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Accelerated Screening of Colloidal Nanocrystals using Artificial 
Neural Network-Assisted Autonomous Flow Reactor Technology
Ajit Vikram, a Ken Brudnak, a Arwa Zahid, a Moonsub Shim b and Paul J.A. Kenis *a

Colloidal semiconductor nanocrystals with tunable optical and electronic properties are opening up exciting opportunities 
for high-performance optoelectronics, photovoltaics, and bioimaging applications. Identifying the optimal synthesis 
conditions and screening of synthesis recipes in search of efficient synthesis pathways to obtain nanocrystals with desired 
optoelectronic properties, however, remains one of the major bottlenecks for accelerated discovery of colloidal 
nanocrystals. Conventional strategies, often guided by limited understanding of the underlying mechanisms remain 
expensive in both time and resources, thus significantly impeding the overall discovery process. In response, an autonomous 
experimentation platform is presented as a viable approach for accelerated synthesis screening and optimization of colloidal 
nanocrystals. Using a machine-learning-based predictive synthesis approach, integrated with automated flow reactor and 
inline spectroscopy, indium phosphide nanocrystals are autonomously synthesized. Their polydispersity for different target 
absorption wavelengths across the visible spectrum is simultaneously optimized during the autonomous experimentation, 
while utilizing minimal self-driven experiments (less than 50 experiments within 2 days). Starting with no-prior-knowledge 
of the synthesis, an ensemble neural network is trained through autonomous experiments to accurately predict the reaction 
outcome across the entire synthesis parameter space. The predicted parameter space map also provides new nucleation-
growth kinetic insights to achieve high monodispersity in size of colloidal nanocrystals.

Introduction
Colloidal semiconductor nanomaterials hold potential to 
control optical and electronic properties with unprecedented 
precision through tuning of their size, shape, and morphology, 
thus enabling exciting opportunities for high-performance 
electronics, optoelectronics, and photovoltaics.1-5 Quantum dot 
(QD) synthesis methodologies have progressed substantially in 
the past two decades. Various synthetic approaches have been 
developed for the synthesis of QDs, ranging from liquid-phase 
methods to vapor phase epitaxial growth.6 Among the various 
compositions, cadmium based colloidal QDs have received the 
most attention, resulting in monodispersed nanocrystals with 
photoluminescence quantum yields close to unity.7-11 Despite 
their attractive properties, the use of Cd-based QDs for 
applications is largely limited due to the inherent toxicity of 
heavy metals. Consequently, significant efforts have focused on 
the discovery of efficient synthesis strategies for heavy-metal-
free alternatives such as InP, ZnTe, and ZnSe-based 
nanocrystals.6, 12 While substantial improvement in the optical 
properties of these heavy-metal-free compositions has been 

made over the past decade, a major bottleneck hindering their 
discovery and optimization remains due to the trial-and-error-
based methodologies used for synthesis design and 
optimization. This trial-and error approach impedes the overall 
discovery process involving the identification of the target 
materials and the subsequent development of synthesis 
pathways to achieve optimal optical properties.
Conventional flask-based batch reactor platforms for synthesis 
of colloidal QDs often require a large number of experiments to 
explore vast reaction space before a synthesis recipe is 
accepted or abandoned. Although, the thermodynamic and 
kinetic understanding of the nucleation-growth processes can 
provide helpful insights, they are often very complex and poorly 
understood to provide a robust framework for optimization of 
semiconductor nanocrystal synthesis parameters. As a result, 
the screening and optimization process is often guided by 
human intuition based on limited understanding of the 
underlying nucleation-growth mechanism based on prior and 
often disparate literature. This limited understanding is related 
to the complexity of the parameter space. Moreover, the 
synthesis of colloidal nanocrystals is highly sensitive in nature, 
where compositionally identical solutions may yield entirely 
different average size and polydispersity, depending on 
conditions employed in the synthesis.13-15 Something as simple 
as decreasing the band gap by increasing QD size can cause 
deviations in other desired properties such as an increasing 
linewidth due to size broadening. Hence, several synthetic 
parameters need to be varied simultaneously to achieve a 
desired outcome, thus complicating the exploration of the 
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parameter space and the development of new synthesis 
recipes. This exploration of parameter space requires 
unrealistically large number of experiments due to the trial-and-
error nature of the conventional experimentation strategies.
These challenges in the exploration of parameter space 
necessitate a statistically driven approach that focuses on 
maximizing the utilization of synthesis insights from minimal 
experiments to accelerate the overall synthesis screening and 
materials discovery process in a resource-efficient fashion. 
Conventional statistical approaches utilizing optimization 
algorithms such as the Nelder-Mead Simplex algorithm16 and 
the Stable Noisy Optimization by Branch and Fit (SNOBFIT) 
algorithm17, 18 are based on a black-box optimization approach 
and often fail to predict the parameter space map unless a large 
number of experimental data is provided. Several of these 
bottlenecks are analogous to a combination of those reported 
in the synthesis of complex organic molecules (e.g., selectivity 
vs. yield), 19-21 and polymer synthesis (e.g., 
polydispersity/structural diversity vs. molecular weight). 22, 23 In 
recent years, progress in the area of Machine Learning (ML) 
techniques such as artificial neural networks, reinforcement 
learning, and convolutional neural networks, has fueled their 
adaptation for chemical space exploration in the areas of 
organic chemistry and polymers.24-27 These ML-based 
approaches, however, are still in its infancy for solution-based 
synthesis of inorganic nanomaterials such as semiconductor 
nanocrystals.
In the field of colloidal QDs, recent report by Sargent et al. 
demonstrated the application of ML models to experimental 
data collected over 6 years in their laboratory (~2300 
experiments) to identify the chemical parameter space that can 
yield improved monodispersity in size of PbS QDs.28 In an 
alternative approach, Zhu et al. developed an automated self-
optimizing reactor utilizing reinforcement learning to optimize 
two key reaction parameters (temperature and time) to target 
CdSe QDs of specific size and monodispersity, highlighting the 
importance of automation and data science in the area of 
nanomaterial discovery.29 More recently, Abolhasani et al. 
reported an autonomous flow synthesis platform for self-
optimization of a target set of properties (size, polydispersity, 
and quantum yield) for perovskite quantum dots within 30 
hours using a training set of ~275 autonomous experiments.30-

32 In particular, the integration of microfluidic platforms with 
online optimization algorithms such as SNOBFIT33 and Kriging 
Interpolation34, 35 for synthesis of colloidal nanocrystals 
underscores the promise of automation and data science for 
accelerating the optimization of synthesis parameter space. 
Additionally, utilization of combinatorial experimentation using 
multiple microfluidic platforms in parallel can enable rapid 
collection of experimental datasets that can then be used with 
ML models for rapid optimization and exploration of the 
synthesis parameters.36, 37 More recent advancements focused 
on synthesis of colloidal nanocrystals such as InP using multi-
stage tubular flow reactors and micro-stirred tank reactors 
further offer more precise control of reaction conditions and 
process parameters, compared to conventional flask-based 
strategies and are also more suitable for online automation, 

characterization, and integration with ML models. These 
successful implementations of ML-based self-optimizing 
synthesis platforms underscore the promise of this approach to 
achieve target optical properties of nanomaterials with minimal 
user intervention. These approaches, while promising, still do 
not provide comprehensive understanding of the parameter 
space, as these feedback-based algorithms are designed 
specifically to achieve a target size or polydispersity but not both 
simultaneously. Furthermore, a large number of experiments 
(each set of parameters requiring experimental time on scale of 
tens of hours) is needed to achieve meaningful insights into the 
parameter space, thus making these feedback-based 
optimization approaches inefficient. For instance, the 
application of Kriging interpolation modeling for synthesis of 
CdSe and CdSeTe was limited to a small parameter space and 
resulted in low accuracy of the predictive model and thus 
significantly underestimates (R2 < 0.50) the experimental 
outcomes (in terms of FWHM and PL intensity).35 Alternative 
strategies utilizing data collected from combinatorial 
automated experimentation and trained using multi-layered 
neural network models offer improved accuracy of the model. 
36, 37 However, the improvement in accuracy is achieved at a cost 
of very large number of post-synthesis experimental data (> 
3000 datasets) to train ensemble neural network models for 
accurate mapping of the CdS and CdSe synthesis parameter 
space.36, 37 Hence, alternative ML-based strategies that rely on 
a minimal number of experiments to accurately model the 
synthesis parameter space are desired to provide 
comprehensive insights into the parameter space in addition to 
self-optimization for the desired optical properties. In other 
words, a method that can operate autonomously in a resource 
efficient fashion is desired, which is the purpose of this work.
In this work, we present a closed-loop autonomous flow reactor 
platform that utilizes a real-time ML-based feedback algorithm 
to efficiently map the synthesis parameter space without prior 
knowledge of the synthesis chemistries. It can predict the 
reaction outcome in a 5-dimensional input (synthesis 
conditions) and 2-dimensional output (size and polydispersity) 
parameter space, along with the uncertainty in predictions, 
while executing a minimum number of experiments in a closed-
loop iterative automated framework. The ML-based algorithmic 
framework presented in this work can also be extended to 
efficiently learn and predict other nanocrystal properties 
(beyond size and polydispersity) such as crystal phase and 
structure of the synthesized QDs, by providing the appropriate 
input-output parameters from the experimental dataset. 
Following the standard practice across different fields including 
organic chemistry, polymers, and nanomaterials, we designate 
this self-optimizing and screening platform as an autonomous 
technology.30, 38, 39 To develop and validate this autonomous 
synthesis technology, we use InP QDs, an example of a 
promising heavy-metal-free composition. A large fraction of its 
synthesis parameter space remains unexplored, thus making it 
an ideal candidate to demonstrate the merits of the 
autonomous platform. Kinetic insights gained from the ML 
algorithm, for the first time enable spatial separation of InP 
nucleation and growth, which in turn provides unprecedented 
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control over the band gap and absorption FWHM of the 
nanocrystals using a flow synthesis approach.

Results and Discussion
Autonomous platform components: Automated synthesis 
platforms often help to accelerate the exploration of synthesis 
parameter space for the design of nanocrystals. However, the 
analysis of the underlying reaction chemistries and the 
subsequent determination of the next set of experiments still 
limit their effectiveness. A closed-loop autonomous platform to 
perform self-driven experimental selection, execution, and 
analysis would significantly accelerate the overall screening and 
discovery process. A schematic of the autonomous flow reactor 

platform developed in this work is shown in Figure 1a. The 
platform is comprised of three key components: (i) automated 
flow synthesis unit with a dual-stage flow reactor configuration, 
(ii) automated inline spectroscopy unit for analyzing the 
reaction mixture that is sampled at different points within the 
reactor channel to correlate the optical properties with their 
structural properties, and (iii) an automated decision-making 
unit based on an artificial neural network model that trains on 
real-time experimental data and uses it to predict the next set 
of experiments – all in a closed loop fashion to enable 
autonomous synthesis of nanocrystals.
The automated flow synthesis unit is comprised of a precursor 
formulation module (a combination of two syringe pumps, and 
two peristaltic pumps), a mixing module (inline flow mixer 

Figure 1. (a) Schematic representation of the autonomous flow reactor platform showing key stages: precursor 
mixing stage, core nucleation reactor, core growth reactor, automated sampling of reaction mixture from the 
reaction channel, inline UV-Vis spectroscopy for real-time reaction monitoring, and artificial neural network module 
for training and predicting the next set of experiments. (b) Heat transfer model using COMSOL shows rapid and 
uniform heating of the precursors across the cross nucleation and growth reactor. (c) Temperature profile of the 
reaction mixture for first 30 seconds of the reaction. (d) Flow chart of the autonomous experimentation: training, 
validation, and testing of the neural network in an iterative fashion, followed by predicting the parameter space 
map and execution of next best experiments for specified target band gap and polydispersity.
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comprised of SMX mixers), a nucleation reactor (miniature flow 
reactor heated with cartridge heaters), and a growth reactor 
with a helical static mixer insert (comprising of 8 sampling ports 
to sample the reaction mixture). The flow rate of the precursors 
is controlled to vary the precursor concentration and residence 
time in the reactors. All process parameters including the flow 
rates and reactor temperatures are automated using a custom-
developed Matlab script (see supporting information for the 
details on flow reactor platform). A two-stage flow reactor 
configuration is used in this work for to enable separate control 
over the nucleation and growth reactions. Prior work in the flow 
synthesis of QDs utilizes a single-stage configuration, that limits 
the nucleation and growth conditions to be identical, similar to 
the conventional synthesis using batch reactors.29 Figure 1b-c 
shows the temperature profile inside the nucleation stage prior 
to entering the growth stage. The ability to rapidly (in less than 
5s) heat the precursors to a desired nucleation temperature 
prior to entering the growth stage provides an additional knob 
to control the synthesis of colloidal nanocrystals.40, 41  
Automated sampling and analysis unit: Along the growth 
reactor channel, a sampling valve (a switch valve with ten inputs 
and one output) is used to continuously sample reaction 
mixtures from the reactor channel. For each experiment, the 
reaction mixtures, corresponding to different reaction times are 
sampled from eight different positions within the reactor 
channel. The sampled reaction mixture then passes through an 
inline UV/Vis absorption flow cell for spectral analysis. The 
spectral data are fitted with a mixture of gaussian functions to 
assign the absorption peak (that correlates with band gap and 
size of the nanocrystals) and the full-width-at-half-maxima 
(FWHM) of the absorption peak (that correlates with the 
polydispersity in size). The sampling, spectra acquisition, and 
spectral analysis are automated to achieve real-time monitoring 
of the reaction mixture. The absorption peak position and 
FWHM data of the reaction mixture is simultaneously utilized 
by an artificial neural network (ANN)-based ML algorithm42 to 
determine and execute the next set of experimental conditions. 
Since InP QDs do not offer significant photoluminescence 
without post-synthetic treatment, we limited inline analysis to 
UV-Vis flow cell only. Alternatively, for fluorescent nanocrystals 
such as InP/ZnSe, inline photoluminescence flow cell can also 
be integrated with the automated flow reactor platform. The 
decision-making framework of the autonomous 
experimentation is discussed in the next section. 
Automated decision-making unit: The autonomous 
experimentation platform operates in a fully automated closed 
loop fashion: from executing initial experiments for training and 
validating the decision-making neural network model, to testing 
its prediction accuracy. Once the model is trained, validated, 
and tested through self-driven experiments, the neural network 
is used to map parameter space and to execute subsequent 
autonomous experiments for a specified target band gap and 
polydispersity. 
Figure 1d shows the flow chart of the autonomous 
experimentation with different steps. First, the autonomous 
platform executes an initial set of partially randomized 
experiments (N=16). The performance of the ANN model as a 

function of these randomized initial experiments is discussed in 
the supporting information. For each set of reaction conditions 
(a five-dimensional input), the peak position and FWHM 
obtained from the inline analysis of the reaction mixture is then 
used by the ensemble neural network (ENN) based ML model as 
‘ground truth’ value for training and validation. Subsequently, 
the model performs a k-fold cross validation (k=5) on the entire 
experimental data to evaluate the quality of the trained ENN 
model. An additional 0.25N (N=16) set of randomized 
experiments is performed to test the ENN predictions using a 
coefficient of determination approach. Here, instead of using 
the initial set of experimental data to test the prediction 
accuracy of the ML model (as done in prior related studies), the 
autonomous platform performs an independent set of 
experiments to ensure that the ENN model performs well on 
dissimilar experimental data, not encountered during the initial 
training. If the model performs poorly (R2 < 0.90), the data from 
the testing experiments are then used as additional training 
data. This training-to-testing operation is performed in an 
iterative fashion until a good predictive ENN model (R2 > 0.90 on 
independent testing data) is achieved (Figure S1).
Once the model has been tested, the ENN model operates 
sequentially using two primary modes: parameter space 
mapping (PSM), followed by self-optimization of reaction (SOR). 
In PSM mode, the trained ENN model is used as the function 
estimator to predict the outcome (band gap and polydispersity) 
of the entire parameter space (a 5-dimensional input space 
comprising of synthesis conditions, with 11 levels for each 
input), along with the uncertainty in the predictions. This high-
density parameter space map then provides a basis for kinetic 
insight into the role of different synthesis parameters as well as 
exploration of specific regions of interest (depending on 
uncertainty in prediction). In SOR mode, a grid-search method 
is used to identify and execute three optimal experiments for a 
specified target band gap and minimal polydispersity based on 
the predicted parameter space map. These experimental data 
are continuously used by the ENN model to learn and thus to 
improve its prediction accuracy as more and more experiments 
are performed.
Architecture of ensemble neural network: The ENN model is 
the most critical decision-making module of the autonomous 
experimentation platform reported here. This section discusses 
the architecture and performance of the ENN model, designed 
specifically to achieve high accuracy in prediction, while utilizing 
a small set of experimental data for colloidal synthesis of QDs. 
ANNs have been implemented as regression models for 
predicting reaction outcomes for chemical synthesis 
previously.43-45 Most of these works utilized a framework that 
consists of an input layer (reaction conditions), followed by a 
series of hidden layers (weights and biases), and an output layer 
(reaction outcomes). Through the training iteration, weights 
and biases are assigned to the neurons in the hidden layer to 
develop a function that correlates the input and the output 
layer. However, one of the drawbacks of such an architecture is 
the generalizability of the model for new set of experimental 
data. In our initial investigation, we found that for a small set of 
training data, such ANN architectures have high variance and 
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tend to overfit the data. Even if they perform well on a given set 
of initial experimental data, they tend to overfit and perform 
poorly on a dissimilar set of experimental data. Thus, these 
conventional ANN architectures are inefficient for application 
to autonomous experimentation approach that relies on 
minimal experimental inputs to gain maximum insights. 
To enhance the prediction efficiency, we designed an ENN 
architecture that uses an ensemble learning approach. This ENN 
architecture comprises of multiple (up to 25) non-identical 
neural networks (each with a different architecture) that are 
trained in parallel, such that the outputs of each network can 
be combined to achieve a final prediction with reduced variance 
and higher generalizability (Figure 2a). The input layer 
comprising of five synthesis parameters (nucleation 
temperature, growth temperature, solvent amount, zinc 
addition, and reaction time) are fed to each neural network in 
the ensemble to predict the band gap as the output parameter. 
In the next step, the output from the first ensemble (predicted 

band gap) is used as an additional input node for the prediction 
of polydispersity using a similar ENN architecture connected in 
series. This approach of using the predicted band gap as the 
input layer of ENN for predicting polydispersity drastically 
improves the overall accuracy of the model (Figure S1). The 
median of all outputs in both ensembles are used as the final 
predicted band gap and polydispersity, to avoid any outliers in 
the prediction. Additionally, the uncertainty in the prediction 
can be estimated from the standard deviations in the 
predictions from each network in the ensemble. This 
uncertainty in prediction can guide the identification of regions 
that warrant further exploration. 
Moreover, the cascade based ENN architecture that 
autonomously learns the synthesis parameter space to predict 
the outcome of the entire synthesis parameter space, provides 
the generalizability of this unique approach for applications 
across the domain of colloidal nanocrystals. In contrast, all prior 
work in the area of AI-assisted nanomaterial design ranging 

Figure 2. (a) Ensemble neural network architecture consisting of 25 parallel neural networks with five synthesis 
parameters as the input layer, hidden layers with variable size. The predicted output (band gap) from the first 
ensemble of networks is used as an additional input to a subsequent ensemble of neural network for predicting 
the polydispersity. (b) 5-fold cross validation performance based on predicted band gap and polydispersity 
plotted against the experimental data at same reaction conditions.
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from real-time optimization18, 29 to deep neural network-based 
methods for understanding the parameter space28, 46 either 
require a very large number of experimental data to build an 
accurate predictive model or lack generalizability across 
different class of colloidal nanocrystals. In this work, we 
addressed these challenges through developing a cascade 
based ENN architecture that leverages band gap (size) 
predictions to accurately estimate the FWHM (polydispersity) 
across the entire parameter space. 
To develop a robust network that avoids overfitting or 
underfitting of the training data, a dropout regularization 
technique is used to randomly ignore or ‘drop out’ a fraction of 
neurons in each of the neural network layers during both 
training and evaluation of the model, thus forcing neurons in 
each layer to probabilistically take less or more responsibility for 
the inputs. The dropout regularization enables the individual 
layers and networks in the ENN to be distinct from one another. 
More importantly, it avoids overfitting by not assigning high 
weightage to a specific neuron during training or evaluation.
To estimate the performance of the ENN architecture, a k-fold 
cross validation (k=5) is performed. K-fold cross-validation splits 
the training data into k sets and uses them to create multiple 
training-testing sets, such that the model is trained on k-1 sets 
and tested on the remaining kth set. This process is repeated k 
times, each with a different training-testing set of data. The ENN 
model predictions show high accuracy (R2>0.89) in prediction of 
both band gap and polydispersity with low variance (sR

2 < 0.02) 
across all different k splits, confirming that the model avoids 
overfitting and is less biased towards any specific set of data as 

it performs well even on the previously unseen experimental 
data (Figure 2b).
Implementation of autonomous platform for PSM: Utilizing 
the aforementioned ENN model as the function estimator, the 
autonomous platform executes partially randomized initial 
experiments, and uses the ENN model for PSM such that the 
reaction outcomes across the entire chemical space are 
predicted, along with the uncertainty in all predictions. As 
explained above, the autonomous platform starts with 16 initial 
self-driven experiments and undergoes multiple iterations of 
training-validation-testing cycle (as visualized in Figure 1d). 
After a number of such iterations (utilizing a total of 4 full 
iterations), an accurate predictive model is developed. The 
autonomous platform employed for InP nanocrystals tested 
here required a total of 28 self-driven experiments performed 
through 44 hours of continuous operation. Moreover, the 
autonomous platform develops this accurate model without 
any prior knowledge of the synthesis chemistry. 
Figure 3a shows the predicted absorption peak wavelength 
(band gap), FWHM (polydispersity), and the overall certainty in 
the predictions for all possible 161051 combinations of the 
synthesis parameters (11 levels for each of the 5 synthesis 
parameters: nucleation temperature, growth temperature, 
solvent amount, zinc addition, and reaction time), along with 
the experimental data used for training the ENN model. The 
certainty of the majority of the predictions across the entire 
parameter space is higher than 0.90, confirming the robustness 
of the ENN model to efficiently learn from a small set of initial 
training data. Figure S2 shows a plot of the evolution of 

Figure 3. (a) Ensemble neural network-predicted absorbance peak wavelength (band gap) and FWHM (polydispersity) 
across the entire parameter space. The data points in red and blue correspond to predictions with certainty higher than 
0.90 and 0.80 respectively. Experimental band gap and polydispersity data corresponding to the optimal experiments 
performed by the autonomous platform for specified target wavelengths from 450 to 590 nm (at an interval of 10 nm each) 
are shown in black. The error bar corresponds to 3 different predictions for each specified target wavelength. (b) Heat map 
showing the output frequency based on all combination of synthesis conditions across the entire parameter space for 
specific peak wavelength and FWHM. (c) Absorption spectra of several InP sizes with best monodispersity, synthesized 
using the autonomous flow reactor platform.
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certainty in the predictions upon executing different iterations 
of self-driven experiments by the autonomous platform.
More importantly, the PSM plot (Figure 3a) reveals the 
minimum polydispersity that can be expected for InP 
nanocrystals exhibiting different possible band gaps across the 
entire visible spectrum. These minima in FWHM suggest that 
the synthesis chemistry (using indium chloride, zinc chloride, 
oleylamine and aminophosphine-based starting reagents) is 
well-suited for synthesis of InP QDs with a band gap between 
2.24 eV (550 nm) and 2.63 eV (470 nm), because the minimum 
possible FWHM remains less than 55 nm in this range. For the 
synthesis of nanocrystals with a smaller or larger band gap, the 
minimum possible FWHM is predicted to be significantly higher, 
suggesting higher polydispersity in the nanocrystal size in this 
region. These observations from the PSM plot align with the 
reports in the prior literature. For instance, the feasible InP QD 
bandgap reported in the prior literature using aminophosphine-
based chemistry lies between 460 nm and 570 nm with the 
minimal polydispersity (absorbance FWHM) reaching up to 53 
nm for particles exhibiting first absorption excitonic peak at 530 
nm.13, 33, 47  The absence of feasible nanocrystals exhibiting 
FWHM below 50 nm using aminophosphine precursors can be 
attributed to the rapid precursor conversion kinetics of the 
active phosphorous species, that eventually limits the monomer 
supply rate and thus prevents the required control over the 
tunability of the band gap and polydispersity.13 To achieve InP 
nanocrystals exhibiting FWHM below 50 nm and expand the 
feasible band gap region, alternate solvent-precursor 
combinations can be explored. For instance, the 
implementation of silylphosphine based phosphorous 
precursors using seed-mediated synthetic approach for 
synthesis of InP QDs have yielded nanocrystals exhibiting 
narrower absorption FWHM and broader band gap tunability 
across the visible spectrum.48 Similarly, adjusting the alkyl group 
of the aminophosphine precursors can allow further control 
over the InP nucleation and growth reactions, thus yielding 
nanocrystals with broader band gap tunability.49 
Implementation of autonomous platform for SOR: In the SOR 
mode, the autonomous platform utilizes the predicted PSM 
dataset to determine and execute the next set of experiments 
that would yield the best polydispersity (minimum FWHM) for 
a target band gap. The experimental results from these self-
optimizing experiments are shown as black circles in Figure 3a. 
For specified target wavelengths in the range of 450 nm to 590 
nm, each at an interval of 10 nm, the autonomous platform 
performs several self-driven experiments with the goal to 
achieve the smallest FWHM across all target wavelengths. For 
each target wavelength, three predicted experiments are 
performed to assess the robustness of the autonomous 
platform. The standard deviations of these experimental yields 
are shown with the error bar associated with both peak 
wavelength and FWHM. As evident from Figure 3a, for nearly 
all target wavelengths (< 580 nm), the self-executed 
experiments yielded nanocrystals with peak wavelength and 
FWHM close to the target wavelength and predicted optimal 
FWHM. The absorption spectra of the synthesized InP QDs for 
different target band gaps with the best monodispersity are 

shown in Figure 3c. The ability of the autonomous platform to 
efficiently synthesize InP QDs of specified target band gap with 
optimal polydispersity in size, without any prior knowledge of 
the reaction space is attributed to the robust ENN-based ML 
model that efficiently learns the reaction space through self-
driven iterative experiments to eventually predict the reaction 
outcomes with high certainty (>80%). 
These results highlight the merits of AI-assisted autonomous 
experimentation for intelligent sequential selection of the next 
best experiment by efficiently learning synthesis parameter 
space. The question now remains: how impactful and efficient 
is this AI-guided approach, compared to user-selected 
exploration of synthesis parameter space? To answer this 
question, we looked at the frequency map of AI-derived 
predictions (Figure 3b). This plot bins the frequency of different 

Figure 4. (a) Absorbance peak wavelength and (b) FWHM 
corresponding to different [Zn]:[In] ratio for varying 
reaction time, nucleation temperature, and growth 
temperatures based on the parameter space mapping 
predictions.
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synthesis conditions in terms of predicted peak wavelength 
(bins of 20 nm, x-axis) and FWHM (bins of 5 nm, y-axis). Most 
synthesis conditions (> 60%) are predicted to yield nanocrystals 
with band gap between 2.13 eV (580 nm) to 2.47 eV (500 nm) 
and high polydispersity in size (FWHM > 70 nm). Notably, using 
this analysis, less than 1% of the entire parameter space is 
expected to result in nanocrystals with optimal polydispersity 
for a target band gap across the entire visible spectrum. Such 
low density of synthesis parameter space in the optimal 
polydispersity region suggests that the probability of identifying 
optimal synthesis conditions using conventional trial-and-error-
based synthesis planning approaches (few experiments) is 
unlikely. In other words, a conventional synthesis approach can 
only be effectively used to map a limited region of synthesis 
parameter space, thus making the exploration of complex 
parameter space expensive in time and resources. Although, 
similar polydispersity and size of the colloidal QDs can also be 
synthesized by an experienced human researcher (who starts 
with significant prior knowledge of similar or dissimilar systems) 
after several trials, the mapping of the entire synthesis 
parameter space using conventional experimentation approach 
will require a drastically large number of experiments (> 1000), 
given the complex relation between different synthesis 
parameters. In contrast, utilizing the AI-guided approach that 
makes use of the autonomous platform, maps the entire 
synthesis parameter space by learning from 28 self-driven 
experiments in less than 44 hours of continuous operation. This 
highlights the essential role of intelligent autonomous 
platforms to minimize the exploration time and resources to 
accelerate the overall screening and discovery process of 
colloidal nanocrystals. 

Effect of zinc precursor addition on band gap and 
polydispersity: Further analysis of the predicted parameter 
space map revealed the critical role of zinc precursors in 
controlling the size and monodispersity of the InP QDs. Figure 
4a and 4b show the effect of zinc precursor concentration on 
the absorption peak position and FWHM of InP QDs for different 
nucleation and growth temperatures, as predicted by the ENN 
model. An increase in the zinc precursor concentration (ZnCl2) 
is expected to yield InP QDs of smaller size, as evident from the 
blue-shift in absorption peak. The size of the nanocrystals is 
more sensitive to the zinc precursor concentration at higher 
growth temperatures (240 ºC). Similarly, the FWHM decreases 
upon an increase in zinc precursor concentration, suggesting 
that higher concentration yields QDs with improved 
monodispersity in size. Figure S3 and S4 shows a five-
dimensional visualization of synthesis parameter space 
consisting of predicted reaction outcomes for different 
combinations of all five synthesis inputs.
Next, we look at how the trends predicted by the ENN-based 
algorithm compare with experimental results reported 
previously. Tessier et al. previously reported better control over 
size and improved excitonic features through addition of high 
concentration of zinc salts (such that [Zn]:[In] = 5) to the 
aminophosphine-based synthesis chemistry.33 The mechanistic 
role of zinc in the InP nucleation and growth process, however, 
remains elusive. One hypothesis for the observed improvement 
in monodispersity upon zinc addition is that zinc passivates InP 
traps and defects, thus stabilizing the QD surface that leads to 
slower growth and better size-uniformity. Recent work by 
Buffard et al., however, revealed that only a very small fraction 
of zinc is incorporated in the InP NCs and hence, is unlikely to 
localize and passivate surface traps.47 A more likely possibility is 
that the InP precursor conversion reaction requires activation 
by a zinc halide precursor to form the active precursor species, 
thus altering the nucleation and growth rates. Density 

Figure 5. Experimental data: (a) UV-Vis spectra of InP nanocrystals at optimal nucleation and growth temperature. Change 
in (b) diameter and (c) concentration of InP nanocrystals at different nucleation temperature throughout the growth 
process. (d) FWHM map at different nucleation and growth temperature across the growth time. The corresponding 
polydispersity map in terms of FWHM/bandgap (in energy units) fraction is shown in Figure S5 (supporting information).
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functional theory calculations suggest that the Lewis acid 
nature of zinc compensates for the high electronegativity of 
lone pairs on the aminophosphine nitrogen, thus stabilizing the 
InP precursor conversion reaction.50 Subsequent research 
needs to focus on developing a better mechanistic 
understanding of the role of zinc precursor in the mechanism of 
InP precursor conversion reaction. These observations are in 
alignment with the trends observed in the predictions by the 
ML-based model. Despite no prior knowledge of the synthesis 
chemistry, the ML-based model appropriately captures the 
trends observed in prior work regarding the effect of zinc 
precursors on InP nanocrystal size and polydispersity. 
Additionally, the trends suggested from the ENN predictions 
suggest that the FWHM of the synthesized InP QDs are more 
sensitive to the presence of Zinc salts at lower growth 
temperatures (160 ºC, Figure 4b). Nearly all prior studies on 
understanding the role of Zinc salts on the growth kinetics and 
size tunability utilized higher growth temperatures (> 180 ºC) 
and thus lack the critical interplay between nucleation-growth 
temperature and zinc chloride concentration and its impact on 
the growth kinetics. A possible explanation for improved FWHM 
at higher zinc salt concentration could be that the addition of 
zinc chloride (that acts as a Lewis acid) stabilizes the InP 
monomers formed during the precursor conversion kinetics. 
Moreover, the lower growth temperature condition allows for 
maintaining slow precursor conversion kinetics and thus allows 
continuous supply of the monomers for a prolonged duration, 
compared to the reactions in absence of zinc chloride. Future 
studies should focus on exploring the role of zinc salt addition 
on understanding the intrinsic precursor conversion kinetics, 
possibly using a phosphorous NMR study of the reaction 
kinetics at controlled nucleation and growth temperatures.
Kinetic insights into InP nucleation and growth: In addition to 
a strong dependence on zinc precursor concentration, the 
predictions by the ENN model also indicate a strong 
dependence of QD size and polydispersity on nucleation and 
growth temperatures. The role of nucleation temperature as a 
separate synthesis knob for InP synthesis, however, remains 
unexplored. Nearly all previously reported syntheses of InP QDs 
are performed at identical nucleation and growth 
temperatures. The ability of the dual-stage reactor 
configuration reported here to rapidly heat the reaction 
mixtures through miniature flow channels prior to entering the 
growth stage in a dual-stage flow configuration, however, can 
be leveraged to achieve independent control over nucleation 
and growth conditions (Figure 1). This reactor configuration is 
used by the ENN model to learn the parameter space through 
autonomous experimentation. The predictions from the ENN 
model (Figure 4b) suggest that moderately high nucleation 
temperature (200 ºC) in combination with a lower growth 
temperature (160 ºC) is expected to yield InP QDs with 
improved monodispersity (lower FWHM) in size. Figure 5a 
shows the absorption spectra of InP QDs, obtained from the 
experiments performed at optimal nucleation and growth 
temperature for different growth times. The excitonic peak 
features sharpen (size-focusing before 20 minutes of growth, 
followed by a slight broadening from 30 minutes to 40 minutes) 

with an increase in both growth time and QD size, thus 
suggesting a size-focused growth mechanism, depending on 
nucleation-growth temperature and reaction time. The range of 
nucleation-growth temperatures explored by the autonomous 
platform was limited by the boiling point and reactivity of the 
reagents. Therefore, for synthesis of InP QDs using 
aminophosphine precursors, the lower and upper limit of this 
range is maintained at 160 ºC and 240 ºC respectively. Further 
exploration, outside of this temperature range can also be 
performed experimentally. However, the predictions from the 
ENN model suggest that the FWHM increases drastically at 
higher growth temperatures (Figure 4).  
Experimental data on nanocrystal size, concentration, and 
polydispersity of InP nanocrystals synthesized at different 
combinations of nucleation and growth temperatures (Figure 
5b-d) provided further insights into the role of nucleation 
temperature as yet another synthesis knob. An increase in 
nucleation temperature (above the growth temperature, 160 
ºC) yields InP nanocrystals of smaller diameters (Figure 5b). This 
decrease in size of the nanocrystals can be rationalized by the 
higher rate of nucleation at elevated temperatures. An 
increased rate of nucleation leads to depletion of the monomer 
reservoir in the early stage of the growth reaction and as a 
result, the estimated concentration of nanocrystals in the 
reaction mixture is higher for reactions at elevated nucleation 
temperature (Figure 5c). However, at nucleation temperatures 
above 200 ºC, the concentration of nanocrystals steadily drops 
after initial growth. This drop in the nanocrystal concentration 
suggests that with depletion of the monomer reservoir, the 
growth process is largely limited by ripening or redissolution of 
nanocrystals. At the lower nucleation temperature of 160 ºC 
(same as the growth temperature), however, the rate of 
nucleation is significantly slower, which prevents the burst 
nucleation process needed to separate nucleation from growth. 
As a result, the nanocrystals continue to nucleate throughout 
the reaction and hence the concentration increases steadily 
with growth time. At moderately high nucleation temperatures 
(160 ºC < TNucleation < 220 ºC), the nanocrystal concentration 
saturates after an initial increase, suggesting that no additional 
nuclei are formed, leaving growth as the predominant process. 
These trends are also in agreement with the observed change 
in polydispersity in size. Figure 5d shows a map of polydispersity 
(quantified by FWHM) as a function of nucleation temperature, 
growth temperature, and growth time. The surface plot is 
obtained by interpolating between the experimental data 
collected at different nucleation temperatures, growth 
temperatures, and growth time. InP QDs with minimum 
polydispersity (FWHM < 55 nm) are synthesized at a moderately 
high nucleation temperature of 200 ºC and a low growth 
temperature of 160 ºC. Figure S5 shows the polydispersity 
surface plot corresponding to the energy units (FWHM (eV) / 
Bandgap (eV)). Under these optimal conditions, the FWHM 
drops (Figure 5d) and the concentration of nanocrystals in the 
reaction mixtures saturates (Figure 5c) upon an increase in 
growth time – a strong indication of spatial separation of 
nucleation and growth. The ability to independently tune the 
nucleation and growth conditions enables us to drive the 
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reaction to a size-focusing regime. Higher nucleation 
temperatures (> 200 ºC) yielded QDs exhibiting higher 
polydispersity in size (FWHM > 80 nm) for longer growth times. 
This increase in FWHM (Figure 5d), coupled with the steady 
drop in concentration (Figure 5c) of InP nanocrystals with 
growth time, further confirms that nanocrystal growth under 
these synthesis conditions is limited by redissolution and 
ripening. Owen et al. recently reported the dependence of 
reaction temperature on the nanocrystal growth kinetics for 
different derivatives of aminophosphine precursors using a hot 
injection-based batch synthesis method.49 Using a nucleation 
factor as the measure of nucleation time scale, lower nucleation 
temperature was reported to be responsible for slow and 
continuous nucleation, while higher reaction temperatures 
yielded in more of a “burst” type nucleation. These results are 
similar to the observations in our work for identical nucleation 
and growth temperatures in both the stages. Additionally, 
controlling higher nucleation temperature (200 ºC) for a short 
timescale, followed by prolonged growth at lower temperature 
(160 ºC) in a flow reactor configuration mimics the “burst” type 
nucleation model and thus enables spatial separation of 
nucleation and growth.
These results underscore the critical the role of nucleation 
temperature as a versatile synthesis knob to drive the pathway 
for InP growth in three different growth regimes: (i) continuous 
nucleation along with growth, (ii) spatial separation of 
nucleation from growth, and (iii) ripening or redissolution of 
nanocrystals. Spatial separation of nucleation and growth under 
optimal synthesis conditions is unique to the dual-stage flow 
reactor configuration used in this work and is not feasible with 
the similar degree of control when using a traditional hot 
injection-based batch synthesis approach. Although varying the 
amount of room-temperature reagents injected to the hot 
solvent using the hot-injection based synthesis approach can in 
principle separate the nucleation and growth processes, precise 
control over the temperature drop during the hot-injection 
process remains challenging in conventional batch based 
synthesis strategies due to limited control over the process 
conditions. Moreover, the ability of the autonomous 
experimentation platform to learn synthesis parameter space 
and to provide new and previously unexplored insights into the 
nucleation-growth kinetics underscores the merits of these AI-
based strategies for accelerated screening of the synthesis 
chemistry and as an efficient tool for understanding the 
underlying reaction kinetics. 

Conclusions
We have demonstrated a robust and efficient AI-assisted flow 
synthesis strategy that enables autonomous synthesis of 
colloidal nanocrystals without any prior knowledge of the 
synthesis parameter space. The autonomous platform performs 
(i) initial experiments to explore the parameter space, (ii) trains 
an ensemble neural network (ENN) model to learn the 
parameter space, (iii) rapidly maps parameter space with high 
prediction certainty to provide synthesis insights, and (iv) 
executes the next best experiment to synthesize nanocrystals of 

a specified target band gap and polydispersity. We 
demonstrated these capabilities by synthesizing InP 
nanocrystals exhibiting optimal polydispersity in size for 
specified target band gaps across the visible spectrum. 
Specifically, using a closed-loop iterative framework, it 
executed a minimal number of self-driven iterative experiments 
(28 experiments, 224 experimental data) through continuous 
operation (44 hours) to learn the entire synthesis parameter 
space and from that an accurate ENN model is developed for 
predicting the reaction outcomes for more than 100,000 
different combinations of synthesis conditions. To put this in 
perspective, if compared to a combinatorial search (assuming a 
design of experiments methods with at least three levels for 
each factor) over the entire synthesis parameter space of 
semiconductor nanocrystals, the AI-guided approach reported 
here improves the experimental efficiency by at least ten-folds. 
Moreover, application of the unique sequential ensemble 
neural networks to other class of nanocrystals such as 
perovskites can drastically minimize the number of experiments 
required to achieve the desired properties by at least four-folds, 
compared to the current state-of-the-art AI-driven 
experimentation methods that require more than 150 
experiments under autonomous operation mode30, 31. Other 
data science driven methods such as Universal Kriging-based 
statistical interpolation approach has also been previously 
implemented for synthesis of CdSe and CdSeTe QDs. Although, 
the model performed well in predicting the qualitative trends in 
peak positions and FWHM, it failed to accurately predict these 
features (R2 on testing data < 0.75), despite exploration of a 
small two-dimensional parameter space (comprising of 
residence time, and precursor ratio). Application of such 
methods to develop an accurate predictive model for more 
complex multi-dimensional parameter space such as InP 
(reported in this work) would thus not be feasible without 
requiring a large number of experimental data (> 1000) for 
training. In contrast, the implementation of ENN-based 
approach (reported in this work) allows the model to accurately 
learn a multi-dimensional parameter space (R2 > 0.90 on testing 
data, Figure 2), through minimal number of self-driven iterative 
experiments (28 experiments, 224 experimental data).
In addition to being more efficient, the second major advantage 
of this ENN approach over prior ML-based approaches is that 
the predictions from the ENN model, despite no prior 
knowledge, not only capture the trends observed in prior work 
(e.g., the effect of zinc concentration), but also provides new 
kinetic insights that have not been reported in the literature. 
For instance, the trends observed in the predicted reaction 
outcomes enabled us to identify regions of the parameter space 
that allow spatial separation of nucleation and growth to 
achieve size-focused growth of monodispersed InP nanocrystals 
with the desired band gap. These findings demonstrate the 
efficient learning capability of the ENN model for autonomous 
exploration of the chemical space and synthesis of the 
nanocrystals exhibiting optimal band gap and FWHM. The 
material properties of the InP nanocrystals synthesized 
autonomously by the AI-guided platform (starting with no prior 
knowledge of the chemical space) are similar to the best results 
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reported in the prior literature on aminophosphine-based InP 
nanocrystals (synthesized using the wealth of knowledge and 
expertise acquired over several years of exploration of a specific 
synthesis chemistry), thus validating the application of the ENN 
model reported here for autonomous synthesis of colloidal 
nanocrystals. The application of such ENN-based models for 
synthesis of colloidal nanocrystals can thus have major 
advantage over conventional experimental approach in terms 
of both (i) accelerated exploration of synthesis parameter space 
and (ii) providing key data-driven insights into the synthesis 
chemistry.
The ability to rapidly learn synthesis parameter space for a given 
set of starting materials through self-driven experiments and 
the ability to unravel new kinetic insights, highlights the key 
merits of the AI-guided autonomous synthesis approach for 
accelerating the screening and discovery of colloidal 
nanocrystals reported here. Moreover, the generalizability and 
robustness suggest that our ENN-based approach can be readily 
adapted and applied to broader classes of nanocrystals such as 
perovskites and IR-emitting QDs. Moreover, the autonomous 
experimentation framework presented in this work requires 
minimal expertise in the data-science and thus can be easily 
adapted by the researchers from the broader nanomaterials 
field in their own automated experiments as well. Further 
implementation and adoption of such AI-based models and of 
the autonomous framework presented in his work to different 
class of materials and synthesis planning strategies will facilitate 
the development of efficient end-to-end autonomous discovery 
platforms. This AI methodology and autonomous 
experimentation framework reduces the use of resources in 
terms of time and chemicals while providing maximum 
synthetic insights that accelerate material discovery. 

Data availability
The experimental and ML-predicted data on process parameters, 
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different equipment and ensemble neural network integration is not 
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