H})$, 7.16-7.13 (m, 1H), $7.15(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{td}, \mathrm{J}=$ $6.9,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} ; 199.7,145.3,143.1,138.5,138.0,137.3,137.0$, 134.6, 132.1, 129.94, 129.92, 129.63, 129.58, 128.6, 128.3, 127.0, 126.1, 42.1, 27.8, 21.5, 21.3. HRMS (FAB): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 420.1633$; found 420.1638 .
(E)-N-[3-Benzoyl-4-(p-tolyl)but-3-en-1-yl]-4-
methylbenzenesulfonamide (3ae): $R_{\mathrm{f}}=0.26$ (hexane: $\mathrm{AcOEt}=3: 1$). A, 129.6 mg (77%); B, 127.0 mg (76%); C, 97.5 mg (58%). Yellow solid. MP: 95-97 ${ }^{\circ} \mathrm{C}$. IR (KBr) v cm ${ }^{-1}$; 3278, 1643, 1331, 1163. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}) \delta \mathrm{ppm} ; 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (dd, $J=8.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H})$, $7.17(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{td}, \mathrm{J}=6.9,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.90$ (d, J = 6.9 Hz, 2H), 2.37 (s, 6H). ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}$; 199.7, 145.3, 143.0, 139.5, 138.0, 136.9, 136.6, 132.0, 131.7, 129.6, 129.5, 129.4, 129.3, 128.2, 127.0, 42.0, 27.7, 21.4, 21.3. HRMS (FAB): m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 420.1633$; found 420.1638 .
(E)-N-[3-Benzoyl-4-(4-bromophenyl)but-3-en-1-yl]-4-
methylbenzenesulfonamide (3af): $R_{\mathrm{f}}=0.26$ (hexane: $\mathrm{AcOEt}=3: 1$). A , 108.3 mg (56\%); B, 63.7 mg (33\%); C, 152.8 mg (79\%). Brown solid. MP: 138-140 ${ }^{\circ} \mathrm{C}$. IR (KBr) v cm ${ }^{-1} ; 3276,1640,1332,1162 .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}) \delta \mathrm{ppm} ; 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=8.0,7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{t}, J$ $=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{td}, \mathrm{J}=6.9,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.40$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 199.2,143.3,143.2,138.2,137.7$, $136.8,133.5,132.3,132.0,130.6,129.7,128.4,127.0,123.3,41.9$, 27.9, 21.5 (note that two carbon peaks overlap with each other). HRMS (FAB): m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{BrNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 484.0582$; found 484.0576.
(E)-N-[3-Benzoyl-4-(2-nitrophenyl)but-3-en-1-yl]-4-
methylbenzenesulfonamide (3ag): $R_{\mathrm{f}}=0.14$ (hexane: AcOEt $=3: 1$). A, 11.8 mg (6\%); B, 64.8 mg (36\%); C, 153.4 mg (85%). Brown solid. MP: 122-124 ${ }^{\circ} \mathrm{C}$. IR (KBr) v cm ${ }^{-1}$; 3268, 1643, 1524, 1348, 1327, 1157. ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 8.20(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $4.93(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{td}, J=6.9,5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.68(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 198.2$, 147.2, 143.3, 141.3, 138.4, 137.1, 136.8, 134.0, 132.6, 131.2, 131.0, 129.7, 129.62, 129.57, 128.5, 126.9, 125.2, 41.8, 28.2, 21.5. HRMS (FAB): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[M+\mathrm{H}]^{+} 451.1328$; found 451.1306.

(E)-N-[3-Benzoyl-4-(3-nitrophenyl)but-3-en-1-yl]-4-

methylbenzenesulfonamide (3ah): $R_{\mathrm{f}}=0.17$ (hexane: $\mathrm{AcOEt}=3: 1$). A, 57.7 mg (32\%); B, 108.3 mg (60%); C, 21.5 mg (12\%). Brown solid. MP: 137-139 ${ }^{\circ} \mathrm{C}$. IR (KBr) v cm ${ }^{-1}$; 3272, 1636, 1530, 1335, 1157. ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 8.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62$ (d, J = 8.0 Hz, 1H), $7.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23$ (d, J=8.0 Hz, 2H), $7.20(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{td}, J=6.9$, $5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) δ ppm; 198.7, 148.3, 143.4, 140.9, 140.2, 137.2, 136.7, 136.4, 134.6, 132.6, 129.9, 129.7, 129.6, 128.5, 126.9, 123.8, 123.4, 41.8, 28.1, 21.5. HRMS (FAB): m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$451.1328; found 451.1357.

(E)-N-[3-Benzoyl-4-(4-nitrophenyl)but-3-en-1-yl]-4-

methylbenzenesulfonamide (3ai): $R_{\mathrm{f}}=0.11$ (hexane: $\mathrm{AcOEt}=3: 1$). A, 76.8 mg (43\%); B, 92.0 mg (51\%); C, 145.7 mg (81\%). Yellow solid. MP: 107-109 ${ }^{\circ} \mathrm{C}$. IR (KBr) v cm${ }^{-1}$; 3271, 1643, 1518, 1347, 1333, 1162. ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 8.23$ (d, $\left.J=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.78$ (d, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=8.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.21(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (td, $J=6.9,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.87$ (t, J = 6.9 Hz, 2H), 2.39 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 198.5$, 147.5, 143.5, 141.3, 140.9, 140.6, 137.2, 136.7, 132.7, 129.8, 129.73, 129.71, 128.5, 126.9, 123.9, 41.7, 28.3, 21.5. HRMS (FAB): m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 451.1328$; found 451.1307.

(E)-N-(3-Benzoyl-5,5-dimethylhex-3-en-1-yl)-4-

methylbenzenesulfonamide (3aj): $R_{\mathrm{f}}=0.31$ (hexane: $\mathrm{AcOEt}=3: 1$). \mathbf{A}, 46.6 mg (30\%); B, 64.8 mg (42\%); C, 27.2 mg (18\%). Brown solid. MP: $110-112{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}) \vee \mathrm{cm}^{-1} ; 3258,1633,1332,1162 .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}) \delta \mathrm{ppm} ; 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.40 (dd, J = 8.0, $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.23(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.28$ $(\mathrm{s}, 1 \mathrm{H}), 5.39(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}) 3.08(\mathrm{td}, J=6.9,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}$; 200.5, 157.6, 143.1, 138.2, 137.0, 135.5, 131.8, 129.6, 129.5, 128.1, 127.0, 42.8, 34.3, 30.4, 27.2, 21.4. HRMS (ESI): m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 408.1604$; found 408.1599.
(E)-N-[3-(4-Methoxybenzoyl)-4-phenylbut-3-en-1-yl]-4methylbenzenesulfonamide (3ba): $R_{\mathrm{f}}=0.17$ (hexane: $\mathrm{AcOEt}=3: 1$). A, 159.6 mg (92\%); B, 137.3 mg (79\%); C, 168.4 mg (97\%). White solid. MP: 124-126 ${ }^{\circ} \mathrm{C}$. IR (KBr) Vcm^{-1}; 3302, 1595, 1321, 1258, 1159, 1028. ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 7.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.16$ (td, $J=6.9,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.37$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 198.3,163.2,143.1,142.7,137.6$, 136.9, 134.8, 132.2, 130.1, 129.6, 129.0, 128.9, 128.7, 127.0, 113.6, 55.5, 42.1, 28.0, 21.5. HRMS (ESI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+} 458.1397$; found 458.1384.
(E)-N-[3-(4-Methoxybenzoyl)-4-(4-methoxyphenyl)but-3-en-1-yl]-4-methylbenzenesulfonamide (3bb): $R_{\mathrm{f}}=0.09$ (hexane: AcOEt $=$ 3:1). A, 176.7 mg (95\%); B, 181.8 mg (98%); C, 164.9 mg (89%). Yellow solid. MP: 197-199 ${ }^{\circ} \mathrm{C}$. IR (KBr) v cm ${ }^{-1}$; 3267, 1600, 1324, 1256, 1160, 1028. ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 7.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~s}$,
$1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}$, 1 H), 3.88 ($\mathrm{s}, 3 \mathrm{H}$), $3.85(\mathrm{~s}, 3 \mathrm{H}$), $3.20(\mathrm{td}, \mathrm{J}=6.9,5.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.88 (t, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.37 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 198.7,163.0$, 160.3, 143.3, 143.1, 137.0, 135.4, 132.1, 131.1, 130.4, 129.6, 127.2, 127.0, 114.2, 113.5, 55.5, 55.4, 42.0, 28.0, 21.5. HRMS (ESI): m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NNaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 488.1502$; found 488.1490 .
(E)-N-[3-(4-Methoxybenzoyl)-4-(4-nitrophenyl)but-3-en-1-yl]-4methylbenzenesulfonamide (3bi): $R_{\mathrm{f}}=0.09$ (hexane: AcOEt = 3:1). A, 175.4 mg (91\%); B, 175.3 mg (91\%); C, 184.0 mg (96\%). Yellow solid. MP: 70-72 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v \mathrm{~cm}^{-1}$; 3268, 1597, 1519, 1344, 1256, 1159, 1027. ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 8.22(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) 3.13$ (td, J = 6.9, $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 2.39 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 197.2,163.6,147.4,143.4$, 141.5, 140.8, 138.6, 136.7, 132.3, 129.71, 129.67, 129.4, 126.9, 123.9, 113.8, 55.5, 41.7, 28.7, 21.5. HRMS (ESI): m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 503.1247$; found 503.1239.
(E)-4-Methyl-N-[3-(4-nitrobenzoyl)-4-phenylbut-3-en-1-
yl]benzenesulfonamide (3ca): $R_{\mathrm{f}}=0.20$ (hexane: $\mathrm{AcOEt}=3: 1$). A, 53.8 $\mathrm{mg}(30 \%)$; B, $74.6 \mathrm{mg}(40 \%)$; C, $8.9 \mathrm{mg}(5 \%)$. Yellow solid. MP: 137$139{ }^{\circ} \mathrm{C}$. IR (KBr) v cm ${ }^{-1}$; 3290, 1650, 1527, 1351, 1321, 1158. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta \mathrm{ppm} ; 8.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.45-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~s}$, 1 H), $5.04(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{td}, J=6.9,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}$; 197.6, 149.5, 146.9, 143.7, 143.4, 137.5, 136.8, 134.2, 130.3, 129.7, 129.6, 129.3, 128.9, 126.9, 123.5, 41.9, 27.5, 21.5. HRMS (FAB): m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 451.1328$; found 451.1358.
(E)-N-[4-(4-Methoxyphenyl)-3-(4-nitrobenzoyl)but-3-en-1-yl]-4methylbenzenesulfonamide (3cb): $R_{\mathrm{f}}=0.14$ (hexane: AcOEt $=3: 1$). A, $118.5 \mathrm{mg}(59 \%)$; B, 121.7 mg (63\%); C, 0.0 mg (0%). Yellow solid. MP: $118-120^{\circ} \mathrm{C}$. IR (KBr) v cm ${ }^{-1}$; 3250, 1593, 1513, 1348, 1328, 1264, $1154,1031 .{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 8.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.80$ (d, J=8.6 Hz, 2H), 7.71 (d, J=8.0 Hz, 2H), 7.36 (d, J=8.6 Hz, 2H), 7.27 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{td}, J=6.9,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 2 H), $2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}$; 197.8, 161.0, 149.3, 147.3, 144.3, 143.4, 136.9, 135.0, 131.7, 130.1, 129.7, 127.0, 126.5, 123.4, 114.4, 55.4, 41.8, 27.5, 21.5. HRMS (FAB): m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 481.1433$; found 481.1408 .

General procedure for synthesis of compounds 7.

To a solution of $\mathbf{3}$ (3aa, 162.2 mg ; 3ab, 174.2 mg ; 3ai, 180.2 mg ; 3ba, 174.2 mg ; 3ca, $180.2 \mathrm{mg} ; 0.4 \mathrm{mmol})$ in MeCN (2.5 mL) was added DBU ($119.6 \mu \mathrm{~L}, 0.8 \mathrm{mmol}$) at room temperature. After being stirred at same temperature for 24 h , the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and extracted with AcOEt. The organic layer was dried over MgSO_{4} and concentrated in vacuo to dryness. The residue was purified by MPLC to give $\mathbf{7}$ (7aa, $146.0 \mathrm{mg}, 90 \%$; $\mathbf{7 a b}, 151.6 \mathrm{mg}, 87 \%$; 7ai, $172.5 \mathrm{mg}, 96 \%$; 7ba, $171.0 \mathrm{mg}, 98 \%$; 7ca, $124.6 \mathrm{mg}, 69 \%)$.

Characterization of compounds 7.

Phenyl[(2S*,3S*)-2-phenyl-1-tosylpyrrolidin-3-yl]methanone

(7aa): $R_{\mathrm{f}}=0.17$ (hexane: AcOEt $=3: 1$). Yellow solid. MP: 79-81 ${ }^{\circ} \mathrm{C}$. IR (KBr) $\mathrm{vcm}^{-1} ; 1678,1342,1161 .^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 7.69$ (d, J $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.26$ (m, 3H), 5.13 (d, J = $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (ddd, J = 7.5, 5.7, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.78 (ddd, $J=10.3,6.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.59 (ddd, $J=10.3,7.5,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$ 2.32-2.23 (m, 1H), 1.95-1.86 (m, 1H). ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm}$; 197.9, 143.4, 142.5, 135.3, 134.6, 133.5, 129.6, 128.7, $128.5,127.8,127.5,126.2,65.2,55.8,49.0,28.5,21.6$. HRMS (FAB): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 406.1477$; found 406.1486.
[(2S*, 3S*)-2-(4-Methoxyphenyl)-1-tosylpyrrolidin-3-
yl (phenyl)methanone (7 ab): $R_{\mathrm{f}}=0.21$ (hexane: $\mathrm{AcOEt}=3: 1$). Yellow solid. MP: $108-110^{\circ} \mathrm{C}$. IR (KBr) v cm ${ }^{-1}$; 1677, 1335, 1247, 1160, 1036. ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta \mathrm{ppm} ; 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2 H), $7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~d}, \mathrm{~J}$ $=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (ddd, $J=6.9,6.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76$ (ddd, $J=10.3,6.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (ddd, $J=10.3,7.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.45(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 198.0,158.9,143.3,135.3,134.54,134.48,133.5,129.5$, $128.6,128.4,127.7,127.4,114.0,64.9,55.8,55.2,49.0,28.4,21.5$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$458.1397; found 458.1387.

[(2S* $\left.3 S^{*}\right)$-2-(4-Nitrophenyl)-1-tosylpyrrolidin-3-

yl (phenyl)methanone (7ai): $R_{\mathrm{f}}=0.19$ (hexane: $\mathrm{AcOEt}=3: 1$). Yellow solid. MP: 99-101 ${ }^{\circ} \mathrm{C}$. IR (KBr) v cm ${ }^{-1} ; 1682,1518,1364,1160 .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta \mathrm{ppm} ; 8.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72$ (d, J=8.0 Hz, 2H), $7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (dd, $J=8.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.82 (ddd, $J=7.5,7.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.80 (ddd, $J=10.3,6.9,6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.58 (ddd, $J=10.3,6.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 (s, 3 H), 2.35-2.26 (m, 1H), 1.84-1.75 (m, 1H). ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 196.9,150.0,144.1$, 141.8, 135.0, 134.9, 134.0, 129.8, 128.9, 128.4, 127.9, 127.2, 124.0, 64.3, 56.0, 49.2, 29.4, 21.6. HRMS (FAB): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$451.1328; found 451.1316.

(4-Methoxyphenyl)[(2S*, 3S*)-2-phenyl-1-tosylpyrrolidin-3-

yl]methanone (7 ba): $R_{\mathrm{f}}=0.16$ (hexane: AcOEt $=3: 1$). White solid. MP: $53-55^{\circ} \mathrm{C}$. IR (KBr) v cm ${ }^{-1}$; 1672, 1345, 1258, 1160, 1028. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta \mathrm{ppm} ; 7.69(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40-7.26(\mathrm{~m}, 7 \mathrm{H}), 6.86(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 3.82$ (ddd, $J=6.9,6.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (ddd, $J=10.3,6.9,6.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.59 (ddd, J = 10.3, 7.5, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45 (s, 3H), 2.28-2.19 $(\mathrm{m}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta \mathrm{ppm} ; 196.5,163.9$, $143.5,142.7,134.6,130.8,129.6,128.7,128.4,127.8,127.5,126.3$, 113.8, 65.5, 55.5, 49.1, 28.7, 21.5 (note that two carbon peaks overlap with each other). HRMS (ESI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+} 458.1397$; found 458.1388 .
(4-Nitropheny) $\left[\left(2 S^{*}, 3 S^{*}\right)\right.$-2-phenyl-1-tosylpyrrolidin-3yl]methanone (7 ca): $R_{\mathrm{f}}=0.23$ (hexane: AcOEt $=3: 1$). Yellow solid. MP: $50-52{ }^{\circ} \mathrm{C}$. IR (KBr) v cm ${ }^{-1} ; 1690,1524,1346,1160 .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}) \delta \mathrm{ppm} ; 8.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 7 \mathrm{H}), 5.06(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ (ddd, J $=6.3,6.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (ddd, $J=10.3,6.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{ddd}$,
$J=10.3,7.5,6.9, H z, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.90(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta \mathrm{ppm} ; 196.6,150.4,143.6,141.9,139.8$, 134.4, 129.6, 129.4, 128.7, 127.7, 127.3, 126.2, 123.8, 65.1, 56.3, 48.8, 28.3, 21.6. HRMS (ESI): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$ 473.1142; found 473.1138 .

Author Contributions

Conceptualization, A.S.; data curation, all; formal analysis, all; funding acquisition, A.S.; investigation, S.A. and S.O., methodology, S.A., S.O. and A.S.; project administration, A.S.; resources, A.S.; supervision, A.S.; visualization, S.A. and A.S.; writing-original draft preparation, A.S.; writing-review and editing, A.T. and A.S.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are grateful for financial support from JST CREST (No. JPMJCR19R2) and the JSPS Grants-in-Aid for Scientific Research (C) (Grant No 18K06573).

Notes and references

1 Recent reviews: (a) C. Olier, M. Kaafarani, S. Gastaldi and M. P. Bertrand, Tetrahedron, 2010, 66, 413; (b) I. Pastor and M. Yus, Curr. Org. Chem., 2012, 16, 1277; (c) C. Díez-Poza and A. Barbero, Eur. J. Org. Chem., 2017, 4651; (d) B. V. Subba Reddy, P. N. Nair, A. Antony and N. Srivastava, Eur. J. Org. Chem., 2017, 1805; (e) S. Abdul-Rashed, C. Holt and A. J. Frontier, Synthesis, 2020, 52, 1991.
2 (a) T. Boer-Terpstra, J. Dijkink, H. E. Schoemaker and W. N. Speckamp, Tetrahedron Lett. 1977, 18, 939; (b) L. E. Overman, L. A. Robinson and J. Zablocki, J. Am. Chem. Soc., 1992, 114, 368; (c) Y. Murata and L. E. Overman, Heterocycles, 1996, 42, 549; (d) E. Metais, L. E. Overman, M. I. Rodriguez and B. A. Stearns, J. Org. Chem., 1997, 62, 9210; (e) J. P. Gesson, J. C. Jacquesy and D. Rambaud, Tetrahedron Lett., 1992, 33, 3633; (f) S. Hanessian, M. Tremblay, M. Marzi and J. R. Del Valle, J. Org. Chem., 2005, 70, 5070; (g) Y. Wang, L. Zhu, Y. Zhang and R. Hong, Angew. Chem., Int. Ed., 2011, 50, 2787; (h) S. J. Gharpure, Y. G. Shelke and D. P. Kumar, Org. Lett., 2015, 17, 1926; (i) M. Das and A. K. Saikia, J. Org. Chem., 2018, 83, 6178.
3 (a) S. J. Gharpure, V. Prasath and V. Kumar, Chem. Commun., 2015, 51, 13623; (b) D. Ma, Z. Zhong, Z. Liu, M. Zhang, S. Xu, D. Xu, D. Song, X. Xie and X. She, Org. Lett., 2016, 18, 4328; (c) G. Bélanger, M. Dupuis and R. Larouche-Gauthier, J. Org. Chem., 2012, 77, 3215; (d) R.-H. Li, C.-K. Ding, Y.-N. Jiang, Z.-C. Ding, X.-M. An, H.-T. Tang, Q.-W. Jing and Z.-P. Zhan, Org. Lett., 2016, 18, 1666.
4 (a) L. E. Overman and M. J. Sharp, J. Am. Chem. Soc., 1988, 110, 612; (b) L. E. Overman and I. M. Rodriguez-Campos, Synlett, 1992, 995; (c) L. E. Overman and A. K. Sarkar, Tetrahedron Lett., 1992, 33, 4103; (d) H. Tsukamoto and Y. Kondo, Angew. Chem., Int. Ed., 2008, 47, 4851; (e) R. R. Mittapalli, S. J. J. Guesné, R. J. Parker, W. T. Klooster, S. J. Coles, J. Skidmore and A. P. Dobbs, Org. Lett., 2019, 21, 350.
5 (a) R. M. Carballo, M. A. Ramírez, M. L. Rodríguez, V. S. Martín and J. I. Padrón, Org. Lett., 2006, 8, 3837; (b) R. M. Carballo, G. Valdomir, M. Purino, V. S. Martín and J. I. Padrón, Eur. J.

Org. Chem., 2010, 2304; (c) C. Zhu and S. Ma, Angew. Chem., Int. Ed., 2014, 53, 13532; (d) T. Kotipalli and D.-R. Hou, Asian J. Org. Chem., 2019, 8, 1561.

6 (a) A. Saito, M. Umakoshi, M. Yagyu and Y. Hanzawa, Org. Lett. 2008, 10, 1783; (b) A. Saito, J. Kasai, Y. Odaira, H. Fukaya and Y. Hanzawa, J. Org. Chem. 2009, 74, 5644; (c) A. Saito, J. Kasai, T. Konishi and Y. Hanzawa, J. Org. Chem. 2010, 75, 6980; (d) K. Murai, K. Tateishi and A. Saito, Org. Biomol. Chem. 2016, 14, 10352; (e) M. Kato and A. Saito, Org. Lett. 2018, 20, 4709.
7 N. Kobayashi, K. Kaneko, S. Amemiya, K. Noguchi, M. Yamanaka and A. Saito, Chem. Commun., 2019, 55, 8619.
8 The aza-Prins cyclization of δ-trialkylsilylmethyl-substituted homopropargyl amines and carbamates were reported to proceed with exocyclic vinyl formation. See, (a) H. H. Mooiweer, H. Hiemstra, H. P. Fortgens and W. N. Speckamp, Tetrahedron Lett., 1987, 28, 3285; (b) D. Damour, J. Porn and L. Miginiac, Tetrahedron Lett., 1987, 28, 4689; (c) see also, Ref. $4 a$.
9 (a) F. Bertozzi, M. Gustafsson and R. Olsson, Org. Lett., 2002, 4, 4333; (b) F. Bertozzi, B. V. Gundersen, M. Gustafsson and R. Olsson, Org. Lett., 2003, 5, 1551; see also, (c) M. J. Lee, K. Y. Lee, D. Y. Park and J. N. Kim, Bull. Korean Chem. Soc., 2005, 26, 1281; (d) M. Blanco-Lomas, P. J. Campos and D. Sampedro, Eur. J. Org. Chem., 2012, 6328.
10 (a) T. Kotipalli and D.-R. Hou, Org. Lett., 2018, 20, 4787; (b) G. Alachouzos and A. J. Frontier, J. Am. Chem. Soc., 2019, 141, 118; see also, (c) G. Alachouzos and A. J. Frontier, Angew. Chem., Int. Ed., 2017, 56, 15030; (d) C. Holt, G. Alachouzos and A. J. Frontier, J. Am. Chem. Soc., 2019, 141, 5461.

11 (a) J. E. Baldwin, J. Chem. Soc. Chem. Commun., 1976, 734; (b) J. E. Baldwin and M. J. Lusch, Tetrahedron, 1982, 38, 2939.

12 (a) P. Borkar, P. van de Weghe, B. V. Subba Reddy, J. S. Yadav and R. Grée, Chem. Commun., 2012, 48, 9316; (b) M. Breugst, R. Grée and K. N. Houk, J. Org. Chem., 2013, 78, 9892.

13 Assuming the pyrrolidine 4 as an intermediate converted to the enone 3aa, relatively strong basic MeOH as an additive (entry 7) and $\mathrm{Et}_{2} \mathrm{O}$ as a solvent (entry 8) would decrease acidity of TMSOTf to bring about the reduced activation of tosylamide group required for the ring cleavage of the pyrrolidine 4. In DCM (entries 1 and 2), the pyrrolidine 4 would not be smoothly hydrolyzed to enone 3aa likely due to the decreased nucleophilicity of water and TMSOH generated by the formation of the iminium intermediate from 1a and 2a and/or the low solubility of water. Notably, donor numbers of $\mathrm{MeCN}, \mathrm{MeOH}$ and $\mathrm{Et}_{2} \mathrm{O}$ as an index of Lewis basicity are 14.1, 19.0 and 19.2, respectively. See, V. Gutmann, G. Resch and W. Linert, Coord. Chem. Rev., 1982, 43, 133.
14 (a) A. Saito and K. Tateishi, Heterocycles, 2016, 92, 607; (b) M. R. Becker, R. B. Watson and C. S. Schindler, Chem. Soc. Rev., 2018, 47, 7867.
15 (a) Example of amidine-mediated Morita-Baylis-Hillman (MBH) reaction: J. Xu, Y. Guan, S. Yang, Y. Ng, G. Peh and C.-H. Tan, Chem. Asian J., 2006, 1, 724; recent reviews on the MBH reaction: (b) P. T. Kaye, Adv. Heterocycl. Chem., 2019, 127, 101; (c) H. Guo, Y. C. Fan, Z. Sun, Y. Wu and O. Kwon, Chem. Rev., 2018, 118, 10049.
16 (a) J.-N. Li, Y. Fu, L. Liu and Q.-X. Guo, Tetrahedron, 2006, 62, 11801; (b) K. Kaupmees, A. Trummal and I. Leito, Croat. Chem. Acta., 2014, 87, 385; (c) F. G. Bordwell, Acc. Chem. Res., 1988, 21, 456; (d) I. Kaljurand, A. Kütt, L. Sooväli, T. Rodima, V. Mäemets, I. Leito and I. A. Koppel, J. Org. Chem., 2005, 70, 1019; (e) R. L. Benoit, D. Lefebvre and M. Fréchette, Can. J. Chem., 1987, 65, 996.
17 (a) J. Ichikawa, G. Lapointe and Y. Iwai, Chem. Commun., 2007, 2698; (b) B. Tarnchompoo, C. Thebtaranonth and Y. Thebtaranonth, Tetrahedron Lett., 1987, 28, 6675.
18 X. Yu, Z. Guo, H. Song, Y. Liu and Q. Wang, Adv. Synth. Catal., 2018, 360, 1077.

[^0]: a. Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
 E-mail: akio-sai@cc.tuat.ac.jp
 Electronic Supplementary Information (ESI) available: detailed results of screening of acids, experimental procedures, characterisation data for new compounds. See DOI: 10.1039/x0xx00000x

