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Theoretical understanding of scanning tunnelling microscope (STM) measurements involve electronic
structure details of the STM tip and the sample being measured. Conventionally, the focus has been on the
accuracy of the electronic state simulations of the sample, whereas the STM tip electronic state is typically
approximated as a simple spherically symmetric s orbital. This widely used s orbital approximation has
failed in recent STM studies where the measured STM images of subsurface impurity wave functions in
silicon required a detailed description of the STM tip electronic state. In this work, we show that the failure
of the s orbital approximation is due to the indirect band-gap of the sample material silicon (Si), which
gives rise to complex valley interferences in the momentum space of impurity wave functions. Based on
direct comparison of STM images computed from multi-million-atom electronic structure calculations of
impurity wave functions in direct (GaAs) and indirect (Si) band-gap materials, our results establish that
whilst the selection of STM tip orbital only plays a minor qualitative role for the direct band gap GaAs
material, the STM measurements are dramatically modified by the momentum space features of the indirect
band gap Si material, thereby requiring a quantitative representation of the STM tip orbital configuration.
Our work provides new insights to understand future STM studies of semiconductor materials based on
their momentum space features, which will be important for the design and implementation of emerging
technologies in the areas of quantum computing, photonics, spintronics and valleytronics.

An important aspect of modern materials science and engi-
neering is the ability to place impurities into semiconductors
with nanometre precision [1–5]. These impurities drastically
modify the band structure properties of their host materi-
als, leading to novel electronic, optoelectronic and quantum
properties suitable for a diverse range of nanoscale devices
working in both classical [6–8] and quantum [9, 10] regimes
of operation. The design and engineering of impurity atoms
in semiconductor materials, however, demand high precision
fabrication and characterisation, often with atomic resolu-
tion, which is a challenging task. Scanning tunnelling mi-
croscope (STM) has been one of the most useful and widely
used tools, which offers unprecedented capabilities to ma-
nipulate and characterise nanomaterials down to single atom
resolution [2, 3]. Since its invention in 1981 at IBM and
the subsequent physics Nobel prize in 1986, STM has been
extensively used to design a wide range of materials includ-
ing semiconductors [1–3, 11–14], 2D materials [15], organic
molecules [16], and metal-organics [17]. Recently, STM has
been used to probe the electronic structure properties of indi-
vidual impurity atoms in semiconductors by producing high
resolution spatially-resolved images of bounded single [18, 19]
and coupled [20] electron wave functions. The theoretical
modelling of these STM images not only offers pathways to
gain an exquisite understanding of the fundamental impu-
rity physics [21], but also leads to the design of precision
metrology techniques [19], capability to characterise qubits
at large-scale [22], and mapping of the interactions between
the coupled electron states [20]. Therefore, an accurate theo-
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retical understanding of STM measurements is important to
fully exploit the capabilities of this highly versatile tool for
the advancement of nanomaterial science and engineering,
enabling new technologies with a wide range of applications
in the areas of photonics and quantum computing.

The theoretical understanding of STM measurements
involves the calculation of electronic structure of STM tip
(usually made up from a transition metal such as tungsten)
and sample (the system being investigated). Much of the
focus has been on accurate simulations of the sample elec-
tronic states, and relatively little attention has been given to
the role of STM tip electronic state. As the determination of
the exact electronic structure of an STM tip is a challenging
task, it is often approximated by a single s orbital based on
the formalism developed by Tersoff and Hamann [23]. In the
Tersoff-Hamann model, the tunnelling current from a sample
taken at a bias voltage V is given by the integral through
an energy window eV of the local density of states (LDOS)
of the impurity evaluated at the tip apex, which can be
simplified as sample charge density vacuum decayed at the
tip apex. This approximation has been successful for many
STM based investigations, providing a very good qualitative
understanding of the measured STM datasets, albeit in
contradiction with an earlier theoretical prediction, which
stated that the STM measurements should be dominated by
dz2−r2/3 type orbital in the case of a transition metal STM
tips [24].

A recent study of phosphorus impurities in silicon (Si:P)
exhibited a very strong dependence of STM measurements
on the tip electronic structure [19]. The P impurities were
placed at various lattice positions up to 5 nm below the sili-
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FIG. 1. Schematic representation of a nitrogen (N) impurity atom in the GaAs lattice is shown in (a), and a phosphorus (P) impurity
atom in the Si lattice is shown in (b). Illustrations of the respective GaAs and Si band structures are also shown along with the
L − Γ − X path through the reciprocal space. GaAs has a direct band gap, and Si has an indirect band gap with conduction band
minima along the six equivalent (100) directions, about 82% of the way to the Brillouin zone boundary. The impurity states for both
GaAs and Si sit just below the conduction band as indicated by red color markers. In momentum space, the wave function associated
with a N state in GaAs is concentrated around the Γ point, but due to the indirect Si band structure, the P donor state resides in a
superposition of the six-fold degenerate valleys along the six energy minimising directions.

con surface and in each case, STM images of single electron
wave functions bounded to impurity atoms showed drasti-
cally different symmetry and brightness of features computed
based on tip orbital selection. Remarkably, it was also shown
that the computed STM images were in excellent agreement
with the measured images only when the tip orbital con-
sisted of a dominant dz2−r2/3 orbital, consistent with the
earlier prediction for a transition metal tip [24]. This be-
haviour was in stark contrast to the observed STM images of
impurities in direct band-gap semiconductor materials such
as GaAs [13, 14] and InP [25], where the images of electrons
bounded to subsurface Bismuth (Bi), Nitrogen (N), and An-
timony (Sb) impurities at various depths were in good agree-
ment with theory based on only s orbital in the tip state.

In this work, we show that the failure of the Tersoff-
Hamann s orbital approximation for the case of Si:P is a
result of the indirect band structure of silicon, and its asso-
ciated six-fold valley degeneracy, which introduces complex
momentum space interferences leading to rich high frequency
components. This is established by directly comparing STM
images from Si:P indirect band gap system with the GaAs:N
direct band gap system, where the calculations of STM
images are based on multi-million-atom tight-binding sim-
ulations of impurity wave functions [26, 27], coupled with
the Bardeen’s tunnelling theory [28] and Chen’s derivative
rule [24]. The underlying physics is further investigated
by means of a simple Kohn-Luttinger model for impurity
wave function [29]. The KL model produces a less accurate
approximation, only exhibiting qualitative features of the
experimentally observed STM images [19], but has a simple
analytic form which is more amenable to theoretical analysis
than the purely numerical output of the detailed tight-
binding simulation. In particular, we can artificially tune
the values of the valley wave vectors, interpolating between
the case of an indirect and a direct band gap material.

For the purpose of this study, we have investigated two ma-
terial systems: Nitrogen (N) impurities in a direct band-gap
material GaAs and Phosphorus (P) impurities in an indirect

band-gap material silicon (Si). The set-up is schematically
shown in Figure 1. Si and GaAs share the same bulk crystal
lattice structure, with the primary structural difference be-
tween the two cases being the 2×1 surface reconstruction of
Si at the vacuum interface, which is typically the case in ex-
perimentally fabricated samples [2]. The relevant details of
their respective band structures are also depicted in Figure
1. The GaAs material being a direct band-gap material has
minimum (maximum) of the conduction (valence) band at
the Γ point. The N impurity related electronic energy level
is directly under the conduction band minimum as shown by
a red marker. Contrarily, Si material being an indirect band-
gap material has valence band maximum at the Γ point, but
the conduction band minimum is around 82% of the way
to the Brillouin zone boundary along the X direction. The
phosphorus related impurity energy level is below the Si con-
duction band minimum inside the band-gap region [26]. In
the Fourier space, the N impurity state in GaAs is therefore
localised on the Γ point (Figure 1 (a)), while the P donor
impurity state in Si sits in a superposition of the six valleys,
corresponding to the six conduction band minima along the
X direction (Figure 1 (b)). For a P atom placed in the bulk
Si, the ground impurity state is a spin degenerate singlet with
equal contributions from all six valleys [30]. However, when
the donor is located closer to the silicon-vacuum interface,
the valleys no longer contribute equally to the ground state;
instead, there is re-population from the ±x and ±y valleys
into the ±z valleys, which will be discussed later in this work.

To investigate STM images of impurity wave functions in
GaAs and Si materials, we begin by simulating the electronic
structure of GaAs:N and Si:P systems where a single impu-
rity atom (P or N) is placed in the host material (Si or GaAs)
at selective sites below the vacuum interface. For Si:P sys-
tem, the z=0 surface is 2×1 reconstructed [19, 31]. The
impact of impurity atom on host crystal is highly localised
and has been shown in the literature to impact only nearest-
neighbour bond-lengths. To accurately capture this effect in
our study, we have modified nearest-neighbour bond-lengths
of Si-P in accordance with the published DFT study [26]. For
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FIG. 2. The computed STM images of impurity wave functions are shown at various depths as calculated by multi-million atom
nearest-neighbour tight binding simulations, coupled with the Bardeen’s tunnelling formalism and Chen’s derivative rule. The s and
dz2−r2/3 (abbreviated just as d) orbital images are calculated by using Chen’s derivative rule. All images are plotted by using the same
color scale. a0 is the lattice constant of the host semiconductor material.

the GaAs:N system, the impact of N impurity atom on the
GaAs crystal is directly computed by atomistic relaxation
of the system based on valence force field model [27]. The
electronic structure calculations are based on multi-million-
atom tight-binding simulations, which are based on place-
ment of impurity atoms in large simulation domains of size
40 nm3, consisting of about three million atoms. The simula-
tion domain has closed boundary conditions [32]. Except for
the semiconductor/vacuum interface directly below the STM
tip, the placement of impurity atoms is at more than 20 nm
distance from the other interfaces, leading to negligible inter-
face impact on the impurity wave functions. The impurity
wave functions are computed at the Γ point in the Brillouin
zone. Further details of the established tight-binding models
for GaAs and Si materials are reported in our earlier studies
[26, 27, 30, 33]. The tight-binding models are benchmarked
against the available experimental datasets to accurately re-
produce the energy levels of P and N impurities in their re-
spective Si and GaAs host materials under bulk conditions.
Notably, the tight-binding model has been shown to repro-
duce measured STM images of impurity wave functions with
very high accuracy [19].

The computation of the STM images is performed by cou-
pling the atomistic tight-binding wave function calculation

with the Bardeen’s tunnelling formalism [28]. The impurity
wave functions are decayed in the vacuum region based on
the Slater orbital real-space representation [34]. The effect
of the STM tip state is studied by Chen’s derivative rule [24].
In this study, we mainly focus on two STM tip orbitals, the
widely used s orbital approximation and the dz2−r2/3 orbital
which was recently found important to match the experimen-
tal measurements of Si:P system. Moreover, the dz2−r2/3 or-
bital is also relevant for transition metal STM tips which are
most commonly used for nanomaterial studies. The s and
dz2−r2/3 orbital type images reflect different applications of
the Chen’s rule; in the s case, the images are proportional
to the square of the impurity state wave function evaluated
at the tip apex i.e. IT(r0) = |ΨD|2r0 , whereas in the dz2−r2/3
case, the images are proportional to a linear combination of
second derivatives of the impurity wave function, again eval-
uated at the tip apex:

IT(r0) ∝

∣∣∣∣23 ∂2ΨD(r)

∂z2
− 1

3

∂2ΨD(r)

∂y2
− 1

3

∂2ΨD(r)

∂x2

∣∣∣∣2
r0

where ΨD is the donor wave function and r0 is the position
of the STM tip.
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It should be noted that the applied bias on STM tip was
chosen to induce a small electric field, of the order of -0.31.9
MV/m [18]. The electric fields of such magnitudes are ex-
pected to negligibly perturb the real-space distribution and
valley-population of the ground state of subsurface donors.
Furthermore, when the STM tip bias was adjusted to intro-
duce much larger electric field of the magnitude 10 MV/m,
the valley population of the donor state was changed by less
than 1% [35]. Therefore in this work, we ignore the effect of
electric field induced by the STM tip bias.

Figure 2 plots the computed STM images for GaAs:N and
Si:P systems for a few impurity atom locations. In the case of
GaAs:N (Figure 2 (a)), our results show considerable similar-
ities between the s and dz2−r2/3 orbital images. The images
exhibit qualitatively similar symmetry and brightness of fea-
tures, with s orbital images being relatively blurred version of
the dz2−r2/3 case. However, in the presence of blurring noise
typically present in experimental measurements [22], this dif-
ference is expected to be slim. Notably, when we extract fea-
ture boundaries from the dz2−r2/3 images and overlay them
on the corresponding s orbital images, the symmetry and size
of the features is found to be in very good agreement (see sup-
plementary Figure S1). Therefore, we conclude that for the
GaAs:N system, the precise tip orbital composition does not
play an important role, and the s orbital Tersoff-Hamann ap-
proximation provides a qualitatively accurate understanding
of the measurements. This has indeed been true in several re-
cent studies where the computed s orbital images were quite
accurate to understand direct band-gap STM experiments
[13, 14, 25].

Contrarily, the STM images corresponding to the Si:P
system (Figure 2(b)) show highly distinct features based on
the tip orbital selection. The images computed at several
depths show that neither symmetry nor the sizes of features
match for s and dz2−r2/3 orbital configurations. Moreover,
the images display complicated structures which are a
strong function of the exact lattice position of P atom in Si
[19]. We attribute this stark difference between the s and
dz2−r2/3 orbital images to the presence of momentum space
valleys which lead to high frequency interference patterns.
Indeed the supplementary Figure S2 plots the Fourier space
images for both GaAs:N and Si:P cases, indicating that the
Fourier spectra for an Si:P image shows highly rich spectra.
Here, we note that the impurity wave functions reside on
3-D momentum space inside the sample crystal, however the
calculation of STM image on a 2-D surface at the location
of STM tip [19] leads to a 3-D to 2-D transformation of the
momentum space features. This mapping between the 3-D
wave function and 2-D STM image is illustrated in (a) and
(b) of the supplementary Figure S2 for GaAs:N and Si:P
systems, respectively.

In order to further understand the role of valley con-
figurations, we compute valley population of Si:P wave
functions as a function of P atom depth from the vacuum
interface, which is shown in Figure 3. In the bulk case (large
depths), a P donor in Si sits in an equal superposition of
all six valleys (33% population), and therefore the effect
of valley interference is expected to be strong. Indeed,
the s and dz2−r2/3 orbital STM images of deeper P donor
depths exhibit stronger mismatch in Figure 2(b). The
supplementary Figure S3 shows Si:P images for impurity

FIG. 3. The valley population of phosphorus donor states in Si
is plotted as a function of the depth from the (001) surface. The
donor atoms closer to the surface experience significant interface
and strain effects, leading to valley re-population from the x and
y valleys to the z valleys, which depends on both the depth of
the donor and its lateral position with respect to the Si surface
dimer rows. As the donor depth increases, the population of all
valleys converges towards the bulk value of 1/3, plotted as a dot-
ted horizontal line. The vertical dotted line at 1a0 donor depth
indicates that the significant valley repopulation below this depth
will transform Si:P donor wave functions to nearly single z valley
states, leading to STM images similar to the single valley GaAs:N
case.

depths approaching bulk limit, indicating that the difference
between s and dz2−r2/3 orbital images is more pronounced
when depth is increased. However, when the P donor is
closer to the vacuum interface, the effect of interface and
reconstruction related strain leads to strong population of z
valleys at the expense of x and y valleys. For donor depths
below a0, the z valley population is more than 80%. This
leads to a weak difference between s and dz2−r2/3 orbital
Si:P images as shown in supplementary Figure S4. This
implies that the lattice incommensurate valley oscillations in
the x and y directions, which contribute to the rich structure
of the STM images of deep donors, contribute significantly
less to the wave functions of shallow donors, supporting our
understanding that indeed the presence of valley related
interferences enhance the role of tip electronic state in the
calculation of STM images. This is also in agreement with
a recent report on AlAs:Si system [36], where the valley im-
pact was found to be weak for impurities closer to the surface.

Another important feature of valleys is that STM images
remain distinct for deep donor depths. Even at 5 nm (10 a0)
depth, the s and dz2−r2/3 orbital images retain symmetry
and can be distinctly identified for each position of impurity
atom. This was exploited in a recent study to develop
an exact atom spatial metrology technique to pinpoint
phosphorus donor atoms in silicon [19]. However, in the
case of the GaAs:N system, the wave functions STM images
lack any distinct character of features and therefore will not
allow spatial metrology at such deep depths. To illustrate
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this effect, the supplementary material Figure S5 show the
computed STM images for GaAs:N and Si:P systems when
N and P atoms are placed at relatively deeper depths.

To gain further insight into the influence of the val-
ley degeneracy on the STM image features, we consider a
simple analytical model of the Si:P system by Kohn and
Luttinger[29], in which the donor ground state wave func-
tion takes the form:

ΨD(r) =
1√
6

∑
µ

eikµ·rFµ(r)uµ(r)

where the Fµ are envelope functions, the uµ are the periodic
Bloch functions and the kµ are the valley wave vectors,
kµ ∈ ±2π(0.82)/a0{kx,ky,kz}. Following the Kohn and
Luttinger formalism, we take the ground state envelope
functions to be elongated Gaussian, with width and length
given by a pair a, b of variationally determined effective
Bohr radii, distinct due to the effective mass anisotropy of
silicon. The periodic functions uµ can be Fourier expanded
as uµ(r) =

∑
GAµ,Ge

ir·G, where the sum is over the
reciprocal lattice vectors G and the Aµ,G can be determined
by a DFT method [37]. The majority of this decomposition
of the uµ is into a small number of terms, meaning that we
can get an accurate approximation to the KL wave function
by keeping only the first few Aµ,G, thereby obtaining a
simple, analytic ansatz of the donor wave function.

The envelope functions Fµ of the KL donor wave function
are taken to be of the form:

F±z(r) =
1√
πa2b

exp

(
−
√
x2 + y2

a2
+
z2

b2

)

and similarly for the ±x and ±y valleys. The variational
parameters a and b are taken from [38] to be 0.9 nm and
0.52 nm, respectively. The coefficients in the Fourier ex-
pansion Aµ,G of the Bloch functions uµ are taken from [37],
where they were calculated by first-principles density func-
tional theory. Dropping the terms with |Aµ,G|2 ≤ 2 × 10−3

gives a closed form expression for the donor wave function:

ΨD(r) = exp

(
−
√
y2 + z2

a2
+
x2

b2

)[
2A cos

(
2πvx

a0

)
− 8B

(
cos

(
2π(1− v)x

a0

)
cos

(
2πy

a0

)
cos

(
2πz

a0

)
+ sin

(
2π(1− v)x

a0

)
sin

(
2πy

a0

)
sin

(
2πz

a0

))
− 4C cos

(
2π(2− v)x

a0

)(
cos

(
4πy

a0

)
+ cos

(
4πz

a0

))
+ 8D

(
cos

(
2π(1 + v)x

a0

)
cos

(
2πy

a0

)
cos

(
2πz

a0

)
+ sin

(
2π(1 + v)x

a0

)
sin

(
2πy

a0

)
sin

(
2πz

a0

))]
+ cyclic permutations of x, y, z.

where we have introduced the “valley parameter” v whose
value varies from 0 to 1, where 0(1) corresponds to Γ(X)
points on band structure plot, and v = 0.82 indicates
the position of the lowest energy point in silicon con-
duction band. The valley parameter can be tuned to
artificially change valley contributions in donor state ΨD,
and can be set to zero to simulate the effect of removing
the valleys. The values of the coefficients are given by
A = 0.3428, B = 0.3131, C = 0.0986 and D = 0.0695.

With this analytic form of the wave function, we can
simulate the STM images of a P donor in Si not only in
the Tersoff-Hamann approximation [23], where the images
are simulated by taking the square of the wave function
at the apex of a fictitious STM tip as it sweeps across the
surface, given by |ΨD(x, y, z0)|2 where z0 is the depth of
the P donor under consideration, but also for an arbitrary
decomposition of the tip orbital into spherical harmonics, by
applying the appropriate differential operator as specified
by Chen’s derivative rule [24]. Although the KL model
does not include a central-cell correction[26] or the effects
of the Si 2×1 surface reconstruction [31], it manages to
reproduce many of the qualitative features of the exper-
imentally observed images. In particular it captures the
counter intuitive cyclic sequence of “butterfly” and “cater-
pillar” shaped images, with symmetry axes alternating
between the [110] and [110] axes as reported in [19, 38]
(see supplementary information Figure S7). Unlike in [38],
where this sequence was found directly from the charge
density of the donor wave function (i.e., s type images)
evaluated at interstitial planes, here we find the sequence by
calculating dz2−r2/3 type images at atomic planes (Figure 4).

Contrary to complex tight-binding simulations (shown
in Figure 2), in this simple analytical form, it is easy to
isolate and (artificially) remove the effect of the valleys
by setting v = 0. The simulated images are plotted in
Figure 4 both with and without the valleys, and for s and
dz2−r2/3 type orbitals. In the no valley case, there is little
qualitative change in the images as the depth changes, and
the dz2−r2/3 images are essentially more focused versions
of the s images, and become qualitatively similar after the
application of blurring. The direct relationship between the
features of the s and dz2−r2/3 images be seen clearly by
overlaying a contour plot of the dz2−r2/3 type images on
the s type images (see supplementary information Figure S6).

In the valley case, however, both s and dz2−r2/3 images
change dramatically as a function of depth, and at a given
depth substantially differ in structure. This behaviour agrees
with that found via the tight binding simulations in Figure 2,
albeit only qualitatively due to the simplified analytical the-
ory. We can trace the complicated variation of the dz2−r2/3
images as a function of depth to the valley terms; while the
Fµ are slowly varying functions on the length scales of inter-
est, the incommensurability of the valley wave vectors with
the lattice causes the terms in the sum

|ΨD(r)|2 =
∑

µ,ν,G,G′

Aµ,GA
∗
ν,G′Fµ(r)F ∗

ν (r)eir·(kµ+G−kν−G′)

to have completely different phase factors as one moves from
one atomic plane to the next, causing different terms to
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FIG. 4. The calculated STM images from the charge densities of wave functions from both the valley and no valley KL wave functions
are plotted. In the case of valleys, the d type images are drastically different from the s type, while without valleys the features are
qualitatively similar in the presence of blurring and saturation. The d type valley images also capture the experimentally observed
alternating of symmetry lines between [110] and [110], with the images switching from one central feature to two off centre features
every other atomic plane.

interfere constructively or destructively from plane to plane.
As in [38] this can also be seen by systematically dropping
terms from the KL expression.

In conclusion, understanding of the STM images of
electron wave functions bounded to points defects in semi-
conductors is an important component of materials science
and engineering at the atomic scale. In this work, we have
shown that the observed sensitivity of STM images of P
dopants in Si to the quantum mechanical state of the STM
tip itself can be attributed to the six conduction band
valleys of the indirect Si band structure, by contrasting
the tip dependence of STM images simulated in direct and
indirect band gap materials. This was further investigated
by means of the Kohn-Luttinger model of the donor physics,
within which we can artificially remove the effect of the
valleys and examine STM images simulated in their absence.
The presented results in the context of silicon material
will be relevant for the STM measurements on a range of
other indirect materials such as Ge, SiGe, and AlSb. Our
work provides important new insights for the theoretical
understanding of future STM studies where the momentum
space features of the sample wave function dictate the
measured features.
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