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Inverse deep learning methods and benchmarks for arti-
ficial electromagnetic material design†

Simiao Ren a‡, Ashwin Mahendra a‡, Omar Khatiba, Yang Deng a, Willie J. Padilla,a and
Jordan M. Malof a

In this work we investigate the use of deep inverse models (DIMs) for designing artificial electro-
magnetic materials (AEMs) - such as metamaterials, photonic crystals, and plasmonics - to achieve
some desired scattering properties (e.g., transmission or reflection spectrum). DIMs are deep neural
networks (i.e., deep learning models) that are specially-designed to solve ill-posed inverse problems.
There has recently been tremendous growth in the use of DIMs for solving AEM design problems
however there has been little comparison of these approaches to examine their absolute and relative
performance capabilities. In this work we compare eight state-of-the-art DIMs on three unique AEM
design problems, including two models that are novel to the AEM community. Our results indicate
that DIMs can rapidly produce accurate designs to achieve a custom desired scattering on all three
problems. Although no single model always performs best, the Neural-Adjoint approach achieves
the best overall performance across all problem settings. As a final contribution we show that not
all AEM design problems are ill-posed, and in such cases a conventional deep neural network can
perform better than DIMs. We recommend that a deep neural network is always employed as a
simple baseline approach when studying or solving AEM design problems. We publish python code
for our AEM simulators and our DIMs to enable easy replication of our results, and benchmarking
of new DIMs by the AEM community.

1 Introduction
In this work we consider the problem of designing artificial elec-
tromagnetic materials (AEMs), such as metamaterials, photonic
crystals, and plasmonics. The goal of AEM design is to find the
geometric structure, material composition, or other features of
an AEM - denoted g - that will produce a desired electromag-
netic (EM) response (e.g., a specific transmission or absorption
spectrum), denoted s here1–3. This is a widely-studied problem
involving a rich body of research, and a variety of effective meth-
ods4. Here we focus on emerging methods involving deep inverse
models (DIMs), which have recently been found highly effective
for solving AEM design problems3,5–8.

DIMs are data-driven methods, and therefore assume access to
a dataset of design-scattering pairs, D = {(gn,sn)}N

n=1, which are
obtained by evaluating the so-called "forward model" of the AEM
system3 at specific values of g. The output of the forward model,
denoted s = f (g), is usually estimated via theoretical results or
computational electromagnetic simulations (CEMS). DIMs then

‡ These authors contributed equally
a Department of Electrical and Computer Engineering, Duke University, Box 90291,
Durham, NC 27708, USA. E-mail: jordan.malof@duke.edu

use D to infer, or learn, an inverse model, denoted g = f−1(s),
that maps from a desired scattering directly to an AEM design
that will produce the desired scattering. This process of learning
f−1 is sometimes referred to as "training", and D is referred to as
the training dataset. Learning the inverse model is essentially a
regression problem where s comprises the independent variables,
and g comprises the dependent variable that we wish to predict.
Therefore conventional regression models, such as deep neural
networks (DNNs), can be employed to infer f−1. A substantial
body of recent work has investigated DNNs using deep neural
networks (DNNs) to approximate the forward model, f , yield-
ing impressive results3,7,9–11. This success is often attributed to
DNN’s ability to approximate complex and highly non-linear func-
tions. Despite this capability, and its associated success however,
DNNs can produce poor results if the problem is ill-posed3,12, as
is often the case when approximating f−1.

Ill-posed problems are those that violate one of the three fol-
lowing Hadamard conditions13: (i) existence; (ii) uniqueness;
and (iii) smoothness. In principle, inverse AEM problems can vio-
late any of the three Hadamard conditions, however, most recent
attention has been given to violations of condition (ii), which is
sometimes called "one-to-manyness", or non-uniqueness. We re-
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Fig. 1 Illustration of non-uniqueness. There are multiple unique designs
(left) that yield a similar scattering (right). When trying to learn the
inverse model (i.e., g = f−1(s)), the input is s and the model attempts
to predict a valid value of g. However, conventional regression models
assume there is only one solution, and often fail when confronted with
datasets where there are multiple valid solutions for some input values,
as shown here.

fer the reader to other sources for a more thorough treatment
of the other conditions3. In the context of AEM design, non-
uniqueness arises when there exist multiple values of g that all
yield similar AEM scattering (i.e., values of s), as illustrated in
Fig. 1. This is problematic for conventional DNNs because they
can only produce a single output for each input, making it impos-
sible to simultaneously predict two g values for a given s. Fur-
thermore, the training procedure for DNNs does not account for
non-uniqueness. As a result, when DNNs are trained on datasets
that exhibit non-uniqueness, they can learn to make highly inac-
curate predictions.

In recent years a large number of specially-designed mod-
els have been proposed, or adapted from the machine learn-
ing community, in order to overcome non-uniqueness in in-
verse AEM problems14–23. We refer to these approaches as
DIMs, and they can be taxonomized into the following broad
categories based upon their modeling strategy: probabilis-
tic (GAN-based14,15,VAE-based16,17), deterministic (e.g., tan-
dem18,19), and iterative (e.g., neural-adjoint20,21,24, genetic al-
gorithms22,23). Each of these these model classes has been em-
ployed successfully for solving AEM inverse problems. We will
describe DIMs in greater detail in Sec. 3, as well as recent work
employing them for inverse AEM problems.

1.1 Challenges with benchmarking and evaluation
Despite the success and rapid growth of DIMs in AEM research
over the past several years, there has been little replication and
benchmarking (e.g., comparisons of different DIMs on the same
AEM problems), making it difficult to determine the extent to
which real methodological progress is being made over time.
This also makes it challenging for researchers and practitioners
in the AEM community to choose methods that are best-suited to
solve their problems. One fundamental reason for the absence of
benchmarking may be the difficulty of reproducing the compu-
tational simulations from a previous study, which often requires
substantial AEM expertise, and computation time. Furthermore,
publications may provide an insufficient level of detail to accu-

rately reproduce simulations.
One potential solution to this problem, which has become com-

mon in the machine learning community, is for authors to release
their datasets and trained models. As noted in recent reviews3,7,
and quantified in a recent study25, this is rarely done in the AEM
literature. One notable exception to this trend is a recent study
study that published a benchmark of three AEM problems for
data-driven forward modeling (i.e., approximating f (g)). How-
ever, to our knowledge there has been no systematic comparison
and analysis of DIMs for AEM problems.

Another challenge with the study of DIMs is the selection of
an appropriate inverse problem. Few studies reported whether
the problem under consideration truly exhibits non-uniqueness,
or compared to a conventional DNN. These are important con-
siderations since most DIMs are built upon the assumption that
non-uniqueness is present in the data. If there is no non-
uniqueness, then any performance differences between inverse
models must be due to other factors that are unrelated to ill-
posedness. Furthermore, simpler models such as conventional
DNNs may achieve more accurate results in these cases. In this
work we will show that not all inverse problems exhibit non-
uniqueness, and in such cases it may be sufficient to simply use a
conventional DNN.

One final challenge with the study of DIMs, especially within
the context of AEMs, is scoring. One advantage of many modern
DIMs is that they can propose multiple solutions for a given input
(i.e., value of s). Despite this capability, nearly all studies in AEM
only evaluate the accuracy of the first proposed solution. Further-
more, in practice it is often possible, or desirable, to evaluate the
efficacy of several designs (e.g., via numerical simulation) and
adopt the best one. Recent machine learning research has shown
that modern DIMs can achieve substantially better results if sev-
eral proposed solutions are considered, and that the best DIM
depends on how many proposed solutions can be considered20.
In this work we will adopt a scoring metric that accounts for this
capability.

1.2 Contributions of this work
(i) The first public and accessible benchmark of inverse AEM prob-
lems. In this work we develop a benchmark dataset compris-
ing three unique inverse AEM problems: nanophotonic shell,
graphene multi-layer stack, and an all-dielectric metamaterial ar-
ray. These benchmark problems were adopted from recently-
published research across different AEM sub-fields, helping to
ensure their relevance and significance to the broader AEM
community. To support replication, we publish our benchmark
datasets and documentation online. We also publish fast and
easily-accessible forward simulators for each benchmark problem,
which is crucial to enable the benchmarking of DIMs (see Sec. 2).

(ii) The first systematic comparison of deep inverse models for
AEM tasks. Using our benchmark resources, we perform a sys-
tematic comparison of eight state-of-the-art DIMs.* One of these

* During review of this paper, we found Ma et al. 26 concurrently benchmarked three
DIMs on two AEM problems, with an focus on robustness and diversity in addition
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Fig. 2 Depiction of the three artificial electromagnetic materials used for inverse design test. (a) concentric plasmonic layers composing the TiO2-Silica
multi-layer Shell, (b) the multiple layers of alternating silicon nitride and graphene composing the Graphene-Si3N4 2D Multi-layer Stack, (c) 2×2
unit-cell of all-dielectric metasurface resonators composing the .

techniques, the conditional invertible neural network (cINN) is
novel in the context of AEM research. Rather than evaluating
their accuracy using a single proposed solution, following Ren et
al.20 we evaluate how each model performs as a function of the
number of proposed solutions that we are permitted to evaluate
(including only one solution) . We assert that this is a more practi-
cally relevant measure of performance for inverse AEM tasks (see
Sec. 2.1). We find that model performance improves as more so-
lutions are permitted, and that the relative performance of many
DIMs depends upon the number of proposals that they are per-
mitted to make.

(iii) Identifying and addressing non-uniqueness in inverse AEM
Problems. Inverse problems are not guaranteed to exhibit non-
uniqueness, which has several important implications when solv-
ing inverse AEM problems. We discuss these implications and
make several recommendations. In particular, we suggest that re-
searchers always include a conventional DNN as a baseline model
when solving inverse problems, and we propose a measure for the
level of non-uniqueness present in a given task.

The remainder of this work is organized as follows: Section
2 introduces the design of our benchmark, including the bench-
mark problems, performance metrics, and data handling; Section
3 describes the eight DIMs employed in our benchmark compari-
son; Section 4 describes our experiments; Section 5 discusses the
results of our experiment; Section 6 discusses non-uniqueness in
AEM inverse problems; and Section 7 presents our final conclu-
sions and future work.

2 The inverse AEM benchmark

The objective of our benchmark is to establish a shared set of
problems on which the AEM community can compare DIMs, and
thereby measure research progress more reliably. To achieve this
goal, we chose three initial problems to include in our bench-
mark, and we share resources to maximize the accessibility of the
benchmark.

to the usual accuracy.

2.1 Problem formulation and error metrics

In data-driven inverse modeling we assume access to some
dataset, D = {(gn,sn)}N

n=1, comprising N pairs of input and output
sampled from the forward model of our system (i.e., AEM system
in our case). Each pair is generated by first sampling some in-
put, g ∈ G, where G refers to some designer-chosen domain. In
AEM problems G is often a hypercube as illustrated in Fig. 1,
and values are sampled uniformly1,21,24. We assume that D is
partitioned into three disjoint subsets: D = Dtr ∪Dval ∪Dte. Dtr is
used to infer the parameters of the DIM (i.e., train the model),
while Dval is used to monitor the progress of training and stop it
at an appropriate time (e.g., before over fitting). Dte is the testing
dataset, and the goal of inverse modeling is to use Dtr and Dval

to learn a model of the form ĝ = f̂−1(s,z) that produces accurate
designs for all s ∈ Dte. In other words, the designs inferred by f̂
should yield scattering that is similar to the desired input scatter-
ing. Many DIMs can produce multiple solutions for the same s,
and the variable z controls which of these solutions is output by
the inverse model.

The error of DIMs is typically measured using re-simulation
error, given by L (s, ŝ(z))), where L refers to some measure of
the error between s and ŝ(z) = f (ĝ(z)) (e.g., mean squared error
(MSE)). We assume that we are permitted to evaluate T proposed
inverse solutions by passing them through the forward model
(e.g., a computational simulator) so that we can compute their
re-simulation error and then take the solution with the lowest er-
ror. Then the objective of DIMs is to minimize the expected (i.e.,
average) error over the testing dataset, given T solution propos-
als. A sample estimator for this metric is given by20:

r̂T =
1
|Dte| ∑

s∈Dte

[ min
i∈[1,T ]

L (ŝ(zi),s)] (1)

where Zi is a set of z values that is indexed by the variable i.
Note that, at T = 1, the re-simulation error is equivalent to mean
squared re-simulation error, a widely-used metric in the AEM
literature. Therefore rT can be seen as a generalization of the
conventional single-solution error measure used in most studies.
Furthermore, because rT essentially returns the minimum-error
solution among all T solutions, it is a monotonically decreasing
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Fig. 3 Illustration of re-simulation error. Note that the variable z is only
utilized by models that propose multiple solutions.

function of T (i.e., it can decrease or remain unchanged, but not
increase in value).

In our benchmark study, the goal of the DIMs will be to learn
an inverse function that minimizes r̂T . The number of solution
proposals that can be tolerated may vary across different appli-
cations, and therefore we consider a variety of T values in our
experiments to provide a richer characterization of the expected
performance for each DIM. For our benchmark, we propose to
use MSE as the loss function, L , since it is widely used for AEM
problems21,27–30. It is also well-behaved and well-defined for all
values of s, unlike the mean-relative-error – another metric some-
times used in the AEM literature (e.g., Peurifoy et al.24, Chen et
al.1). MRE has the limitation that it grows exponentially as the
value of s→ 0, and becomes infinity when s = 0.

2.2 Benchmark problems and selection criteria
The three AEM problems that we selected for inclusion in our
benchmark are presented in Table 1, along with key details. These
problems were chosen based upon several criteria to maximize
the relevance of our benchmark to the AEM community. The first
criterion was that each benchmark task had been studied in a re-
cent AEM publication. A second criterion was representativeness;
we deliberately chose benchmark tasks that originate in different
sub-fields within AEM research. By choosing problems in this way
we also help ensure that any conclusions obtained on the bench-
mark are more likely to generalize across AEM research. Finally,
we chose problems of varying input and output dimensionality,
since dimensionality is an influential factor in the performance
and behavior of DIMs. Next we describe major details about each
benchmark problem.

TiO2-Silica Multi-layer Shell (Shell). The geometry of a
multi-layer dielectric spherical nanoparticle of alternating, tun-
able thickness TiO2 and silica shells are optimized to produce tar-
get scattering-cross section spectra – shown in Fig. 2 (a). Peuri-
foy et al31 describes this problem and implements an analytical
Matlab simulator replicated in python for this work. Adjustable
thickness TiO2 and silica shells parameterize the geometry of the
nanosphere. We consider the 8-parameter version of this prob-
lem, where spectra are discretized by 201 uniformly spaced out-
puts between the wavelengths of 400-800nm.

Graphene-Si3N4 2D Multi-layer Stack (Stack). The geometry
of a multi-layer stack of alternating graphene and Si3N4 dielec-
tric layers, as depicted in Fig. 2 (b), is optimized to produce a

target absorption spectra under an incident beam of s-polarized
light. Chen et al.1 describes this problem and implements an ana-
lytical transfer matrix simulator. Paired graphene-Si3N4 subunits
of infinite width and adjustable Si3N4 thickness parameterize the
geometry of each stack. We consider the 5-parameter version of
this problem, in which spectra are discretized by 256 uniformly
spaced outputs between the wavelengths of 240-2000nm. Given
the design specification of this problem, it is possible that certain
permutations of the stack layers leads to identical scattering. As a
result, it is possible for two different design specifications to yield
very similar scattering (i.e., non-uniqueness).

All-dielectric metasurface supercell (ADM). This problem
was originally described and published in21. The ADM task
was selected because it possesses several features: (1) It has
14-dimensional geometry inputs, as shown in Table 1, which is
greater than many AEM studies found in the literature. The
higher dimensional input results in greater complexity. Further-
more, this problem exhibits translational invariance, meaning
that spatially translating the metasurface results in a different de-
sign specification, but without actually changing the underlying
metasurface configuration or its scattering properties. As a re-
sult it is guaranteed that some unique design settings will yield
the exact same scattering properties, guaranteeing that the in-
verse modeling problem will exhibit non-uniqueness. (2) The
scattering response in this dataset is the absorptivity spectrum
with 2000 frequency points and many sharp peaks that are tra-
ditionally challenging to fit. (3) This is the only dataset that is
generated from full-wave simulation software. Each supercell, as
shown in Fig 2, consists of four SiC elliptical resonators. The ge-
ometry parameters of one supercell are: height h (identical for
all resonators), periodicity p, x-axis and y-axis radii rx,ry, and
each elliptical resonator is free to rotate and described by θ . The
absorptivity spectra are discretized by 2000 uniform frequency
points from 100-500THz.

2.3 Neural surrogate simulators to enable replication.

One challenge with benchmarking DIMs is that it requires ac-
cess to a computationally fast implementation of the true forward
function, f ; this is needed to compute the re-simulation error (Eq.
1) for each DIM. Many AEM problems, such as the ADM problem
here, rely upon computational simulators to evaluate f , which is
time-consuming to setup, difficult to replicate across studies, and
computationally slow. This is a major obstacle to evaluating DIMs
on many modern AEM problems that rely upon computational
simulation. In this work we propose a general strategy overcome
this problem, first suggested in Ren et al.,20, that involves training
a data-driven surrogate model for the simulator (e.g., a deep neu-
ral network), f̂ , and then treating this surrogate as the true simu-
lator for experimentation with DIMs. A neural network surrogate
is computationally fast that can be readily shared with other re-
searchers for accurate replication and future benchmarking. For
the ADM problem here, we adopt a surrogate simulator that was
developed in Ren et al.20, which comprises an ensemble of neural
networks trained on a large dataset from the original simulator.
This surrogate model is computationally fast, and highly accurate
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Dataset name Stack Shell ADM

Description 2D Multi-layer Stack Multi-Layer Shell All-Dielectric Metasurface
Geometry Dimension, |g| 5 8 14

Spectra Dimension, |s| 256 201 2,000
Training set size, |Dtr| 40,000 40,000 8,000

Validation set size, |Dval | 10,000 10,000 2,000
Test set size, |Dte| 500 500 500
Source publication Chen et al.1 Peurifoy et al.24 Deng et al.21

Table 1 Basic statistics about benchmark dataset used

(6e−5 with respect to the true simulator).

2.4 Benchmark resources.

The (Python) code base for our benchmark task is main-
tained at the following remote repository: https://github.
com/BensonRen/AEM_DIM_Bench and can be easily downloaded.
The code base includes all model architecture and code, and is
open source under MIT license. We will maintain our code base
through a remote repository at github. This will allow users to
post comments or concerns about the code, as well as build upon
the code repository.

3 Benchmark deep inverse models
In this section we describe the eight deep learning models that are
included in our benchmarking experiments in Sec. 5, which are
listed in Table 2. We focus here on describing the motivation for
including each of the models, as well as some of their important
characteristics, which are also provided in Table 2. However, the
technical details of each model are reported in the Supplemen-
tary materials, and we publish software implementations of each
model with this paper(see Sec. 2.4).

3.1 Overview of the Inverse Models

The eight benchmark models were included for somewhat differ-
ent reasons. The Neural Network (NN) model in Table 2 repre-
sents a conventional feedforward DNN and serves as an important
baseline approach. Unlike all the other models in the benchmark,
the NN is not designed to address non-uniqueness. Consequently
it is simpler to train and use than the other models. Furthermore,
and as our results suggest in Sec. 5, it also tends to yield su-
perior performance compared to the other benchmark models if
the problem under consideration does not actually exhibit non-
uniqueness. In Sec. 6 we leverage these properties of the NN to
analyze the level of non-uniqueness in our benchmark problems.

The remaining benchmark models are specially-designed to ad-
dress non-uniqueness in regression problems. Five of these mod-
els are included because they have been employed to solve inverse
AEM problems in prior publications: the Tandem (TD), Neural-
Adjoint (NA), Genetic Algorithm (GA), Variational Auto-Encoder
(VAE), and the Mixture Density Network (MDN). We provide the
associated AEM references for each model in Table 2. The two re-
maining models are the Invertible Neural Network (INN) and the
Conditional INN (cINN). These models have recently been found

to achieve state-of-the-art performance for solving general data-
driven inverse problems59–61, however they have not yet been
explored specifically for AEM problems. In this work we explore
the use of INNs and cINNs to solve inverse AEM problems for the
first time.

While we believe that our benchmark models encompass a
large proportion of the existing work on DIMs within the AEM
community, it is not intended to encompass all work. We refer
the reader to recent review articles for a more comprehensive
treatment of the topic3,6,7,10. It is our hope however that AEM
community will utilize our benchmark dataset and results to rig-
orously evaluate important additional models from the AEM lit-
erature in future work.

3.2 Key inverse model properties for AEM applications

Here we describe two key properties of DIMs with respect to AEM
applications. Table 2 classifies each of our benchmark models ac-
cording to these two properties. The first important property is
whether a DIM produces multiple solutions. As we find in our ex-
periments in Sec. 5, models that are permitted to propose several
solutions often also find progressively better solutions (i.e., rT re-
duces as T grows). This capability also makes it possible for the
designer to consider several viable solutions that may have some-
what different scattering properties, and choose the one that is
best-suited for the application. It is important to note that each
additional model proposal that is considered requires an evalua-
tion of the true forward model, f , which imposes a (usually mod-
est) trade-off between design quality and computation time.

A second important property of some DIMs is that they rely on
an iterative process for inferring each inverse solution. Most DIMs
attempt to learn a direct mapping from s to g, and therefore infer-
ence of a single solution proposal is computationally efficient. In
contrast, iterative methods usually make an initial set of guesses
for the inverse solution, denoted Z0. A search for superior solu-
tions is then performed based upon Z0, and the results are used to
update Z0. This process is then repeated for some fixed number
of iterations, or until the quality of the solutions (e.g., estimated
resimulation error) no longer improves. As we find in Sec. 5 iter-
ative methods can often achieve the superior accuracy, although
the computation required to infer solutions can be substantially
larger than other methods. It is worth noting however, that this
additional computation time is usually only a small fraction of the
time for other processes, such as training the DIMs or evaluating
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Model Multi-solution Iterative Applications to AEM problems

Conventional Deep Neural Network (NN) 5 5 Chen et al.1, Tahersima et al.32

Zhang et al.33, Akashi et al.34

Tandem (TD) 5 5 Liu et al.*18, Ma et al.19, Gao et al.35, Hou et al.36

So et al.37 Long et al.38, He et al.39, Xu et al.40

Ashalley et al.41, Mall et al.42, Pilozzi et al.43

Phan et al.44, Singh et al.45, Malkiel et al.46

Genetic Algorithm (GA) X X Zhang et al.*47, Johnson et al.48

Forestiere et al.49, Li et al.50

Neural Adjoint (NA) X X Deng et al.*21, Peurifoy et al.24

Asano et al.51, Miyatake et al.52

Variational Auto-encoder (VAE) X 5 Ma et al.*16,53, Qiu et al.17 , Kudyshev et al.54,55

Shi et al.56, Liu et al.23, Kiarashinejad et al.30

Invertible Neural Network (INN) X 5 -
Conditional Invertible Neural Network (cINN) X 5 -

Mixture Density Network (MDN) X 5 Unni et al.*57,58

Table 2 Summary of benchmark models. * indicates that we adopted the implementation presented in the published work with minimal change in our
benchmark. More details about the implementation can be found in the supplementary.

f using computational simulators.

4 Experimental design
The fundamental goal of this work is to establish a rigorous com-
parison of the above-mentioned deep inverse models applied to
different problems in metamaterial design. The overall design of
our experiment is as follows: (1) Collect data: we generate the
training data using code as section 2 illustrated; (2) Train the
model as described in section 3 on the training set; (3) Evaluate
each model’s ability to reproduce the target spectra sgt in the test
set for every dataset, through re-simulation of the 200 predicted
candidate geometry solutions ĝ.

4.1 Model optimization and training

For each dataset-DIM pair, we use 24 GPU-hours (specification of
hardware used can be found in the appendix Section 6) for net-
work training and hyper-parameter optimization (e.g., width and
depth of models, learning rates, regularization strength, model-
specific parameters like number of Gaussian for MDN and VAE,
KL-divergence coefficient for VAE, MSE coefficient and padding
dimension for INN and cINN, mutation rate of the GA etc.. We
used a uniform grid of several hyper-parameters dimensions, ad-
justing the grid range and granularity from heuristics). This was
sufficient to evaluate more than 80 hyperparameters settings for
each model-dataset pair. We empirically found this number suffi-
cient to achieve diminishing performance returns for each model.
During this optimization process, we trained all models on the
same training dataset, Dtr, for each problem. All model (all im-
plemented in Pytorch62) are trained using Adam63 with batch-
norm layer and a learning rate scheduler that reduces on plateau
of training loss. We used batch size of 1024 and 300 epochs (by
which time all models reached convergence).

To evaluate the quality of a particular hyperparameter setting
during the optimization process we measured rT=1 on Dval and ul-
timately chose the model for final testing that achieved the lowest

validation error. The final estimate of error for each model-task
pair was evaluated by computing rT on Dte. The final size and run
time of each model-dataset pair can be found in the appendix.

5 Results and discussion

Our experimental results are presented in Fig. 4(a-c), where we
plot re-simulation error (rT , for T ∈ [1,200]) for each of the three
benchmark tasks. The results indicate that an error of approxi-
mately 10−3 (or much lower) can be achieved for all of the bench-
mark tasks. The achievable error does vary significantly across
the three tasks however; for example, the DIMs reach 10−7 on
the Stack problem, and only ∼ 10−3 for the Shell problem. In
Fig. 4(e-g) we plot a sample target spectrum (solid line) and the
solutions produced by the top-three-performing models (dashed
lines) for each task. These visualizations illustrate the high com-
plexity of the target spectra, as well as the levels of accuracy that
can be achieved by the DIMs. We believe that these levels of error
are sufficient to support a variety of different AEM research and
development applications, and therefore demonstrate the overall
effectiveness of DIMs across a variety of AEM problems.

A major objective of these experiments is to compare the per-
formance of state-of-the-art DIMs. This is challenging because the
relative performance of the DIMs depends strongly upon the num-
ber of permissible solution proposals (i.e., value of T ). This is be-
cause the error of multi-solution DIMs (see Table 2) often reduces
significantly as T increases, whereas single-solution models do
not. The results therefore suggest that multi-solution DIMs offer
substantial value if multiple solutions can be considered during
design. Furthermore, as we will show, the best-performing model
and its achievable performance depend strongly upon T . This is
an important finding because most existing AEM research only
measures the performance of inverse models for T = 1, and no
existing studies evaluate T > 1 in the fashion we have here. Since
it often requires thousands of simulations to train DIMs, we assert
that it should usually be possible to consider many solutions, i.e.,
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Fig. 4 Resimulation error for eight different inverse approaches for three benchmark data sets as T increases, (a) Graphene-Si3N4 2D Multi-layer
Stack, (b) TiO2-Silica Multi-layer Shell, and (c) All-Dielectric Super-unit Cell. Highlighted regions encapsulate 75th and 25th percentiles of resimulation
error. T = 1 performance ranked on left vertical axis, T = 200 performance ranked on right vertical axis. (d) Legend of the plot (a-c). (e-g) The
example spectra plot for T=200 for the top-3 methods shown from figure (a-c). Each spectra plotted is approximately (differ by less than 10%) the
MSE of that T=200 performance, labelled using text box at right bottom corner. The ground truth target spectra is plotted with solid blue line.

T >> 1, making this an important performance measure.

Given the dependency of performance on T , it is difficult to
make general statements about the best-performing DIMs. To
simplify this analysis we discuss the performance of the DIMs
under two more specific scenarios that are especially relevant to
AEM applications: when T = 1 and T → ∞, respectively. In the
last section we discuss the computation time required for each of
the DIMs, and its implications for selecting an appropriate DIM.

5.1 Performance when T = 1

The vast majority of existing AEM literature evaluates DIMs us-
ing rT=1 (i.e., mean-squared re-simulation error) making it an
important scenario to consider in our benchmark. In Table 3 we
present rT=1 for each DIM on our three benchmark tasks. Over-
all, the NA and GA methods achieve the lowest error, and achieve
similar results on all three tasks. They achieve the lowest error

on the Shell and ADM tasks, however they are outperformed by
the NN model on the Stack task. In Sec. 6 we show that the
Shell problem does not exhibit significant non-uniqueness, mak-
ing it suitable for conventional regression models, and making it
disadvantageous to use DIMs.

Given these results, the best-performing DIMs on our bench-
mark are iterative (see Table 2), and their performance advan-
tages come at the cost of somewhat greater computation time
compared to other DIMs. However, we note that the additional
computation time is small for the tasks here: e.g., 60 seconds, or
less (see Sec. 5.3).

5.2 Performance when T → ∞.

In this subsection we consider the relative performance of DIMs
when they are permitted to make a large number of solution pro-
posals. It is computationally intensive to evaluate their asymp-
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Iterative Deterministic probabilistic

T=1 NA GA NN TD INN cINN MDN VAE

Stack 1.22e-6 1.39e-6 6.37e-7 4.37e-6 1.30e-3 9.38e-6 3.95e-5 1.86e-6
Shell 3.60e-3 3.91e-3 6.12e-3 7.13e-3 1.08e-2 9.03e-2 1.02e-1 1.09e-2
ADM 1.16e-3 1.10e-3 1.72e-2 1.66e-3 9.08e-3 7.45e-3 7.34e-3 6.42e-3

T=200 NA GA NN TD INN cINN MDN VAE

Stack 5.83e-7 1.36e-6 - - 1.29e-3 3.78e-7 3.03e-7 2.46e-7
Shell 1.58e-3 3.02e-3 - - 9.36e-3 1.03e-2 8.05e-3 1.91e-3
ADM 3.00e-4 7.73e-4 - - 9.05e-3 1.73e-3 1.55e-3 1.39e-3

Table 3 Table of T = 1 re-simulation error over different DL inverse techniques on each benchmarking task. The best performing methods are in bold.
For the deterministic ones, since they do not have the ability to generate multiple solutions, the T=200 accuracy is the same as T=1 and therefore
omitted.

totic performance (as T → ∞) for all experiments, and therefore
we use T = 200 as an approximation.

We argue that this is an important performance measure for in-
verse AEM problems because it closely reflects the goals of AEM
researchers in practice. Most often researchers want the best-
performing design, and will evaluate numerous candidate designs
in pursuit of this goal. When using DIMs in particular, the quan-
tity of data needed to train the models is substantially larger than
T = 200, implying that evaluating T = 200 solutions (or more)
with a simulator will often be feasible. Furthermore, and as
we show here, doing so often yields substantially-better designs.
Therefore we believe this performance measure is of particular
interest to the AEM community. To our knowledge we are the
first to propose this measure for evaluating the performance of
inverse solvers on AEM problems.

In Table 3 we also present rT=200 for each DIM on our three
benchmark tasks. As expected, the error of most multi-solution
DIMs reduces substantially as more solution proposals are permit-
ted. In this scenario the NA method achieves the lowest error on
the Shell and ADM problems. The next best-performing models
are the GA and the MDN. Note that the results in Fig. 4 repre-
sent the average error across 500 targets (i.e., values of s), which
reliably decreases as a function of T ; the value of rT for a single
target will not always decrease with the addition of each solution
proposal, but it is guaranteed not to increase (see Fig. A of the
supplementary materials).

Regarding the Stack task, all of the models achieve very low
error rates (< 10−5). As discussed later in Sec. 5.1, the Stack
problem does not exhibit significant non-uniqueness, suggesting
that superior performance does not imply superior ability to ad-
dress non-uniqueness. In this case many DIMs still achieve re-
ductions in error as they make more proposals because they are
making slight improvements in their estimates of the same inverse
solution, rather than a superior unique solution. As a result, the
improvements in accuracy are very small as T increases (note the
logarithmic error scale).

5.3 Model computation times

Another consideration when utilizing DIMs is their computation
time: specifically their training and design-inference time. The

precise computation time of a DIM will depend strongly upon
the particular task, model size (number of free parameters), and
hardware being utilized; a full discussion of these dynamics is be-
yond the scope of this work. Therefore we present benchmark
timings of each DIM on our three benchmark tasks, using a com-
mon hardware configuration (a single Nvidia RTX 3090 graphics
processing unit). These measures therefore provide rough esti-
mates of computation time that can be expected in many real-
world settings for each model. The results of our benchmark tim-
ings are provided in Table 4.

In general the MDN, cINN, and INN models require the longest
time to train, while the NN, VAE, GA and NA tend to require
the least amount of time. The training times also vary across
tasks, with the ADM task requiring substantially less time than
the others. This is likely due to the smaller quantity of training
data available compared to the other problems. Regarding infer-
ence time, the NA and GA are substantially slower than the other
models, due to their iterative inference procedure. These mod-
els tend to achieve the best performance and therefore this im-
poses a trade-off between design quality and computation time.
However, we note that the inference time of the models is rel-
atively small compared to their training time. Furthermore, the
time required for computational simulations is usually (though
not always) much greater than the time required for training and
(especially) solution inference with DIMs. Ultimately the rele-
vance of these factors, and the most appropriate trade-offs, will
be problem dependent.

6 Identifying and addressing non-uniqueness
in inverse AEM problems

In the AEM literature DIMs are often evaluated, or compared, on
an inverse problem without verifying whether the problem truly
exhibits non-uniqueness. One good reason for this may be that
there is no general test for determining whether a problem ex-
hibits non-uniqueness. However, in general there is no guarantee
that an inverse problem will be ill-posed, in which case DIMs may
not offer any advantages over conventional regression models.
As we show, conventional models may achieve superior perfor-
mance in these cases. Furthermore, any performance differences
between two DIMs on a well-posed problem cannot be caused

8 | 1–12Journal Name, [year], [vol.],

Page 8 of 12Nanoscale



Model Stack Shell ADM
Train Eval Train Eval Train Eval

NN 655 0.0035 590 0.0030 50 0.0036
TD 428 0.0029 856 0.0027 198 0.0030
GA 202 24 519 26 72 25
NA 202 1.4 519 6.65 72 5.21
VAE 320 0.0023 363 0.0026 50 0.0027
INN 1843 0.0079 2919 0.015 487 0.0124
cINN 541 0.013 1131 0.019 152 0.0096
MDN 350 0.015 434 0.003 144 0.010

Table 4 Model training and evaluation time (unit of seconds) of each
individual models. Note that training time is dependent of the dataset
size and is nearly a constant given hyper-parameter, dataset size and
same computation resources (in appendix). The evaluation time is aver-
aged over getting 200 solutions (proposals) without taking IO time into
account.

by differences in their ability to address non-uniqueness, making
such performance comparisons (between DIMs) potentially mis-
leading.

To mitigate these risks, we propose that a conventional NN al-
ways be employed as a baseline approach when solving inverse
problems. This ensures that a suitable model is included in case
the problem is actually well-posed, and provides a baseline per-
formance to ensure that there is some advantage to using DIMs.
Furthermore, one can treat the relative performance of a state-
of-the-art DIM and conventional NN as a hypothesis test for the
presence of non-uniqueness. If the DIM achieves superior perfor-
mance, it implies that its modeling assumption of non-uniqueness
is (likely) more accurate for the problem than the NN’s assump-
tions of uniqueness. More precisely, we propose the following
measure of non-uniqueness:

γ =
rNA

rNN . (2)

Here rNN and rNA are the re-simulation errors of a conventional
NN and the neural-adjoint DIM, when T = 1. We suggest the NN
and the NA because they represent state-of-the-art deep conven-
tional and inverse models, respectively. We use T = 1 to avoid
giving the NA an advantage by evaluating multiple of its solution
proposals, while the NN can only submit one solution; in princi-
ple, if the problem is non-unique then the NA will yield superior
performance even when T = 1. Finally, it is also important to en-
sure that the NA and NN are similarly-sized models (i.e., have
similar number of free parameters), since model size can often
impact performance.

6.1 Non-uniqueness in the AEM benchmark tasks

On top right corner of Fig 5 we present the value of γ for each
of our three benchmark tasks. The measure suggests that non-
uniqueness is smallest in the Stack dataset, and largest in the
ADM dataset. In the Stack dataset the NN model achieves nearly
twice the accuracy of the NA method, which is the best-performing
DIM at T = 1 for this problem. This suggests that for some inverse

problems, a simple regression model can indeed substantially out-
perform DIMs (when T = 1), and therefore it can be costly exclude
them when solving inverse problems. Because the NN outper-
forms the DIMs, it suggests that non-uniqueness is not a major
obstacle to solving this problem. This is corroborated by the ex-
tremely low error of 6.34e−7 achieved by the NN. From Fig. 4(e-
g) this level of error is qualitatively low, providing a near-perfect
match with the ground truth target spectra. This also demon-
strates that γ is not simply a measure of problem difficulty either,
because the overall accuracy of the inverse models (rT ) and γ

provide different rank-ordering of the benchmark tasks.

Crucially, these results also imply that care must be taken when
interpreting the performance differences between DIMs on the
Stack problem. Because there is relatively little non-uniqueness,
differences in performance are largely due to factors that are un-
related to addressing non-uniqueness. Although the Stack prob-
lem is well-posed, we do observe that as T grows, the perfor-
mance of the DIMs improves, and the DIMs do eventually outper-
form the conventional NN. We hypothesize that this occurs be-
cause the DIMs are obtaining marginally more accurate approxi-
mations of the same inverse solution found at T = 1 by the NN,
rather than identifying superior unique solutions. In the Appendix
we provide further evidence that this is indeed the case.

6.2 Visualizing non-uniqueness in the AEM data

To corroborate the γ measure and its implications, we also present
visual evidence of the non-uniqueness present in each benchmark
task. In Fig. 5(d-e) we randomly-sample a spectrum from each
training dataset, s1 (red), and then identify the four most similar
spectra in the training dataset (Dtr), in terms of Euclidean dis-
tance (gray). We refer to this set of five total spectra as S1. In
Fig. 5(a-c), we present a scatter plot of all designs in Dtr along
with the designs corresponding to S1 shown in red. We cannot di-
rectly scatter plot any of the designs because their dimensionality
is greater than three, and therefore we use the UMAP64 approach
to reduce their dimensionality to two for visualization.

For problems with a single unique solution, we expect that
highly similar spectra will tend to have designs that are also sim-
ilar. This is the case for the Stack problem in Fig. 5(a), while
the points become increasingly distant for the Shell problem, and
then again more distant for the ADM problem. We repeat this pro-
cess with four additional randomly selected spectra, si, i ∈ 2,3,4,5
and plot the designs corresponding in each cluster with a differ-
ent color. The pattern of non-uniqueness among the three tasks
holds for these additional spectra. These visualizations provide
additional evidence in support of the γ measure. We leave further
theoretical analysis of γ for future work.

7 Conclusions
Recently deep inverse models have been found successful for solv-
ing inverse AEM problems (e.g., material design). This has led to
the rapid proliferation of different models for performing inverse
design, but relatively little rigorous testing or comparison among
them. In this work we present the first benchmark performance
comparisons of state-of-the-art deep inverse models (DIMs) on in-
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Fig. 5 Visualizing one-to-many of the benchmark datasets. (a-c) are the scatter plot of all geometry points in Stack, Shell and ADM in background
in UMAP space (2d). On top of that, geometries that have similar spectra clusters (shown in (d-f)) are color-coded and plotted in triangles. There
are 5 randomly selected clusters being plotted here. The more cluster the same color points are, the less one-to-many (in general) is the dataset.

verse AEM problems. We selected three inverse AEM problems to
include in the benchmark, which were chosen carefully to be rel-
evant and diverse. We then evaluated the performance of eight
different DIMs on each of our three benchmark tasks. Six of these
DIMs were were employed in recent AEM studies, while two of
them (the INN and cINN) are introduced to the AEM community
for the first time in this study.

Recent inverse AEM studies typically measure the accuracy of
DIMs based upon the first solution that they propose for a target
AEM scattering. However, many recent DIMs can propose mul-
tiple solutions for a given target scattering and in this work we
evaluated the performance of DIMs as a function of the number of
solution proposals that they were permitted to make, denoted T .
Therefore, in our benchmark we evaluated DIM performance as a
function of T , for T ∈ [1,200] This measure is much richer than the
conventional performance measure (equivalent to T = 1), and we
believe it better reflects how DIMs are often used in practice=.

Benchmarking results. The results of our benchmark indicate
that DIMs can achieve error levels ranging from nearly 10e− 3
for the Shell problem, to 10e− 7 on the Stack problem. We be-
lieve this level of error (illustrated in Fig. 4(e-g)) is sufficient
for a variety of applications, and demonstrates the overall effec-
tiveness of DIMs for solving inverse AEM design problems. We
find that design quality improves substantially if we are allowed
to evaluate multiple solutions (i.e., T >> 1) from multi-solution
DIMs (see Table 2). Although the performance of DIMs varies by
(i) task and (ii) the value T being considered, we find that iter-
ative methods such as the Neural-Adjoint and Genetic Algorithm
tend to achieve the best performance. This performance advan-

tage comes at greater computational cost during solution infer-
ence compared to other DIMs, however, these costs will usually
be small compared to other computational costs.

Publication of resources for future benchmarking. To make
our experiments easily replicable, we publish code and documen-
tation for our benchmark datasets and DIMs. Importantly, we also
publish fast and easily-usable simulators, which are necessary to
benchmark DIMs. It is our hope that researchers will utilize these
resources to rigorously evaluate new DIMs, as well as build upon
our benchmark by adding new models and tasks.
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