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A quantitative model for a nanoscale switch accurately
predicts thermal actuation behavior †

Kyle Crocker,a Joshua Johnson,bc Wolfgang Pfeifer,ad Carlos Castro,bd and Ralf
Bundschuh∗abe f g

Manipulation of temperature can be used to actuate DNA origami nano-hinges containing gold
nanoparticles. We develop a physical model of this system that uses partition function analysis of the
interaction between the nano-hinge and nanoparticle to predict the probability that the nano-hinge is
open at a given temperature. The model agrees well with experimental data and predicts experimental
conditions that allow the actuation temperature of the nano-hinge to be tuned over a range of
temperatures from 30 ◦C to 45 ◦C. Additionally, the model identifies microscopic interactions that
are important to the macroscopic behavior of the system, revealing surprising features of the system.
This combination of physical insight and predictive potential is likely to inform future designs that
integrate nanoparticles into dynamic DNA origami structures or use strand binding interactions to
control dynamic DNA origami behavior. Furthermore, our modeling approach could be expanded to
consider the incorporation, stability, and actuation of other types of functional elements or actuation
mechanisms integrated into nucleic acid devices.

1 Introduction
In 2006, Paul Rothemund published seminal work on the design
of nanostructures out of DNA, developing a technique known as
DNA origami1. Although early structures were static, expand-
ing this technique to produce functional, dynamic structures has
been of particular interest, since the use of DNA as a construc-
tion material renders the resulting structures naturally well-suited
for use as machines in biological or synthetic systems. To this
end, significant research has focused on the development of dy-
namic nanoscale devices2,3. Indeed, dynamic DNA origami de-
vices are being developed for use as drug delivery systems4–6,
as well as molecular biological probes7,8, computing elements,

∗ Corresponding author.
a Department of Physics, The Ohio State University, Columbus, OH 43210, USA. E-mail:
bundschuh@mps.ohio-state.edu
b Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus,
OH 43210, USA.
c Department of Chemistry, Imperial College London, Molecular Sciences Research Hub,
80 Wood Lane, London W12 0BZ, UK.
d Department of Mechanical and Aerospace Engineering, The Ohio State University,
Columbus, OH 43210, USA.
e Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH
43210, USA.
f Division of Hematology, Department of Internal Medicine, The Ohio State University,
Columbus, OH 43210, USA.
g Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
† Electronic Supplementary Information (ESI) available. See DOI:
00.0000/00000000.

and nanorobots2,9–11. Interest in these applications has driven
the development of a variety of actuation methods. Actuation
can be achieved in a number of ways, such as introduction of
short oligonucleotides with specifically designed sequences12–14,
or changing environmental factors such as salt conditions9,15,16,
pH17–20, or temperature9,21,22.

In order to be suitable for use in such applications, however, it
is necessary to have precise control over the stimulus response,
which remains challenging. To this end, we quantitatively char-
acterize the thermal actuation of a DNA origami hinge containing
a gold nanoparticle (AuNP), which was previously described by
Johnson et al.23. This device consists of two stiff arms connected
by a flexible vertex, such that the motion around the vertex is
restricted primarily to a single angular dimension. A DNA-coated
AuNP is attached to the top arm, and complementary DNA strands
are affixed to the bottom arm that anneal to the AuNP to hold the
hinge closed. When the temperature is increased, the hybridiza-
tion between the AuNP and bottom arm melts to release the hinge
into the open state. The AuNP remains stably attached to the top
arm, allowing for repeatable temperature-controlled opening and
closing. This type of system is of interest since AuNP-DNA origami
composites have many exciting applications, such as in plasmon-
ics24 and nanoelectronics25. In particular, the potential for AuNP
facilitated reconfiguration that is both fast and tunable could be
important in these applications. Another area of interest for these
composite devices is that they have the potential to allow for pre-
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cisely controlled local heating and therefore actuation: although
the experiments described here are performed with bulk temper-
ature change, the AuNP itself could in principle be locally heated
with a laser26. Thus the study of systems into which such AuNPs
are incorporated is a potentially fruitful area of research.

In order to design increasingly complex and useful DNA de-
vices, it is necessary to construct predictive models of their func-
tion. This has proven to be challenging, however, since environ-
mental factors and thermal fluctuations can play an important
role, often rendering classical solid mechanics approaches com-
mon to macroscopic engineering unsuitable2. Nevertheless, a
number of computational techniques have shown predictive ef-
ficacy. All-atom molecular dynamics (MD) simulations, which
track interactions of each atom in a system over time, provide
detailed and accurate information about system dynamics27–29.
The computational cost is quite high, however, rendering such
an approach practical only for small subsections of DNA devices
and short time scales2. In order to study larger systems, one
must use a coarse-grained approach. One way to do this is to
approximate the atoms that make up one or more nucleotides
as a single particle and track the positions and interactions of
many such particles. This approach is taken most notably in
the commonly used oxDNA simulations30–33, as well as the re-
cently developed mrdna model34. These approaches significantly
extend simulation time-scales, but they are still typically limited
to microsecond or at most millisecond timescales, while actuated
conformational changes often occur on the second timescale or
longer. Another coarse-grained approach is to use finite element
(FE) modeling to predict DNA structures. A widely used example
of this is CANDO35, although this is typically used for shape pre-
diction since it lacks molecular details that govern dynamics. Pan
et al.36, and more recently Lee et al.37, improved on FE models
with multi-scale approaches using molecular dynamics to inform
local properties of structural motifs like nicks and cross-overs;
these approaches provide molecular level structural insights with
improved computational efficiency, but they still do not capture
larger-scale conformal dynamics of reconfigurable DNA origami
devices.

Long timescales or large structures may render even such
coarse-grained approaches computationally unfeasible, particu-
larly if one wants to rapidly iterate through many structural vari-
ations to guide design. It is therefore desirable to develop even
more computationally efficient techniques. Here, we focus on the
application of one such technique, statistical mechanics. While
similar approaches have been used to model DNA strand displace-
ment38,39, which is widely used for actuation, application to ac-
tuation of devices themselves remain rare despite the increasing
need for computational efficiency to guide design of functional
DNA origami devices. In one of the few examples of application
to an actual device that we are aware of, Marras et al. use a sta-
tistical mechanics approach to model a system in which changes
in salt concentration are used to actuate a hinge15. Here, we de-
velop a thermodynamic model that accurately describes the ther-
mal actuation of the nano-hinge device containing an AuNP. To
our knowledge, this is the first statistical mechanics model of a
composite DNA origami system, which is a critical step, since many

applications require the incorporation of NPs or other functional
elements. Furthermore, we demonstrate that this model is able
to predict actuation temperatures as a function of device design,
enabling principled design of devices with desired transition tem-
peratures. Additionally, our model gives insight into the system,
demonstrating that configurational entropy and suboptimal ener-
getic states meaningfully impact system behavior.

2 Experimental and computational methods

2.1 Experimental methods

In this subsection we describe briefly the experiments by Johnson
et al. that provide the basis for our model23. The AuNP-hinge sys-
tem is shown schematically in Fig. 1(A), with arrows indicating
that the hinge is opened as temperature is increased and closed
when temperature is decreased. In Fig. 1(B), averaged data for
different overhang strand lengths are shown for hinges with two
overhang strands (left), which we call “bivalent" or three over-
hang strands (right), which we call "trivalent". The overhang
lengths (6-8 bases) and sequences (all adenine bases) are identi-
cal in the bivalent and trivalent cases.

2.1.1 Design and fabrication of DNA origami hinges

The studied DNA origami hinges and AuNP-hinge constructs were
prepared as previously described23. Briefly, 20 nM scaffold DNA
(p8064) and 200 nM staple strands were pooled in TE-buffer (5
mM Tris, 1 mM EDTA, pH 8.0, 5 mM NaCl) supplemented with 18
mM MgCl2 and subjected to a thermal annealing consisting of 15
min at 65 ◦C following by 4 hours at 53 ◦C and cooling to 4 ◦C.
Excess staple strands were removed by centrifugal purification in
the presence of PEG and resuspended in TE-buffer supplemented
with 12.5 mM MgCl2 40. Conjugation of T23 ssDNA coated AuNP,
prepared as described by Johnson et al.23, to the purified DNA
hinges was performed by addition of 5-fold excess AuNPs to the
resuspended DNA hinges and incubation at 45 ◦C for 15 minutes.

2.1.2 Thermal actuation

Thermal profiles of the different constructs were collected on
a Cary Eclipse Fluorometer with thermostated multicell cuvette
holder. If not stated otherwise, temperature ramps were set
to 2 ◦C/min and thermal profiles were collected by cycling be-
tween the respective minimum and maximum temperatures at
least twice. A reference hinge without AuNP was used to sub-
stract temperature dependent effects of the fluorophore.

2.1.3 EM Imaging

Negative stain electron microscopy was used to confirm folding
and correct incorporation of AuNPs into the DNA hinges, follow-
ing previously described protocols23. Purified DNA hinges and
AuNP-hinge constructs were adsorbed onto TEM grids (Electron
Microscopy Sciences, Hatfield, PA), stained using freshly prepared
Uranyl-formate and imaged on a FEI Tecnai G2 Spirit TEM, oper-
ated at 80 kV.
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Fig. 1 Experimental system and thermal actuation data underlying our
model. (A) shows the experimental system: a gold nanoparticle (AuNP)
is affixed to the top arm of a DNA origami nano-hinge via long, stable
dsDNA strands formed between single stranded DNA (ssDNA) overhangs
on the arm and complementary strands of ssDNA coating the AuNP.
Shorter overhangs on the bottom arm anneal at low temperatures and
melt at high temperatures. The inset shows a TEM image of a closed
hinge with AuNP at room temperature. Scale bar is 50 nm. When the
bottom overhang is annealed, the hinge is forced into a closed state where
fluorescence is quenched. The normalized fluorescence in (B) therefore
provides a measure of the bulk fraction of hinges that are open. The
insets in (B) illustrate the number of overhangs on the bottom arm of the
hinge: either two (“bivalent”) or three (“trivalent”). The legend indicates
the sequence of the bottom arm ssDNA, for instance A6 corresponds to
a sequence consisting of 6 adenine bases. All hinge overhangs are made
of adenine bases, and all AuNP connections are made of thymine bases.
The lengths of bottom arm overhangs vary between 6 and 8 in both the
bivalent and trivalent cases.

2.2 Data processing
2.2.1 Normalization of fluorescence

Following data collection and the subtraction of fluorescence tem-
perature dependence, the fluorescence is normalized such that
the average maximum value (corresponding to all open hinges)
is equal to one and the average minimum value (corresponding
to all closed hinges) is equal to zero23.

2.2.2 Averaging of Melting and Annealing Replicates

The normalized data is averaged over all experimental replicates
for both melting and annealing curves, and this average and the
corresponding standard deviation are shown. Data from slightly
different temperatures had to be combined due to fluctuations
during thermal ramps which were set to collect one data point
every 0.1 ◦C. Specifically, we use the temperature values of the
first melting replicate and then identify the closest observed tem-
perature values in other replicates to take the average and stan-
dard deviation of the corresponding fluorescence values. That
average and standard deviation are assigned to the temperature
value of the first melting replicate. In order to estimate the error
due to the temperatures not lining up exactly among the repli-
cates, we identified the maximum discrepancy in temperature
values among replicates where fluorescence values are averaged,
and compared the expected change in fluorescence according to

our model to the experimental noise. We found that this worst
case estimate of systematic error induced by averaging data from
slightly different temperature values is on the order of the noise
in the experimental measurements. Therefore, we concluded that
any interpolation over temperature values from different repli-
cates is unnecessary, as it would effectively constitute interpola-
tion over noise.

2.3 Model calculation

In this section, we describe how the experimental system is mod-
eled, both at a conceptual and mathematical level.

2.3.1 Conceptual framework

To relate the experimental readout to a calculable property of the
system, we note that the fluorescence of nano-hinges, when nor-
malized between 0 and 1, is proportional to the fraction of open
nano-hinges. Furthermore, for a system in thermodynamic equi-
librium, the fraction of open hinges gives the probability that an
individual hinge is open. We therefore assume the system is in
thermodynamic equilibrium and create a thermodynamic model
of an individual hinge.

2.3.2 Applicability of a thermodynamic model

Before we begin to build the model, we verify that a thermo-
dynamic model is appropriate for this system. In particular, a
thermodynamic approach is only valid if there are a large num-
ber of particles in the system. At the nano-hinge level, we can
estimate the number of water molecules as follows. The approxi-
mate volume of the nano-hinge is given by Vh ≈ 50 nm×50 nm×10
nm = 25,000 nm3. For water with density of about 1000 kg/m3

and molar mass about 20 g/mol, this volume contains roughly 1
million water molecules. Furthermore, in the bulk fluorescence
measurements, we measure nano-hinges at 20 nM in 50 µL of so-
lution. The bulk measurements therefore take into account more
than 100 billion nano-hinges. Since these numbers are quite large
(i.e. much greater than 1), we conclude that a thermodynamic
model is appropriate. Additionally, since the water bath ensures
a constant temperature, the Boltzmann distribution is the appro-
priate distribution to describe the system.

2.3.3 Model states and parameters

As discussed in more detail in section 3.1, a thermodynamic
model requires enumeration of allowed states and corresponding
free energies. The experimentally observable state in this system
is whether the hinge is open or closed, so we consider the mi-
crostates of the system that correspond to these macrostates. We
treat an open hinge as consisting of only a single state, captur-
ing the effect of the many physical microstates in the closing free
energy parameters, the hinge closing enthalpy change ∆Hcl and
the hinge closing entropy change ∆Scl . For a closed hinge, we
enumerate the possible binding states more explicitly as shown in
Fig. 2. First, any number of the bottom overhangs on the nano-
hinge can be involved in base pairing with the ssDNA strands on
the AuNP (Fig. 2(A)). For any given base-pairing interaction, any
consecutive stretch of adenines on the bottom overhang can bind
to any consecutive stretch of equal length of thymines on the ss-
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DNA strands on the AuNP (Fig. 2(B)). Each set of consecutive
base pairs is associated with a base pairing enthalphy ∆Hbp and
entropy ∆Sbp. In addition, the initial formation of each connec-
tion is associated with a binding entropy ∆Sb.

Fig. 2 Schematic illustration of closed nano-hinge states. The AuNP
is indicated by the gold sphere, the bottom hinge overhangs by blue
lines, top arm overhangs by red lines, and the AuNP strands by green
lines. The gray helices represent the bottom arm of the nano-hinge.
(A) gives the states on the strand binding level, while (B) gives the
states on the base pairing level. In (A) we note that there is one way to
bind three connections (“tri-connected”, first panel), three ways to bind
two connections (“bi-connected”, second panel), three ways to bind one
connection (“mono-connected”, third panel), and one way to bind zero
connections (“unconnected”, fourth panel). This is described mathemat-
ically in Eq. (4). In (B), there are states with no fraying (first panel),
states with fraying from the poly-T end (second panel), states with fray-
ing from the poly-A end (third panel), and states with fraying from both
ends (fourth panel). This is described mathematically in Eq. (5).

2.3.4 Simplifying assumptions

We do not consider any base-pairing states that involve bulges
or internal loops, i.e., unpaired bases internal to a base-paired
region, which have a prohibitively high free energy cost. Var-
ious experimental results indicate that the free energy cost of
such states is at least on the order of 4 kJ/mol. Tanaka et al.41

find that free energies for single A and T bulges at 37 ◦C are
6.95± 4.39 kJ/mol and 4.0± 3.9 kJ/mol, respectively. Longer
bulges are expected to be similarly costly, as reported by Turner
and Matthews in the context of RNA42. The cost of interior
loops can be approximated using mismatch parameters for an
ACA/TTT sequence, which Allawi et al. find to be 5.82± 0.46
kJ/mol43. Similarly, Peyret et al. find AA and TT mismatches
to have energy costs on the order of 4 kJ/mol44. At a cost of at
least 4 kJ/mol in addition to the loss of two base stacking inter-
actions, the Boltzmann factor for a state decreases by a factor of
exp
[
(∆Gbulge +2∆Gbp)/kT

]
∼ 170 upon the introduction of an in-

terior loop. The introduction of a bulge, however, only results in
a reduction of exp

[
(∆Gbulge +∆Gbp)/kT

]
∼ 30, since a bulge only

removes a single stacking interaction. Consequently, we tested
the validity of ignoring bulges by taking bulges into account in
an approximate way as follows: We treated bulges of differing
lengths as having the same energetic cost, that of a single base

bulge reported by Tanaka et al.41, and enumerated all states con-
taining a single bulge of arbitrary size at an arbitrary position
within a stack. We find that the impact on the model is mini-
mal: the goodness of fit values are within a few percent, and four
of the five fit parameters are within error. The ∆Sb parameter
decreases by around 30%, however, to account for the increased
entropy provided by the bulged states. Since a quantitatively ac-
curate description of bulges that accounts for differing energetic
costs associated with differing bulge lengths increases the compu-
tational cost of the model and would have an even smaller effect
than our approximation above (since the true energetic cost of
a bulge increases with bulge length), we choose to ignore such
states.

In addition to neglecting bulges and internal loops, we also
do not consider interactions between non-complementary DNA
strands or between DNA strands and the origami structure.
Experimental hysteresis is averaged out, as discussed in Sec-
tion 2.2.2. The bulk measurement also averages over differences
in individual hinges. In particular, there may be variations in size
and DNA surface density of the AuNPs, and the literature demon-
strates that DNA origamis do not incorporate strands with perfect
efficiency, resulting in variations depending on which strands fail
to incorporate45,46. Finally, we assume that the enthalpy and en-
tropy of both the nano-hinge and base pairing interactions remain
constant over the full range of temperatures that we consider.

2.3.5 Opening probability

In order to compute the probability that the system resides in the
states specified above, it is necessary to determine the free ener-
gies associated with each state and to compute a partition func-
tion. The free energy of each of these microstates is determined
by the number of paired bases, the number of connections, and
the energy required to close the hinge. Since the temperature is
variable, both the enthalpic and entropic parts of the free ener-
gies must be considered. Using the open state as a reference free
energy Gopen = 0, we can write

Gi(T ) = ∆Hcl −T ∆Scl +Ni(∆Hbp−T ∆Sbp)+ (1)

+2Nc,Tot,i(∆Hterm−T ∆Sterm)−Nc,Tot,i∆SbT.

for each closed microstate i, where T is temperature, Nc,Tot,i is
the total number of connections (i.e. bottom arm overhangs that
have at least a single base paired), Ni is the number of base stacks
(since the base pairing energy is associated with the energetic fa-
vorability of stacking two consecutive base pairs); ∆Hcl and ∆Scl

are the hinge closing enthalpy and entropy, respectively; ∆Hbp

and ∆Sbp are the base pairing enthalpy and entropy, respectively;
∆Hterm and ∆Sterm are the terminal base pairing enthalpy and en-
tropy, respectively; and ∆Sb is the entropy cost to form duplex
DNA from two single strands, which we assume is the same to
form the first, second, and third duplexes for multi-valent inter-
actions. The partition function for this system is then

Z = 1+∑
i

exp
[
−Gi(T )/kBT

]
, (2)
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where the sum is over all microstates of the system. Since we treat
the hinge as consisting of a single open state with free energy
Gopen ≡ 0, the probability that a hinge is in an open state is given
by

popen = 1/Z. (3)

In order to calculate Z more explicitly, we have to consider
the partition function of the closed states, denoted Zcs. Since
all closed states are multiplied by a Boltzmann factor corre-
sponding to the free energy cost to close the hinge, denoted by
∆Gcl = ∆Hcl − T ∆Scl , the primary challenge is to account for all
possible base pairing states, as illustrated in Fig. 2. To do this for
an arbitrary number of overhangs per hinge with potentially dif-
fering numbers of bases per overhang, we first denote overhangs
of different lengths (i.e. different number of bases) by subscript
j, and the number of type j overhangs by Nc, j. For instance, if
we have a hinge with three overhangs, two of which are six bases
long (type 1) and one of which is eight bases long (type 2), we
would have Nc,1 = 2 and Nc,2 = 1. We then need to account for
all possible choices of actually realized connections n j of type j.
The number of possibilities to choose n j out of Nc, j total avail-
able connections must also be considered, introducing a binomial
coefficient for each j. Combining the above yields

Zcs = exp
(
−∆Gcl/kBT

)
×

Nc,1

∑
n1=0

[(
Nc,1

n1

)
Zn1

S,1×
Nc,2

∑
n2=0

[(
Nc,2

n2

)
Zn2

S,2×·· ·

× exp
[
(n1 +n2 + · · ·)∆SbT/kBT

]]]
(4)

where ZS, j is the partition function describing all of the possible
base pairing interactions for a single connection of type j. In
particular,

ZS, j ≡
NS, j

∑
i=1

(NT − i+1)(NA, j− i+1)exp
[
−

∆Gterm + i∆Gbp

kBT

]
(5)

where NS, j is the maximum number of stacks in the type j du-
plex, NT is the maximum number of stacks available to the poly-T
strand, and NA, j is the maximum number of stacks available to
the poly-A strand of type j. Thus, NS, j = min{NT ,NA, j}. ∆Gbp =

∆Hbp−T ∆Sbp is the free energy of a single stack, and ∆Gterm =

2(∆Hterm − T ∆Sterm) = 2
[
9.6 kJ/mol− T (0.0172 kJ /(mol K))

]
is

the terminal base pairing energy47. Note that NT − i+ 1 is the
number of positions on the poly-T strand at which i consecutive
stacks can bind, and that NA, j− i+1 is the number of positions on
the poly-A strand at which i consecutive stacks can bind. Thus,
their product is the total multiplicity of the state with i bound
stacks.

Taking everything together, we therefore have

Z = 1+ exp
(
−∆Gcl/kBT

)
×

Nc,1

∑
n1=0

[(
Nc,1

n1

)
Zn1

S,1×
Nc,2

∑
n2=0

[(
Nc,2

n2

)
Zn2

S,2×·· ·

× exp
[
(n1 +n2 + · · ·)∆SbT/kBT

]]]
(6)

with popen = 1/Z, where for clarity the ∆G’s are not written as
functions of temperature, but they retain the temperature depen-
dence indicated in Eq. (1).

Since the fluorescence data is normalized such that the max-
imum value is 1, we relate the normalized fluorescence to the
probability that a hinge is open as follows:

Fnorm = popen/pmax (7)

where pmax is the probability that the hinge is at an angle such
that the fluorescence is not quenched in the absence of the NP,
i.e., pmax =

[
1+ exp

(
−∆Gcl/kBT

)]−1.

2.4 Model fitting

In order to relate the model to the data, we fit the normal-
ized opening probability, popen/pmax, to the experimental nor-
malized fluorescence by varying the four energetic parameters
within physically realistic bounds (i.e. 0 ≤ ∆Hcl ≤ ∞ and −∞ ≤
∆Scl ,∆Hbp,∆Sbp,∆Sb ≤ 0). This fit is performed via a non-linear
least squares minimization for this bounded set of parameters us-
ing a Trust Region Reflective algorithm48, which is implemented
using the Python SciPy package49.

2.5 Code and data availability

Python code implementing the model is available at
https://github.com/bundschuhlab/PublicationScripts/
tree/master/NanoswitchTActuationPrediction. Data is
available upon request.

3 Results & Discussion
In this section, we will first give a short high level overview of
our model and then demonstrate how it agrees with the experi-
mental data and expectations based on the literature. Next, we
extract mechanistic insights about nano-hinge actuation. Lastly,
we demonstrate that the model can be used to guide the design
of nano-hinges that can be actuated over a wide range of temper-
atures.

3.1 A thermodynamic model of thermal nano-hinge actua-
tion

We formulate a thermodynamic model for actuation of the hinge
containing an AuNP as shown in Fig. 1(A). Specification of a ther-
modynamic model requires enumeration of the allowed states of
the system, the free energies associated with each state, as well
as a relationship between these states and experimental observ-
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ables. The macroscopic observable here is the open (fluorescing)
or closed (quenched) state of the hinge. We model the system as
having a single open state, representing many microstates, which
has some unknown free energy cost to transition into the closed
state. This free energy cost captures the contribution from all
open microstates and consists of an enthalpic component ∆Hcl

and an entropic component ∆Scl . When the hinge is closed, there
are many binding microstates available, but these states are eas-
ier to enumerate: when closed, the hinge overhangs are allowed
to anneal to the AuNP DNAs, and every combination of consec-
utive base pairing stacks is allowed. This is shown schematically
in Fig. 2. Fig. 2(A) shows the strand-level allowed binding states,
and Fig. 2(B) shows the base pair-level allowed binding states.
Fraying is allowed from the AuNP strand end, the hinge overhang
end, and from both ends. Additionally, the strands are allowed
to slide relative to each other without penalty, so that any com-
bination of consecutive bases can anneal (all the way up to the
AuNP). Since the hinge overhangs are poly-A and the AuNP over-
hangs are poly-T, each stack of two consecutive base pairs that
forms is associated with the same base pairing free energy with
enthalpic component ∆Hbp and entropic component ∆Sbp. In ad-
dition, a terminal free energy with enthalpic component ∆Hterm

and entropic component ∆Sterm is taken into account for each end
of a helix of consecutive base pairs; however, in contrast to the
other parameters, this latter contribution is not treated as fit pa-
rameters but fixed at literature values47. Finally, we impose an
entropy cost ∆Sb associated with formation of a duplex. Given
these definitions of the states and their free energies, the parti-
tion function of the system and thus the probability of a hinge to
be in the open state and fluorescing can be calculated as a func-
tion of temperature (see section 2.3.5).

3.2 Nano-hinge actuation is quantitatively explained by the
thermodynamic model

We fit the temperature dependent opening probability predicted
by the thermodynamic model to the experimental normalized flu-
orescence using a non-linear least squares minimization for the
enthalpies and entropies ∆Hcl , ∆Scl , ∆Hbp, ∆Sbp, and ∆Sb (see sec-
tion 2.4).

A comparison of this fit to the data is shown in Fig. 3, and
the best fit parameters are summarized in Table 1. In Fig. 3, a
comparison of the fit to the bivalent data is shown in the leftmost
panel, while a comparison of the fit to the trivalent data is shown
in the middle panel. Note that, although these comparisons are
shown separately for clarity, they show the results of a single fit to
the bivalent and trivalent data simultaneously. Additionally, each
panel shows the average (over each individual actuation curve)
root mean squared difference (RMS) between the data and model
in that panel. In both bivalent and trivalent cases, the model
agrees well with the data with a RMS of 0.054 for the bivalent
data and of 0.068 for the trivalent data.

We want to emphasize that, while the experimental data is sep-
arated by valency rather than overhang length, the experimen-
tal actuation curves for the bivalent and trivalent cases differ (as
shown in Fig. S1) and thus provide independent tests for the

Fig. 3 Model fit to experimental data. The model (bold lines) is fit
to bivalent and trivalent data simultaneously, with a bivalent compar-
ison shown in the leftmost panel and a trivalent comparison shown in
the middle panel. Each panel contains the averaged root mean squared
difference (RMS) between the model and the average of the experimen-
tal data. In particular RMS is the average over the RMS differences for
each curve shown in the panel. The rightmost column shows the ra-
tio between the fit base pairing parameter values and the expected base
pairing parameter values from the literature47.

Table 1 Model described in section 2.3 best fit parameters (used in Fig. 3)
in units of kJ/mol for enthalpies and kJ/(mol K) for entropies.

∆Hcl ∆Scl ∆Hbp ∆Sbp ∆Sb

0±9 −0.02±0.03 −36.0±1.2 −0.108±0.004 −0.0466±0.0009

model. Thus, the valency based difference is accurately captured
by the model without further adjustment of its parameters. We
conclude that the thermodynamic model faithfully describes the
entire temperature dependence of nano-hinge actuation for six
different experimental conditions spanning two different valen-
cies and three different overhang lengths using five fit parame-
ters.

3.3 Optimal base pairing parameters agree with literature
values

While we treat the enthalpy ∆Hbp and entropy ∆Sbp of the base
pairing as fit parameters, these have been independently mea-
sured by SantaLucia47 from melting experiments on short DNA
oligomers and have been used for decades to quantitatively de-
scribe DNA melting. Therefore, it is illustrative to compare
our best fit parameters to SantaLucia’s values. The rightmost
column of Fig. 3 shows that the ratio of our best fit parame-
ters to SantaLucia’s values with corrections for salt concentra-
tion50 (details in ESI section S1†, ∆Hbp,SL = −33.1 kJ/mol and
∆Sbp,SL =−0.0955 kJ/mol K) are close to one. As a further test of
the appropriateness of the observed base pairing parameters, we
fit the model again while keeping the base pairing enthalpy ∆Hbp

and entropy ∆Sbp at SantaLucia’s literature values, corrected for
salt conditions47,50–52 (details in ESI section S1†). These fits are
shown in Supplementary Fig. S2, and the fit parameters are given
in Table S1. We find an excellent fit if only the base pairing en-
thalpy is fixed to its literature value and a reasonable fit if base
pairing enthalpy and entropy are both fixed at their literature val-
ues. These fits are especially reasonable when considering that
the effects of divalent salt remain difficult to quantify and mostly
affect the entropy47,51,52.

The good agreement between literature values of the base pair-
ing parameters and the best fit parameters of our model is inter-
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esting, since other studies have found that the presence of a DNA
origami device can have significant impact on base pairing free
energy15,53. One possible explanation is that in the experiments
underlying these earlier studies the base pairing occurs in a much
more geometrically constrained context, which is avoided by the
presence of the AuNP coated with longer DNA strands in the ex-
periments that are modeled here. Also, the corrections in these
studies are directly to the base pairing free energy15,53 while we
consider enthalphy and entropy separately to model the entire
temperature dependence. Since the free energy results from a
delicate balance between enthalpic and entropic contributions,
the free energy may be more sensitive than enthalpy or entropy
alone. We conclude that our fit parameters and literature val-
ues for the base pairing parameters agree well, providing further
independent validation of our model.

3.4 Optimal closing entropy parameter is consistent with
free nano-hinge angle distribution

As is the case with the base pairing parameters, we are able to
independently estimate the value of the hinge closing entropy pa-
rameter ∆Scl . In order to make this estimation, we calculate the
relative entropy between a closed hinge angular probability dis-
tribution and a free hinge angular probability distribution (in par-
ticular, the angular distribution of a hinge with an incorporated
AuNP but no bottom arm hinge overhangs) measured experimen-
tally by Johnson et al.23 (see ESI Fig. S3). The relative entropy
between these distributions is given by

∆Srel = ∑
i

Pcl,i ln

[
Pcl,i

Pfree,i

]
(8)

where Pcl,i and Pfree,i are the probabilities that a closed and free
hinge have angles within some bin i. This calculation predicts an
entropy increase of ≈ 0.02 kJ /(mol K) associated with transition
from the closed to the open state. We note, however, that this cal-
culation only takes into account entropy change due to a single
degree of freedom (change in nano-hinge angle). There are also
out of plane fluctuations of the nano-hinge and fluctuations in the
positions and orientation of the AuNP that are restricted by bind-
ing. Therefore, this calculation can be interpreted as providing an
approximate upper limit of −0.02 kJ/ (mol K) on ∆Scl as well as
an order of magnitude estimate for this parameter. This is in good
agreement with the fit parameter ∆Scl = −0.02± 0.03, providing
yet another independent validation of the model. Furthermore,
the value of the best fit parameter near the upper limit suggests
that out of plane fluctuations are negligible in this system.

3.5 Averaging over melting and annealing data approxi-
mates equilibrium conditions

For our fitting we use the data published by Johnson et al.23 av-
eraged over experimental replicates and direction of temperature
change, with the width of the curves corresponding to the stan-
dard deviation over all of these data sets (see section 2.2.2 for de-
tails). Although we model this system as an equilibrium process,
it is important to note that there is hysteresis in the experimen-
tal data between the annealing, which exhibits a slightly lower

transition temperature, and the melting, which exhibits a slightly
higher transition temperature. In order to verify that the average
of these melting and annealing curves is a good approximation to
an equilibrium condition, we perform the thermal actuation ex-
periment at two different rates of temperature change: 2 ◦C/min
(as previously done by Johnson et al.23) and 0.2 ◦C/min. For
these experiments, we replaced the AuNP with double-stranded
DNA linkers to avoid potential AuNP degradation with extended
time at elevated temperatures54. These experiments reveal that
as the rate is decreased, the hysteresis also decreases and both
the melting and annealing curves approach the average of the
fast rate curves. Additionally, the average of the slow rate curves
is similar to the average of the fast rate curves. This data, shown
in Fig. S4, illustrates that the averaging is a reasonable approxi-
mation to the equilibrium conditions.

Nevertheless, we also test the model in the two extreme as-
sumptions that the true equilibrium is either the melting or an-
nealing data. These fits are shown in Fig. S5, with best fit param-
eters reported in Table S2. While these fits result in RMS values
that are somewhat higher than the fits to averaged data (about
0.07 and 0.08 for bivalent and trivalent, respectively), the values
of the base pairing parameters still agree reasonably well with lit-
erature values. We conclude that our observations concerning the
validity of the thermodynamic model are robust to the details of
the treatment of the experimentally observed hysteresis.

3.6 Fraying plays a measurable role in nano-hinge actuation

The thermodynamic model also elucidates the role of sliding and
fraying in the binding between hinge overhangs and strands at-
tached to the AuNP. As shown in Fig. 2(B), the model takes into
account fraying of the base pairing between hinge and AuNP over-
hangs at each end as well as arbitrary sliding of the two strands
relative to each other (since they are homopolymers). Supple-
mentary Fig. S6 (parameters in Table S3) shows fits for variants
of the model in which fraying and sliding (A), fraying (B), and
sliding (C) are not allowed (see ESI section S2†). While the RMS
values are similar to those in Fig. 3, the agreement with SantaLu-
cia’s base pairing parameters is significantly worse for the cases
in which fraying is not allowed, suggesting suboptimal annealing
states are important in regulating the thermal actuation.

In order to examine this fraying more closely, we calculate the
average number of bases paired in a bound connection, given by

〈Nbp〉=
∑

NS, j
i=1(i+1)(NT − i+1)(NA, j− i+1)exp

[
−∆Gterm−∆Sb+i∆Gbp

kBT

]
ZS, j

.

(9)
The results of this calculation (Fig. S7) suggest that the amount
of fraying predicted by the model is physically reasonable. In
particular, at low temperatures there is a very small amount of
fraying, but the fraying increases with temperature.

Interestingly, however, the sliding states do not seem to play
as important a role. The RMS values are again similar to those
in Fig. 3, but here the base pairing parameters are much closer
to expectation than those of the models that exclude fraying. It
seems likely, however, that the loss of sliding entropy has sim-
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ply been absorbed into the binding entropy, ∆Sb. To see this,
we note that the difference between ∆Sb for the model with slid-
ing (see Table 1) and without sliding (see Table S3) is ∆∆Sb =

−0.0466+ 0.0204 kJ/(mol K) = −0.0262 kJ/(mol K). In order to
estimate the entropy loss due to the removal of sliding, we can use
Boltzmann’s equation and the previously enumerated states of the
system (see Eq. (5)) in the optimal base pairing state i = NS, j. For
each connection, the loss of entropy due to the removal of sliding
states is given by

∆Sslide ≈−kB lnW = kB
[

ln(NT −NS, j +1)(NA, j−NS, j +1)
]
, (10)

where W is the number of states in the system. For 7 base polyA
strands and 23 base polyT strands, W = 17 and therefore ∆Sslide ≈
−0.02 kJ/(mol K), which is close to ∆∆Sb. Furthermore, we would
expect that the exact value of ∆Sslide to be a little more negative
than the estimate given by Eq. (10), since this calculation does
not account for suboptimal sliding states. Therefore, the observed
∆∆Sb =−0.0262 kJ/(mol K) is consistent with the sliding entropy
loss being absorbed into the ∆Sb parameter.

Unfortunately, we do not have a strong a priori preference be-
tween the ∆Sb values with and without sliding. Thus, the extent
to which sliding influences the actuation is unknown, and we con-
clude that it is prudent to leave sliding states in the model.

3.7 Actuation temperature is driven by the bi-connected
states

A limitation of the model is that it is unable to explain experi-
mental observations of “monovalent" hinge data (i.e. data from
hinges with only a single overhang). In particular, when John-
son et al. constructed monovalent nano-hinges with 6 – 9 base
overhangs, they observed no hinge closing for temperatures from
20 ◦C to 55 ◦C23. This is inconsistent with the model prediction
of monovalent A8 and A9 actuation at 33.7 ◦C and 37.5 ◦C, re-
spectively. This discrepancy could be due to factors well beyond
the scope of our model, such as, e.g., slow kinetics of monovalent
connections. However, a plausible extension of our model pos-
sibly capable of explaining a different behavior for monovalent
connections would be to allow the entropy cost of duplex forma-
tion ∆Sb to be different for the first, second, and third strands
that bind, reflecting the changes in geometry due to the number
of strands already bound. Accordingly, in this section we discuss
an alternative model in which we allow the parameter ∆Sb to vary
depending on how many other strands are already bound. This
then becomes three parameters, ∆Sb,1, ∆Sb,2, and ∆Sb,3, which
correspond to the entropy costs to bind the first strand, the sec-
ond strand, and the third strand, respectively. We will refer to
this model as the "variable ∆Sb" or "varS" model. Similarly, the
previous model will be referred to as the "constant ∆Sb" or "conS"
model.

The introduction of the additional parameters results in several
degeneracies that complicate the analysis somewhat. To counter-
act these degeneracies, we first fix ∆Scl to its best fit value in
conS model, since it is nearly degenerate with ∆Sb,1 (they are
only differentiated by the unconnected (Nc = 0) closed state).
This value is also consistent with our independent estimation

of the hinge closing entropy of ∆Scl ≈ −0.2 kJ/(mol K) using
the angular probability distributions of the nano-hinge in each
state (see section 3.4). Even with ∆Scl fixed, we still find that
there is not one optimal set of parameters but rather a whole
volume in the ∆Sb,1-∆Sb,2-∆Sb,3 space that results in nearly in-
distinguishably good fits. Thus, in order to analyze the varS
model, we systematically vary all three ∆Sb parameters and mea-
sure the best fit parameters and goodness of fit values. To sum-
marize the results of this analysis, we determine the volume in
three dimensional ∆Sb,1-∆Sb,2-∆Sb,3 space for which the average
RMS value over all six curves is below 0.058 (and thus within
0.002 of the minimum since we do not find any regions with
an average RMS value below 0.056). This volume is shown in
Fig. 4(A), and ESI Fig. S8 shows the fit for a representative point
(∆Sb,1,∆Sb,2,∆Sb,3)= (−0.05,−0.01,−0.05) kJ/(mol K) inside of it.
This demonstrates that that the degenerate near-optimal volume
is bounded by (roughly) ∆Sb,3 <−0.05 kJ/(mol K), ∆Sb,2 >−0.03
kJ/(mol K), and ∆Sb,1 >−0.08 kJ/(mol K) −∆Sb,2. Note that the
point with ∆Sb,1 = ∆Sb,2 = ∆Sb,3 = −0.04 kJ/(mol K) obtained
for the conS model falls outside of this range consistent with its
slightly elevated average RMS of 0.061. Additionally, this near-
optimal volume is also colored in Fig. 4(A) according to the actua-
tion temperature of the monovalent A9 hinge, demonstrating that
values of ∆Sb,2 that are closer to zero result in lower monovalent
A9 actuation temperatures mostly consistent with experimental
observation.

Next, we investigate the ratio of the best fit base pairing param-
eters ∆Hbp and ∆Sbp to their respective expected values from the
literature (i.e. the ratios shown in the rightmost panel of Fig. 3)
in the varS model. Fig. 4(B) shows these as a function of ∆Sb,2

(where we optimize over the other parameters for each ∆Sb,2)
and demonstrates that the base pairing parameters increasingly
deviate from expectation as ∆Sb,2 becomes more negative. For
reference, the values of ∆Sb,2 corresponding to the near-optimal
volume in Fig. 4(A) are shaded in green, and the conS ∆Sb value
is marked by a vertical red line. The better agreement of the base
pairing parameters with expectation in the ∆Sb,2 range preferred
by the varS model over its value in the conS model provides fur-
ther evidence of the superiority of the varS model. This depen-
dence of the base pairing parameters on ∆Sb,2 also points toward
values of ∆Sb,2 close to zero to be preferable in agreement with
where we have found the monovalent actuation temperature to
be the lowest.

Finally, we consider the physics of the system in order to under-
stand the origin of the near-optimal region of varS parameters. In
particular, we note that values of ∆Sb,2 close to zero and values of
∆Sb,3 that are strongly negative (as is the case in the near-optimal
parameter volume) have a similar qualitative effect. In partic-
ular, both of these requirements tend to favor states with two
overhangs bound (bi-connected) compared to states with three
overhangs bound (tri-connected). This suggests that conditions
in which bi-connected states dominate over tri-connected ones
(in the trivalent case) provide a better fit. In order to verify these
observations, we next plot the fraction of closed states that are bi-
connected at the actuation temperature. In order to visualize this
data, we note that the upper limit on the tri-connected fraction
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Fig. 4 VarS model analysis. (A) Near-optimal volume for which average
varS RMS over all six actuation curves used for fitting (6, 7, and 8 base
overhangs for both bivalent and trivalent hinges) is between 0.056 and
0.058. This volume is bounded by (roughly) ∆Sb,3 < −0.05 kJ/(mol K),
∆Sb,2 > −0.03 kJ/(mol K), and ∆Sb,1 > −0.08 kJ/(mol K) −∆Sb,2. ∆Scl
was fixed at its conS value and an optimization was performed over
the remaining parameters for each value of (∆Sb,1, ∆Sb,2, ∆Sb,3). Colors
indicate predicted monovalent 9 base actuation temperature. (B) Ratio
of base pairing fit parameters to their SantaLucia values47 shown as
a function of ∆Sb,2. ∆Scl was fixed at its optimal conS value, and an
optimization was performed over the remaining parameters. The shaded
green region indicates the near-optimal values of ∆Sb,2 (corresponding
to the volume in (A)), and the red line indicates the value of the conS
optimal ∆Sb. (C) Fraction of varS closed states that are bi-connected
at the actuation temperature averaged over trivalent 6, 7, and 8 base
nano-hinges. The scan is performed over ∆Sb,1-∆Sb,2 space with ∆Sb,3 set
to its upper bound of −0.05 kJ / (mol K) and ∆Scl fixed at its conS
value, and other parameters are optimized. The area in the upper right
enclosed by the black lines corresponds to the near-optimal volume in
panel (A).

occurs at the upper (least negative) bound on ∆Sb,3, and there-
fore show the bi-connected closed fraction over the slice of the
near-optimal volume corresponding to ∆Sb,3 = −0.05 kJ / (mol
K). This data is shown in Fig. 4(C), with the near-optimal region
bounded in black lines. The bi-connected fraction is large in the
near-optimal region and small in the rest of the parameter space,
confirming the hypothesis that near-optimal varS parameter val-
ues correspond to large fractions of bi-connected closed states at
the actuation temperature, a key insight of this analysis.

It is important to note that, although this suggests that bi-
connected states dominate during the transition (and thus set
the actuation temperature), this does not preclude a significant
fraction of tri-connected states occurring at low temperatures.
Indeed, in ESI Fig. S9, we demonstrate that for the parame-
ters used in ESI Fig. S8, tri-connected states are more prevalent

than bi-connected states at low temperatures for a trivalent nano-
hinge. As the temperature increases towards the actuation tem-
perature, however, the lower entropy of these states causes these
states to become unfavorable compared to the higher entropy
bi-connected states. This represents an important and counter-
intuitive insight into this actuation process: Although one might
naïvely expect that the most favorable low temperature state to
be the one that, to first order, controls the actuation behavior, we
have shown that, due to entropic effects, this is not the case.

Interestingly, despite the dominance of the bi-connected states
at the transition in the trivalent case, the experimental data
clearly differs between the bivalent and the trivalent case, and
the model quantitatively captures this difference (see ESI Fig. S1).
Since the tri-connected states are not important at the transition,
this difference between the bivalent and the trivalent case must
come primarily from configurational entropy: in the bivalent case
there is only one bi-connected state, whereas in the trivalent case
there are three such states. Therefore, we conclude that the addi-
tional configurational entropy in the trivalent case is the primary
driver of the shifts of the actuation points toward higher temper-
atures.

Overall, the analysis of the varS model has shown that rea-
sonable choices of individual strand binding entropies can pro-
duce the relatively low monovalent A9 actuation temperatures
expected from experimental data. Additionally, the analysis con-
tained in this section provides a deeper understanding of the
physics of this system which likely has consequences for any sys-
tem in which temperature-mediated strand dissociation drives ac-
tuation. In particular, the insight that the most tightly bound state
may not drive the transition behavior should be generally appli-
cable.

3.8 Quantitative model allows design of devices with arbi-
trary transition temperatures

Both the conS and varS models show excellent agreement with ex-
perimental bivalent and trivalent data, and they are able to quan-
tify the change in actuation response due to a change in overhang
valency and length. If this feature is predictive, it could be useful
to design actuation at a desired temperature without costly ex-
perimental trial and error. The models predict that manipulation
of overhang design parameters can be used to achieve actuation
at essentially any desired temperature in the range from about
30 ◦C to 45 ◦C as shown in Fig. 5(A). Importantly, while the ac-
tuation temperatures in Fig. 5(A) are calculated using the conS
model (with the best fit parameters from Table 1) these predic-
tions differ by at most 1.2 ◦C when instead performing them with
the varS model for several diverse choices of the entropies ∆Sb,1,
∆Sb,2, and ∆Sb,3 in the near-optimal volume (ESI Fig. S10).

In order to validate the ability of these predictions to guide
design, we show in Fig. 5(B) that three of these predicted actua-
tion curves agree very well (RMS= 0.066) with experimental data
that was not used in model development. This data corresponds
to AuNP nano-hinges with: two 9-base poly-A overhangs (A9,9),
previously published by Johnson et al.23; two 6-base overhangs
and one 8-base overhang (A6,6,8); and two 8-base overhangs and
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one 6-base overhang (A6,8,8). The two latter data sets are origi-
nal to this work and thus their raw melting and annealing curves
are shown in Fig. S11. We conclude that the model can be used
to design overhang combinations with essentially arbitrary actu-
ation temperatures in the range from about 30 ◦C to 45 ◦C.

Fig. 5 (A) Temperature spread of predicted actuation curves for hypo-
thetical nano-hinges with variable overhang length and valency using the
the best fit parameters of the conS model (given in Table S4). Solid and
grayed lines are the curves fit to data (trivalent and bivalent 6, 7, and
8 base overhangs), while dashed lines indicate predictions. The violet,
pink, and maroon dashed lines indicate predictions validated (in the same
colors) in (B). A complete description of the predicted designs sorted by
actuation temperature can be found in Table 2. The actuation tem-
perature is defined such that popen(Ta) = 0.5. As mentioned above, (B)
gives validation of the A6,6,8, A6,8,8, and A9,9 predictions via a comparison
to experimental data (plotted with non-bolded lines in the same colors)
which were not used to create or fit the model.

Table 2 Actuation temperatures, defined such that popen(Ta) = 0.5, of
predictions shown in bold, dashed lines in Fig. 5. The designs are ordered
by increasing actuation temperature, and therefore can be matched to
the corresponding curve in Fig. 5. Each number in the hinge design
column corresponds to the length of an overhang, so designs with two
numbers are bivalent hinges and designs with three numbers are trivalent
hinges. Actuation temperatures can be tuned to within 3 ◦C of any
desired temperature between 30 ◦C and 45 ◦C

Design Ta (◦C) Design Tact (◦C)
5,6,6 32.0 6,6,8 38.8
6,7 33.6 6,8,8 41.8
5,6,7 35.0 7,8,8 42.7
5,6,8 37.8 9,9 43.7

We also considered the possibility of extrapolation of the model
to higher and lower temperatures. Johnson et al., however, did
not observe transitions in the case of a trivalent hinge with 9-base
overhangs (A9,9,9) up to 55 ◦C23. This disagrees with the model
prediction of an equilibrium actuation temperature of 46.8 ◦C for
A9,9,9 (and similar values in the varS case), so it would seem
that the model should not be extrapolated to temperatures above

the previously indicated 45 ◦C. Since the nano-hinges themselves
melt around 60 ◦C23,55,56, it is not entirely unexpected that the
model begins to break down at higher temperatures. As the tem-
perature increases and individual sections of the hinge begin to
melt, the hinge may become more flexible, effectively decreasing
∆Gcl and thus increasing the probability of closed states.

At lower temperatures, Johnson et al. did not observe actua-
tion in either a bivalent or trivalent hinge with 5-base overhangs
(A5,5 and A5,5,5) down to 20 ◦C23. This represents a discrepancy
of only a few degrees with the model prediction of equilibrium
actuation temperatures of 20.9 ◦C and 25.5 ◦C for A5,5 and A5,5,5,
respectively (and similar values in the varS case). This suggests
there may be effects that are not captured by the model below
30 ◦C.

4 Conclusions
The fast, accurate, and predictive thermodynamic DNA origami
actuation model developed in this work offers a viable alternative
to computationally costly molecular dynamics modeling in the de-
sign of dynamic DNA origami devices. We have shown that not
only is it useful as a design tool, but it is able to provide mecha-
nistic insight into the actuation process, in particular by revealing
the importance of entropic considerations to thermal transitions.
Additionally, the creation of increasingly complex dynamic DNA
devices necessitates increasingly computationally efficient mod-
elling2, of which statistical mechanics is likely to be an important
part. This type of model is in principle applicable to any device
that is actuated by melting/annealing of DNA duplexes, and sim-
ilar methods have been shown to be applicable to other dynamic
structures15. Attempts to use statistical mechanics methods to
model a wider range of devices is an important area of future
research. Furthermore, incorporation of kinetics using transition
matrices acting on microstates (such as the ones defined here)
to capture non-equilibrium effects, as well as the integration of
statistical mechanics models with molecular simulations to eluci-
date fine-grained detail, would represent important contributions
to the field.
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