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When polymer-nanoparticle (NP) attractions are sufficiently strong, a bound polymer layer with
a distinct dynamic signature spontaneously forms at the NP interface. A similar phenomenon
occurs near a fixed attractive substrate for thin polymer films. While our previous simulations fixed
the NPs to examine the dilute limit, here, we allow the NP to move. Our goal is to investigate how
NP mobility affects the signature of the bound layer. For small NP that are relatively mobile, the
bound layer is slaved to the motion of the NP, and the signature of the bound layer relaxation in
the intermediate scattering function essentially disappears. The slow relaxation of the bound layer
can be recovered when the scattering function is measured in the NP reference frame, but this
process would be challenging to implement in experimental systems with multiple NPs. Instead,
we use the counterintuitive result that the NP mass affects its mobility in the nanoscale limit, along
with the more expected result that the bound layer increases the effective NP mass, to suggest
that the signature of the bound polymer manifests as a change in NP diffusivity. These findings
allow us to rationalize and quantitatively understand the results of recent experiments focused on
measuring NP diffusivity with either physically adsorbed or chemically end-grafted chains.

1 Introduction
The addition of nanoparticles (NP) to polymers has been a topic
of considerable interest because the resulting materials can have
significantly improved properties (e.g. mechanical, optical or
electrical)1–10. The large surface-to-volume ratio of NPs implies
that a significant fraction of polymer chains are interfacial, espe-
cially when we consider high NP loadings. This interfacial layer
can play an important role in the resulting property modifications
of the composite. In particular, we focus on how the motion and
diffusion of NPs are affected by the structure and dynamics of the
interfacial layer. This topic is of particular importance because
the flow-related properties of these hybrid materials are of con-
siderable interest in the context of materials processing.

The spatial dispersion of NPs within the polymer matrix is an-
other factor critical for determining property modifications11–13.
Attractive polymer-NP interactions typically result in a thermo-
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dynamically favorable uniformly dispersed NP state14,15. When
polymer-NP attractions exceed those of between polymer seg-
ments, a “bound” layer of polymers may form near the NP in-
terface; this bound layer has a relaxation time that can be orders
of magnitude slower than that of the surrounding polymer ma-
trix16–22. In previous work16,21,23,24, we examined the effect of
the polymer-NP interaction strength on chain (and segmental)
dynamics, especially in the bound layer. In these initial studies,
we limited ourselves to an idealized case of a fixed NP at low
enough concentrations to understand interfacial effects without
the complications of interactions among NP. Here we remove the
constraint of a fixed NP, to study the effect of NP motion on the
dynamics of the bound layer, and how the presence of the bound
layer affects the translational and rotational motion of NPs. We
find that NP motion effectively masks the distinct signature of
the bound layer relaxation in the intermediate-scattering func-
tion that occurs for a fixed NP, with this effect particularly man-
ifest when the NP can reorient or translate on a time scale less
than that of the bound layer relaxation. In the case we study, the
primary reason for the disappearance of the bound layer signal in
the scattering function is the rotational motion of the NP; transla-
tional motion is considerable slower. The signature of this bound
layer relaxation, which we had reported in our previous work, can
be recovered if the scattering function is calculated in a frame of
reference moving with the particle. Experimentally, such a change
of frame is a challenging task, especially with multiple NPs, and
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hence we need other methods to indirectly detect such a bound
component. To this end, we show that the NP diffusion coeffi-
cients are particularly sensitive to the amount of bound polymer.
Specifically, by comparing the case of NP with and without bound
polymer, we find that the presence of the bound layer slows the
NP diffusion. More interestingly, we demonstrate that, if we re-
define the effective size of the NP to account for the volume (or
mass) of the chains bound to a NP, then diffusion coefficient of the
NP matches that of a larger NP with no bound polymer. This ob-
servation provides a simple means of experimentally measuring
and characterizing the bound polymer layer in these composites.

2 Simulation Model and Methods

Our simulation model follows the simulation parameters and pro-
tocols we have used in earlier works14,16,25. Polymer chains
are described via the Kremer-Grest model26 with chain length
20, where each monomer has a diameter σ ; all distances are
described in units of σ . Non-bonded monomers interact via a
truncated and shifted Lennard-Jones (LJ) potential with a cut-
off distance of rc = 2.5 in order to include the effect of attrac-
tions between two chain monomers; all energies are reported in
units of the LJ energy parameter ε. Bonded monomers are linked
by a finitely-extensible nonlinear elastic (FENE) potential, with
“stiffness” k0 = 30ε/σ2 and maximum extension R0 = 1.5. As dis-
cussed below we use a relatively small nanoparticle to ensure that
it readily moves within the polymer matrix. We also simulate sys-
tems with the NP fixed at the origin. Like our earlier work that
examined the factors controlling the clustering of mobile NP14,
each NP is comprised of 13 beads (identical to the monomers of
polymer chains). These 13 beads are bonded to form an icosa-
hedron of edge length 2.1 (one monomer at each of the 12 ver-
tices of the icosahedron, plus a single bead at the center of the
icosahedron). Because of its small size and the symmetry of the
icosahedron, we do not expect our results to be significantly dif-
ferent from those with spherically symmetric NPs with a rough
surface; by extension our results may not be valid for anisotropic
NPs. Further details of the NP model can be found in ref. 14. The
NP size can be converted to an approximate diameter through
d =

√
3

6 (3+
√

5)a, where a is the vertex-to-vertex distance, and
d is the diameter of an inscribed sphere that touches the faces
of the icosahedron; the resulting diameter is d = 3.3. There is
an attractive LJ interaction between beads forming the NP and
monomers of the polymer chains; this interaction is also truncated
at 2.5. We use a variable polymer-NP interaction strength εp−NP

in a series of simulations. We consider multiple volume fractions
(φ = 0.005,0.011,0.016) by varying the box size (and hence the
number of chains) while keeping a single NP in the system. All
units are reported in reduced units, where m is the unit of mass
and ε/kB is the unit of temperature, where kB is the Boltzmann
constant and the unit of time is σ

√
m/ε. Considering a simple

polymer such as polystyrene with a glass transition temperature
Tg ≈ 100◦C, these units can be approximately converted to real
units by choosing σ ≈ 2 nm, ε ≈ 10 kJ/mol, m≈ 0.5 kg/mol, and
one time unit ≈ 15 ps. The chain length simulated can be mapped
to molecular weight≈ 10 kg/mol, below the entanglement molec-

ular weight.

The simulations are performed using the LAMMPS27 simula-
tion package. We first perform a simulation at relatively high
temperature (T = 1.0) and P = 0.1. We generate equilibrium con-
figurations at lower T by reducing the temperature to the desired
T (still at pressure P = 0.1) and allowing the system to relax long
enough that the potential energy and volume reach a steady state;
typically, this time is 10 to 100 times the relaxation time we re-
port in the results section. Using the average volume of the system
from these NPT simulations, we then perform data collection sim-
ulations in the NVT ensemble along the established isobaric path
(P = 0.1) at temperatures 0.45 < T < 0.5. These fixed box size
simulations avoid complications in the analysis introduced by a
fluctuating box size at fixed pressure.

3 Results
To begin, we examine how the motion of the NP in the polymer
matrix affects the dynamical signature of the bound interfacial
layer, as compared to the case when NP are fixed at the origin.
We use the self-intermediate scattering function to quantify the
dynamics of the polymer, namely

Fself(q, t) =
1
N

〈
N

∑
j=0

eiq·(r j(t)−r j(0))

〉
(1)

where r j(t) is the location of monomer j at time t and q is the scat-
tering wave vector. We evaluate Fself(q, t) at q0 = 7.1, which cor-
responds to the first peak of the static structure factor of polymer
segments. In our previous work with a fixed NP16, we found that
Fself(q, t) shows three distinct relaxation processes when polymer-
NP interactions become more favorable than polymer-polymer
interactions. These three relaxations can be quantitatively de-
scribed by:

Fself(q, t) = (1−A)e−(t/τs)
3/2

+(A−Ab)e
−(t/τα )

β

+Abe−(t/τb)
βb
. (2)

The fastest relaxation time τs describes the vibrational motion of
monomers; the intermediate relaxation time τα corresponds to
the primary, or α relaxation process, associated with the relax-
ation of the polymer segments in the matrix; finally, the slowest
relaxation time τb is related to the bound interfacial layer. A and
Ab are the amplitudes of vibrational relaxation and bound layer
relaxation signals, respectively. While the signature for the bound
polymer is clear in Fig. 1, the effect of the bound polymer is less
pronounced for the small NP as relative to larger NP; this aspect
has been discussed in ref. 21. In marked contrast, when the NP
is free to rotate and translate, the behavior of Fself(q, t) is quali-
tatively different: the slowest bound interfacial layer relaxation
appears to disappear.

Clearly, NP motion plays an important role, but these data
alone do not clarify if the motion of the NP prevents the formation
of the bound layer around it. Alternatively, a bound layer may ex-
ist, but the motion of the NP may lead to relaxation that masks
its distinct signal in Fself(q0, t). To distinguish between these two
possible scenarios, we calculate the Fself(q0, t) in the NP frame
of reference, where the frame of reference translates and rotates
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Fig. 1 The intermediate scattering function Fself(q0, t) of monomers for a
fixed NP (black line) and a diffusive NP (red line) at T = 0.46, φ = 0.011
and ε = 2.0. There is a third distinct relaxation process in the system with
the fixed NP that is apparently missing from the system with the diffu-
sive NP. The scattering function in the NP frame of reference (green line)
shows the presence of the long-time relaxation, presumably correspond-
ing to the bound layer around the NP.

with the NP. Fig. 1a shows that in this frame, a slow relaxation
re-emerges. Thus, a bound layer (a layer with very slow dynamics
relative to the NP) does form around the NP, but the NP motion
masks this signal in the “lab” reference frame.

There is no obvious way to switch to the NP reference frame
experimentally, especially in a system with multiple NPs, and so
the measurement of the bound signal via the scattering function
would be challenging, if not impossible.

The disappearance of the bound layer signal is a reflection of
the fact that the NP mobility (through either translation or rota-
tion) is faster than the relaxation rate of the bound layer around
the NP. Thus, if one could reduce the mobility of the NP relative
to the bound polymer, the signal for the bound layer might again
be apparent in the lab frame. Accordingly, we consider changing
the NP properties to reduce its mobility, and in doing so, we un-
cover an unexpected alternate approach to identify the presence
of the bound layer. While the Stokes-Einstein relation implies
that the diffusion of a particle is independent of mass, this idea
is likely valid only when the relaxation of the medium is much
faster than the relaxation of the Brownian particle. Instead, for a
small NP (where the NP radius RNP is comparable or smaller than
the chain radius of gyration, Rg), the dynamics of the NP will be
on the same time scale as that of the polymer chains. Thus, the
diffusion of the NP can be sensitive to the mass of the NPs, as has
been found previously28,29.

Accordingly, as a first step toward identifying a bound layer
signal, we consider how the mass of the NP affects its mobility
and the associated scattering data for the polymer. Figure 2(a)
shows the NP mass dependence of the translational mean-squared
displacement (MSD)

MSDtrans(t) = 〈(~r(t)−~r(0))2〉, (3)
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Fig. 2 (a) Altering the NP mobility by changing its mass. The NP mean-
squared displacement 〈r2〉 is reduced by increasing the mass of its con-
stituent sites. (b) Scattering function for systems with different NP mass.
The bound relaxation time is clear for the heaviest NP. The bound layer
relaxation, with a time constant of τb, is partially recovered for the heavier
mass NP.

where ~r(t) is the position of the center of the NP at time t.
Clearly, increasing the NP mass decreases its translational mobil-
ity. We evaluate the intermediate-scattering function for different
NP masses in Figure 2(b) and find that there is a restoration of
the bound layer signal for large NP mass, supporting our asser-
tion that the bound signal can be experimentally accessible if the
NP mobility is small compared to the polymer matrix.

Next, we distinguish the contributions from the rotational and
translational motion of the NP to the “loss" of the bound layer
signal. We have already introduced the translational MSD, and
the rotational MSD is defined by,

MSDrot(t) = 〈(~φ(t)−~φ(0))2〉, (4)

where
~φ(t) =

∫ t ′

0
∆~φ(t ′)dt ′. (5)

∆~φ(t) is defined as the cross product of the position of the ver-
tices of the NP (which is an icosahedron) relative to the center of
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Fig. 3 (a) The translational MSD and rotational arc-length displacement
(s) of the NP. The rotational motion has a larger displacement compared
to translational motion. (b) Scattering function Fself(q0, t) of monomers for
moving NP (black), in the frame of reference of the NP that rotates with
NP (red) and in the frame of reference not rotating with NP (green). The
absence of the bound layer signal in the green curve further confirms the
importance of the rotational motion.

the icosahedron ∆~φ(t) =~u(t +∆t)×~u(t). The rotational MSD also
defines the squared arc-length displacement of the rotation

〈s2(t)〉=
(

d
2

)2
MSDrot(t), (6)

where d is the diameter of the NP. The arc length 〈s2〉 is conve-
nient to compare against the translational MSD, since it has the
same units and describes the motion of the NP surface. Fig. 3
shows that 〈s2〉 is larger that MSDtrans, indicating that the rota-
tional diffusion has a more significant role in the diminishing of
the bound layer relaxation time signal in the Fself(q, t). We exam-
ine this assumption by calculating the Fself(q0, t) where we just
remove the translational motion of NP and keep its rotational
motion. Figure 3(b) shows that the bound layer relaxation is sup-
pressed when rotation is included but the translational motion of
the NP is removed. This result confirms that the rotational motion
of the NP is the primary contribution to relaxation that masks a
bound polymer signal in Fself(q0, t).

The dependence of NP mobility on mass raises a possible al-
ternative approach to quantify the effect of the bound layer on
measurable properties. However, before we proceed it is impor-
tant to stress a few points. It is well known that the mass of the
particles affect viscosity - since our intent is to consider the tracer
diffusion coefficient of a NP of variable mass in a sea of solvent
(with fixed mass) it is reasonable to assume that the viscosity of
the solution is not variable. Of course, this will not be true for
finite NP concentrations, and hence we proceed with this caveat
in mind. Since the bound layer is closely associated with the NP,
one can consider that an increase in its effective mass leads to an
apparent increase in NP size, thus rationalizing the reduction in
its mobility. Said differently, the mass of polymer in the bound
layer may manifest itself through a slowdown of the NP diffusion
in the polymer matrix; if true, this could be readily accessible in
experiments and allow us to quantify this hard-to-measure quan-
tity. To understand the role of NP mass increase on the diffusion
coefficient of NP we studied systems with (εp−np = 2.0; T = 0.5)
and without (εp−np = 1; T = 0.5) the bound layer. For PNCs with-
out the bound layer, the black circles in Fig. 4 show the values of
diffusion coefficient D with varying NP mass (but fixed radius).
(The translational D is obtained from the asymptotic behavior of
MSDtrans, and the rotational diffusion is calculated by the relax-
ation time of the orientation autocorrelation function? ).

We can describe the mass dependence of D (rotational and
translational) with a simple power-law relation, D = A0/mδ ,
where A0 and δ are the fit parameters. Since we find δ ≈ 1/3 for
systems with fixed NP size but varying mass, we conjecture that
the change in mass has the same effect as an effective change in
the NP size. Because we are interested in the mass dependence
of the diffusion and this dependence is similar for both rotational
and translational diffusion coefficents, we refer to both Dr (rota-
tional diffusion) and Dt (translational diffusion) as D. This ob-
servation is particularly surprising since we have maintained the
bare size of the NP fixed during these calculations. We conclude
that, in the limit where the NPs are comparable in mass to the
solvent molecules, their diffusivity apparently follows the Stokes-
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Fig. 4 (a) The NP translational diffusion coefficient for different values of
mass and ε. Black circles are simulation data at T=0.50 and ε = 1 where
no bound layer forms. The green line is a fit of the black circles to A0/mδt ,
where A0 = 0.0001, and δt = 0.35 The red square and the blue diamond
are simulation data for ε = 2.0 and T=0.50 with NP effective mass m= 289
(red square) and the bare NP mass m = 13 (blue diamond), respectively.
(b) The NP rotational diffusion coefficient. The colors and symbols are
the same as the translational diffusion coefficient descriptions. The qual-
itative behavior of the rotational and translation diffusion is similar. We fit
the data to the B0/mδr . The fit parameters are B0 = 0.23 and δr = 0.33.
Interestingly, the translational and rotational diffusion coefficients follow
similar power laws as a function of mass.

Einstein relationship, but with the caveat that their effective size
appears to be larger.

Having established the dependence of D in the absence of a
bound layer, we now consider how D behaves where there is a
bound layer that increases the effective NP size and mass. The
blue diamond in Fig. 4 shows D for a NP of mass 13 with a
strongly bound layer (εp−np = 2; T = 0.5). Clearly, D is much
smaller than expected for a NP of that mass with no bound layer.
To compare to the case of NP without bound polymer, we need
to estimate the effective size (mass) of the NP with the bound
layer. For this purpose, we use the sum of the NP mass and the
chains bound to the surface of NP. On average there are 13.8
chains in contact with the NP. Since each chain is comprised of
20 monomers and the NP has 13 sites (each of unit mass), the
effective NP mass is 13.8× 20+ 13 = 289. The effective size then
is increased by a factor of 2891/3. Interestingly, the use of this
effective size (mass) for the NP with the bound layer results in
close agreement with the diffusion coefficient of bare NP of dif-
ferent mass but with no bound layer. These results suggest that
the increase in the size of the NP due to the bound layer is the
major cause of the slow down in NP diffusion.

To emphasize the relevance of this result to experiments, we
discuss a recent series of papers by Winey, Composto and cowork-
ers30,31. In one case, they used 4.3 nm diameter iron oxide NP
grafted with PMMA chains and dispersed them in PMMA matrices
with different molecular weights. They found that the NP were
slowed relative to the Stokes-Einstein prediction, and they used
this slow-down to estimate the effective NP size. Depending on
system specifics, they found an effective particle size of 2Reff=18-
20 nm. To understand these results we calculate the effective NP
size, Rc +h, using a model,

4
3

π (Rc +h)3 ≡ 4
3

πR3
c +

ZN
ρ

, (7)

that assumes the effective volume of a grafted NP is the (incom-
pressible) sum of the volumes of the core (first term on right side
of the equation) and the polymeric corona (second term on right);
the idea of defining an effective particle with volume that is an
incompressible sum of the NP and polymer segments has been
verified by simulations32. Here Rc =2.15 nm is the core radius, h
is the effective brush height, Z = 4πR2

cσ is the number of grafted
chains per NP, where each chain is of length N, σ is the grafting
density (0.16-0.55 chains/nm2 in a series of experiments) and ρ

(≈ 1 g/cm3) is the polymer density. For the particular choice of
grafting parameters in the experiments we find 2Reff ≈ 16-21 nm,
with the precise result depending on the grafting density. Since
these results are in good agreement with experimental estimates,
we conclude that the idea of the adsorbed layer increasing the
effective NP size can describe diffusivity changes, at least in the
case where the chains are chemically grafted to the NPs.

Going beyond these results, a parallel study by these workers
also measured the consequence of the physically adsorbed bound
layers on NP diffusion in the case of poly(2-vinylpyridine)/silica
nanocomposites31. They found a slowing down of NP diffusion,
with this slowing down being more pronounced with increasing
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P2VP chain length. These results track our earlier work using
TGA and indirectly TEM on the size of the bound polymer layer
in these cases33,34. These results further support the validity of
the explanation presented here, and imply that the bound layer
has measurable consequences on NP transport, well outside the
self-intermediate scattering function.

4 Conclusion
We perform MD simulations of polymer nanocomposites to study
the effects of NP motion on the apparent dynamics of the inter-
facial layer. Our results suggest that NP motion can suppress the
longer-time relaxation signature of this bound layer in the scat-
tering function. This is particularly true when the NPs are mobile
on a time scale comparable to the polymers. However, since we
find the NP diffusion to be mass-dependent, likely because the NP
relaxation time is similar to that of the polymer chains, we pro-
pose an indirect method to measure the size (mass) of the bound
layer. We show that the total volume of NP and bound chains is
a good estimate of the effective volume of the NP. The slowdown
in the NP diffusion with the presence of the bound layer, in par-
ticular its dependence on polymer chain molecular weight, is a
direct consequence of the presence of a bound layer around NP.
Thus, while it is not easy to obtain clear signatures of this bound
layer relaxation in the self-intermediate scattering function when
NPs are relatively mobile, measurements of NP diffusion might
be an unequivocal means to critically characterize this physically
adsorbed polymer layer, especially when it has a long temporal
persistence.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
Computer time was provided by Columbia University. Financial
support for this research was provided by the NSF through Grant
No. DMR-1709061. This work was supported by NIST Grant No.
70NANB19H137.

*sk2794@columbia.edu

Notes and references
1 J. H. Koo, in Optical Properties of Polymer Nanocomposites,

Cambridge University Press, 2016, p. 550–565.
2 R. Gangopadhyay and A. De, Chemistry of materials, 2000,

12, 608–622.
3 A. C. Balazs, T. Emrick and T. P. Russell, Science, 2006, 314,

1107–1110.
4 G. Schmidt and M. M. Malwitz, Current opinion in colloid &

interface science, 2003, 8, 103–108.
5 J. F. Moll, P. Akcora, A. Rungta, S. Gong, R. H. Colby, B. C.

Benicewicz and S. K. Kumar, Macromolecules, 2011, 44, 7473–
7477.

6 J. Jordan, K. I. Jacob, R. Tannenbaum, M. A. Sharaf and I. Ja-
siuk, Materials science and engineering: A, 2005, 393, 1–11.

7 S. K. Kumar, B. C. Benicewicz, R. A. Vaia and K. I. Winey,
Macromolecules, 2017, 50, 714–731.

8 J. Jancar, J. Douglas, F. W. Starr, S. Kumar, P. Cassagnau,
A. Lesser, S. S. Sternstein and M. Buehler, Polymer, 2010, 51,
3321–3343.

9 W. Caseri, Macromolecular Rapid Communications, 2000, 21,
705–722.

10 E. Y. Lin, A. L. Frischknecht and R. A. Riggleman, Macro-
molecules, 2020, 53, 2976–2982.

11 P.-C. Ma, N. A. Siddiqui, G. Marom and J.-K. Kim, Composites
Part A: Applied Science and Manufacturing, 2010, 41, 1345–
1367.

12 T. Kashiwagi, F. Du, K. I. Winey, K. M. Groth, J. R. Shields,
S. P. Bellayer, H. Kim and J. F. Douglas, Polymer, 2005, 46,
471–481.

13 J. Fu and H. E. Naguib, Journal of cellular plastics, 2006, 42,
325–342.

14 F. W. Starr, J. F. Douglas and S. C. Glotzer, JOURNAL OF
CHEMICAL PHYSICS, 2003, 119, 1777–1788.

15 J. B. Hooper and K. S. Schweizer, Macromolecules, 2006, 39,
5133–5142.

16 F. W. Starr, J. F. Douglas, D. Meng and S. K. Kumar, ACS Nano,
2016, 10, 10960–10965.

17 P. Rittigstein, R. D. Priestley, L. J. Broadbelt and J. M. Torkel-
son, Nature Materials, 2007, 6, 278–282.

18 A. P. Holt, P. J. Griffin, V. Bocharova, A. L. Agapov, A. E.
Imel, M. D. Dadmun, J. R. Sangoro and A. P. Sokolov, Macro-
molecules, 2014, 47, 1837–1843.

19 A. P. Holt, J. R. Sangoro, Y. Wang, A. L. Agapov and A. P.
Sokolov, Macromolecules, 2013, 46, 4168–4173.

20 S. E. Harton, S. K. Kumar, H. Yang, T. Koga, K. Hicks, E. Lee,
J. Mijovic, M. Liu, R. S. Vallery and D. W. Gidley, Macro-
molecules, 2010, 43, 3415–3421.

21 H. Emamy, S. K. Kumar and F. W. Starr, Physical review letters,
2018, 121, 207801.

22 W. Zhang, H. Emamy, B. A. Pazmiño Betancourt, F. Vargas-
Lara, F. W. Starr and J. F. Douglas, The Journal of Chemical
Physics, 2019, 151, 124705.

23 H. Emamy, S. K. Kumar and F. W. Starr, Macromolecules, 2020.
24 A. Y. Liu, H. Emamy, J. F. Douglas and F. W. Starr, Macro-

molecules, 2021, 54, 3041–3051.
25 F. W. Starr, T. B. Schroder and S. C. Glotzer, Macromolecules,

2002, 35, 4481–4492.
26 G. S. Grest and K. Kremer, Phys. Rev. A, 1986, 33, 3628–3631.
27 S. Plimpton, Journal of Computational Physics, 1995, 117, 1–

19.
28 T. Desai, P. Keblinski and S. K. Kumar, The Journal of chemical

physics, 2005, 122, 134910.
29 J. Liu, D. Cao and L. Zhang, The journal of physical chemistry

C, 2008, 112, 6653–6661.
30 C.-C. Lin, P. J. Griffin, H. Chao, M. J. Hore, K. Ohno, N. Clarke,

R. A. Riggleman, K. I. Winey and R. J. Composto, The Journal
of Chemical Physics, 2017, 146, 203332.

31 P. J. Griffin, V. Bocharova, L. R. Middleton, R. J. Composto,

6 | 1–7Journal Name, [year], [vol.],

Page 6 of 7Nanoscale



N. Clarke, K. S. Schweizer and K. I. Winey, ACS Macro Letters,
2016, 5, 1141–1145.

32 J. Midya, M. Rubinstein, S. K. Kumar and A. Nikoubashman,
ACS Nano, 0, 0, null.

33 N. Jouault, J. F. Moll, D. Meng, K. Windsor, S. Ramcharan,

C. Kearney and S. K. Kumar, ACS Macro Letters, 2013, 2, 371–
374.

34 N. Jouault, M. K. Crawford, C. Chi, R. J. Smalley, B. Wood,
J. Jestin, Y. B. Melnichenko, L. He, W. E. Guise and S. K. Ku-
mar, ACS Macro Letters, 2016, 5, 523–527.

Journal Name, [year], [vol.], 1–7 | 7

Page 7 of 7 Nanoscale


