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New Concepts: 

The data-driven prediction of grain boundary (GB) properties in high-entropy alloys (HEAs) 
as functions of four independent compositional degrees of freedom and temperature in a 5D space 
opens a new paradigm. The interaction of multiple elements and interfacial disordering can induce 
a new region of segregation not predicted by the classical theory. A significant data-driven 
discovery is the existence of a critical (isoequilbrium) temperature with the simultaneous vanishing 
of GB segregation due to an enthalpy-entropy compensation effect. A physics-informed data-
driven model can predict GB properties based on parameters with clear physical meanings. This 
study expands our fundamental knowledge of GB segregation and paves the way for tailoring 
properties of HEAs via controlling GBs.
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Abstract

Grain boundaries (GBs) can critically influence the microstructural evolution and various 
materials properties. However, a fundamental understanding of GBs in high-entropy alloys (HEAs) 
is lacking because of the complex couplings of the segregations of multiple elements and 
interfacial disordering, which can generate new phenomena and challenge the classical theories. 
Here, by combining large-scale atomistic simulations and machine learning models, we 
demonstrate the feasibility of predicting the GB properties as functions of four independent 
compositional degrees of freedoms and temperature in a 5D space, thereby enabling the 
construction of GB diagrams for quinary HEAs. Artificial neural network (ANN), support vector 
machine (SVM), regression tree, and rational quadratic Gaussian models are trained and tested, 
and the ANN model yields the best machine learning based predictions. A data-driven discovery 
further reveals new coupled segregation and disordering effects in HEAs. For instance, interfacial 
disordering can enhance the co-segregation of Cr and Mn at CrMnFeCoNi GBs. A physics-
informed data-driven model is constructed to provide more physical insights and better 
transferability. Density functional theory (DFT) calculations are used to validate the prediction 
generality and reveal underlying segregation mechanisms. This study not only provides a new 
paradigm enabling the prediction of GB properties in a 5D space, but also uncovers new GB 
segregation phenomena in HEAs beyond the classical GB segregation models.
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Introduction

Since the Bronze and Steel Ages, the development of every major class of metallic alloys, such 
as the Cu, Fe, Al, Ti, and Ni-based alloys, have revolutionized technologies and changed our daily 
lives. High-entropy alloys (HEAs), also known as multi-principal element alloys (MPEAs) or 
complex concentrated alloys (CCA), represent the newest class of alloys that attract significant 
research interest.1-4 The vast composition space of HEAs offers immense opportunities for 
designing materials for various applications. 

In every class of polycrystalline alloys, grain boundaries (GBs) exist ubiquitously.5, 6 The 
elemental segregation (a.k.a. adsorption in the interfacial thermodynamics) at GBs is a critical 
phenomenon that can change microstructural evolution7-9 and govern a broad range of materials 
properties10-12. Even though the GB segregation have been extensively researched for decades, 
most prior studies and models are based on alloys with one primary (principal) element.13-20 
Moreover, the effects of interfacial disordering on segregation are typically not considered in the 
classical site-occupying models.13-15 The GB segregation in the emerging HEAs containing five or 
more principal elements are hitherto only investigated by few experimental21, 22 and theoretical23-

25 studies and only for a few compositions. The underlying mechanisms of GB segregation in 
HEAs are elusive and a predictive model does not exist, which motivate this study. 

In a broader perspective, GBs can be considered as two-dimensional (2D) interfacial phases 6, 
which are also named as “complexions” 26, 27 to differentiate them from thin precipitated layers of 
3D bulk phases. Notably, GB complexion (phase) diagrams, which represent GB thermodynamic 
states or properties as functions of thermodynamic variables such as temperature and bulk 
composition (representing chemical potentials), have been developed as the GB counterparts to 
bulk phase diagrams. To date, various GB diagrams have been constructed for binary and ternary 
systems,19, 20, 26, 28-30 but they are rarely developed for multicomponent systems,31 certainly not for 
HEAs, owing to the increasing complexity of a large, multi-dimensional compositional space. 
Furthermore, the more general GBs (asymmetric GBs with mixed twist and tilt features), which 
are ubiquitous in polycrystalline materials and often the weak links chemically and mechanically,28, 

32 are still scarcely studied.

Herein, by combining the large-scale hybrid Monte Carlo and molecular dynamics (MC/MD) 
simulations and an artificial neutral network (ANN) model, we demonstrate the feasibility of 
predicting the GB properties as functions of four independent compositional DOFs and 
temperature in a 5D space for a representative general GB in CrxMnyFezColNim HEAs. In summary, 
1032 individual hybrid MC/MD simulations were performed (for 258 compositions  4 different 
temperatures). Each was formed on an asymmetric 81 GB with a large simulation cell of 11,664 
atoms for ~105 hybrid MC/MD simulation steps to achieve convergence. This produced by far the 
largest dataset to enable further data-driven analysis. 

Our MC/MD simulations further reveal the unrecognized importance of interfacial disorder in 
influencing GB segregation that can produce new phenomena in HEAs. Notably, an analysis of 
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the large dataset uncovers the almost (albeit incomplete) vanishing of GB segregation/depletion of 
all elements simultaneously at a critical temperature.

Furthermore, a physics-informed data-driven model (PIDDM) is created to represent GB 
segregation and disordering in HEAs analytically. While the machine learning model can make 
predictions via a black-box approach, this PIDDM describes the GB properties in a 5D space via 
analytical formulae where all parameters have clear physical meanings, and it offers better 
transferability. 

The Workflow

Figure 1 displays the workflow of predicting GB properties and GB diagrams, investigating 
the underlying mechanisms, uncovering new interfacial phenomena, and developing a PIDDM via 
combined large-scale hybrid MC/MD simulations, machine learning models, various data analysis 
approaches, and density functional theory (DFT) calculations. 

First, we selected an asymmetric Σ81 GB of mixed tilt and twist characters to represent general 
GBs. We randomly generated 258 compositions out of 1371 possible choices by varying the 
amount of each element from 5% to 35% with a step of 5%. Second, principal components analysis 
(PCA) was used to ensure the 258 selected compositions are sufficiently randomly (Supplementary 
Discussion 1). Third, the large-scale isothermal-isobaric (constant-NPT) ensemble hybrid MC/MD 
simulations were carried out to calculate the adsorption amounts (i.e., GB excesses of solutes: , ΓCr

, , , ), GB excess of disorder ( ), and GB free volume (VFree), as well as bulk ΓMn ΓFe ΓCo ΓNi ΓDis

composition. Subsequently, we mapped out a relation between bulk composition and GB 
properties, from 1000 K to 1300 K (where CrMnFeCoNi alloys can maintain a single face-centered 
cubic or FCC phase33). Here, the GB excess of disorder ΓDis was computed based on:  ΓDis =

, where the  (= 1 for a liquid and 0 for a perfect crystal) was ∫ +∞
―∞[𝜂Dis(𝑧) ― 𝜂Dis( ± ∞)]𝑑𝑧 𝜂Dis =

calculated following a procedure proposed by Chua et al..34 Other GB excess qualities are defined 
based on the standard Gibbs definitions. See Method section for details. 

Fourth, the MC/MD-simulated dataset was used to develop an ANN model, along with support 
vector machine (SVM), regression tree, and rational quadratic Gaussian models, to predict six 
important GB properties ( , , , , , and ), each in a 5D space. Among the four ΓCr ΓMn ΓFe ΓCo ΓNi ΓDis

different machine learning models trained and tested, the ANN model yielded the best predictions 
(Fig. 2J) so it was selected for the subsequent machine learning predictions. Fifth, GB diagrams 
of thermodynamic properties were constructed for the first time for quinary HEAs; as an 
illustrative example, Fig. 1E shows isothermal sections of  for CrxMnyFezCo0.2Ni0.2 subsystem, ΓCr

where x + y + z = 0.6. 

Sixth, a large dataset generated by hybrid MC/MD simulations was also used to analyze and 
investigate the new coupled interfacial disordering and segregation phenomena in HEAs beyond 
the classical models via a data-driven discovery approach. Seventh, additional hybrid MC/MD 
simulations were conducted for other GBs to show the generality of our findings. Eighth, DFT 

Page 4 of 25Materials Horizons



4

calculations were conducted, based on the GB configurations obtained by hybrid MC/MD 
simulations, to investigate the unique segregation mechanisms in HEAs. Ninth, a physics-informed 
data-driven model or PIDDM was developed to predict the GB segregation and disordering to 
provide more physics insights with better transferability than the “black-box” ANN model, which 
can also achieve good accuracies. 

It is worth noting that before we conducted large-scale hybrid MC/MD simulations, we first 
performed careful benchmark simulations to validate our NPT-based hybrid MC/MD method by 
comparing it with prior NVT-based MC simulations24 as well as prior experiments21, 22, 35; see 
Supplementary Discussion 2. 

ANN prediction of GB diagrams of thermodynamic properties

The dataset generated by 1032 MC/MD simulations have been used to train, evaluate, and test 
one-layer single-task ANN models to predict six GB properties ( , , , , , and ). ΓCr ΓMn ΓFe ΓCo ΓNi ΓDis

The histogram of root-mean-square errors (RMSEs) was used to assess the ANN performance. 
Notably, the ANN models are fairly accurate to predict six GB properties with small RMSEs 
(Suppl. Fig. S4). The accuracies are further supported by the parity plots between ANN predictions 
and MC/MD simulations, where the promising linear relations are achieved for ,  , and ΓCr ΓMn, ΓFe

 (see Fig. 2A and Suppl. Fig. S3(B)). Relatively large deviations are found for  and , ΓCo ΓNi ΓDis

which can be ascribed to the weak segregation of Ni and large uncertainty in quantifying . ΓDis

Overall, the ANN models are robust to predict GB properties, especially for moderate and strong 
segregation (e.g., Cr and Mn) and depletion elements (e.g., Fe and Co) at HEA GBs. 

In addition to the ANN model, we also trained and tested SVM, regression tree, and rational 
quadratic Gaussian models as alternative machine learning models to compare their performances 
with the ANN model. We found that the ANN model yielded the lowest RMSE values for 
predicting all six GB properties (Fig. 2J). Thus, we adopted the ANN model as our machine 
learning engine for the data-driven discovery of GB properties.

To further validate our ANN model, we adopt a structural similarity index (SSIM; 1 = same 
and 0 = different) to compare the similarity of ANN-predicted binary GB diagrams vs. MC/MD 
simulations; representative GB diagrams are shown in Fig. 2B-C. The SSIM histogram (Suppl. 
Fig. S5) shows the high values (~0.88-0.89) for most , , , and  diagrams, but relatively ΓCr ΓMn  ΓFe  ΓCo

low values (~0.63-0.66) for  and  diagrams. This is consistent with the prior analysis based ΓNi ΓDis

on RMSEs. See elaboration in Supplementary Discussion 3. 

Interestingly, ANN predictions can outperform MC/MD simulations in two aspects. First, the 
ANN model can suppress the MC/MD errors caused by the large thermal noises at high 
temperatures (Suppl. Fig. S6) by a smoothing effect. Second, the ANN model becomes more 
convenient than MC/MD simulations to predict GB diagrams with multiple variables. For example, 
Figs. 2D-I show the ANN-predicted ternary GB segregation and disorder diagrams in 
CrxMn0.2FeyCo0.2Niz (where x + y + z = 0.6) at 1000 K. More ANN-predicted GB diagrams can 
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be found in Suppl. Figs. S23-S29. 

Notably, the efficient ANN model makes it possible to map out GB properties as functions of 
four independent compositional DOFs and temperature in a 5D space for HEAs.

New GB segregation phenomena in HEAs and interpreting an experimental observation

Beyond the ANN model prediction, we further conducted a series of in-depth data analyses, 
along with additional focused simulations, to elucidate new interfacial phenomena that are unique 
to HEAs. As the first example to illustrate new GB segregation phenomena in HEAs, we have 
conducted and analyzed MC/MD simulations of nine representative equimolar ternary (medium-
entropy) to quinary (high-entropy) alloys, including: FeCoNi, CrMnNi, CrMnFe, CrFeNi, CrCoFe, 
CrFeCoNi, CrMnFeNi, CrMnFeCo, and CrMnFeCoNi. New observations of GB disorder 
enhanced co-segregation are documented in Supplementary Discussion 4 and discussed below. 

On the one hand, we find that the competition of segregation sites in relatively ordered GBs 
can suppress the (e.g., Cr) segregation in ternary alloys (e.g., CrMnNi and CrMnFe). On the other 
hand, the segregation of multiple elements and GB disordering can enhance each other to lead to 
stronger co-segregation at more disordered GBs in quaternary and quinary alloys (e.g., co-
segregation of Cr and Mn with high levels of GB disorder in CrMnFeCo and CrMnFeCoNi). 

Two representative cases, CrMnNi vs. CrMnFeCoNi, are schematically illustrated in Fig. 3A 
vs. 3B, and additional examples are shown in Suppl. Fig. S7. Specifically, the MC/MD-simulated 
GB structure of the CrMnNi ternary alloy at 1000 K (Fig. 3C) shows that the relatively ordered 
GB (  of ~39 nm-2) has weak segregation of Cr and virtually no segregation of Mn ( = 5.3 ΓDis ΓCr 
nm-2 and = 0.8 nm-2). However, the more disordered GB (  of ~43 nm-2) in CrMnFeCoNi ΓMn ΓDis

exhibits strong co-segregation of Cr and Mn (  = 18.6 nm-2 and  = 7.0 nm-2). The ΓCr ΓMn

compositional profiles shown in Fig. 3C-D confirm the strong GB segregation of both Cr and Mn 
in CrMnFeCoNi, but weak GB segregation in CrMnNi. Moreover, the computed profile of the 
disorder parameter also verifies a more disordered GB core of ~0.88 nm thick in CrMnFeCoNi vs. 
a less disordered GB core of ~0.75 nm thick in CrMnNi. 

It is interesting to further note that for the systems without Mn element (e.g., CrCoFe and 
CrFeCoNi), Cr atoms are not favorable to segregate at relatively ordered GBs (Suppl. Figs. S7-8). 
The structural analysis based on polyhedral template matching (PTM) approach36 shows that Mn 
segregation can induce GB disordering and hexagonal structures locally (Suppl. Fig. S8). This 
implies that the Mn segregation can change the interaction between Cr and GBs to further induce 
the Cr segregation. A similar phenomenon has been observed and explained in terms of chemical 
affinity.37 As an alternative view, Mn segregation can induce GB disordering and subsequently 
alter the interaction between Cr and GBs to enhance the Cr segregation. In contrast, the weak Cr 
segregation in absent of Mn can be attributed to relatively ordered GB structures. 

Notably, the abovementioned phenomena are not only consistent with the finding in 
nanocrystalline Al alloys reported by Babicheva et al.,38 but also applicable to other ternary, 
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quaternary, and quinary HEA systems studied in this work (Suppl. Figs. S7-8), thereby suggesting 
the generality of the coupling effects. See Supplementary Discussion 4 for more results.

Using atom probe tomography, Li et al. observed GB spinodal decomposition that formed Cr-
rich and Mn-rich regions.35 The new insight obtained by modeling here offers an explanation of 
this observation. Since GB disorder (more significant at high temperatures) promotes the co-
segregation of Cr and Mn, it could separate into Cr-rich and Mn-rich GB regions upon cooling 
with less GB disorder. 

Analysis of the large dataset of GB thermodynamic properties 

To achieve more in-depth understanding of couplings among GB properties, we further 
calculated Pearson correlation coefficients (PCCs) among five GB adsorption (i.e., , , , ΓCr ΓMn ΓFe

, and ) and two structural properties (  and ) based on the MC/MD-simulated dataset. ΓCo ΓNi ΓDis VFree

Notably, the heat map of PCC shows that GB disorder is correlated with GB adsorption properties 
(Figs. 4A-B). Specifically, the segregation of Mn ( ) has the strongest correlation with GB ΓMn

disorder ( ) among all elements, which agree with the MC/MD simulations showing that Mn ΓDis

segregation can induce large GB disordering. In addition, by calculating the PCCs at different 
temperatures, we found that the correlations between GB disorder and adsorption properties 
decrease with increasing temperature, while the correlations between other GB properties remain 
almost unchanged. This analysis (Supplementary Discussion 5) further verifies the importance of 
interfacial disordering on GB segregation in HEAs. Note that no abrupt (first-order) GB transition 
with temperature or composition was observed in the current case. 

It is generally expected that GB disorder may increase free volume in unary and binary alloys. 
However, we found that GB free volume ( ) is small and has almost no correlation with GB 𝑉Free

disorder or other GB properties in HEAs (Fig. 4B). This may be ascribed to the packing of multiple 
elements of different radii at HEA GBs (as a rather unique character of HEAs).

The correlations of GB segregations of different elements in HEAs also show interesting trends 
and suggest new interfacial phenomena. On one hand, GB disordering can promote the 
segregations of both Cr and Mn (i.e., both  and  are positively correlated with ; see Fig. ΓCr ΓMn ΓDis

4A). Consequently,  and  are positively correlated (Fig. 4A), despite that a positive Cr-Mn ΓCr ΓMn

mixing enthalpy (Suppl. Table S3) suggests repulsion between them. On the other hands, a 
significant negative Co-Cr mixing enthalpy (Suppl. Table S3) suggests that they should attract one 
another in the bulk phase, but their GB adsorptions are negatively correlated (Fig. 4A) because  ΓCr

is positively, but  is negatively, correlated with  (Fig. 4A). These findings again suggest the ΓCo ΓDis

critical role of interfacial disordering in influencing GB segregation in HEAs.

Next, we examine the correlation of  vs.  at different temperatures. Linear correlation Γ𝑖 ΓDis

analysis (Fig. 4C and Suppl. Fig. S10) shows the following statistical correlation:

  = , (1)𝛤𝑖(𝑇,𝑋) ― 𝛤0
𝑖 𝛼𝑖

Dis(𝑇) ∙ [𝛤𝐷𝑖𝑠(𝑇,𝑋) ― 𝛤0
𝐷𝑖𝑠]
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where T is temperature, is the bulk composition, (  , ) is the intersection point of all 𝑋 = {𝑋𝑖} 𝛤0
𝑖  𝛤0

𝐷𝑖𝑠
linear regression lines that is virtually independent of temperature, and  is the linear 𝛼𝑖

Dis(𝑇)
correlation coefficient. Here, we use an overbar on  to denote that it is a statistical average 𝛼𝑖

Dis
value. We do not suggest a simple linear relation between  and  (and we will subsequently Γi ΓDis
show that  is not a constant, but a function of the composition  for any 𝛤0

𝑖 = 𝛤0
𝑖 (𝑋) 𝑋 = {𝑋𝑖}

individual alloy). Scattered data points in Fig. 4C can be ascribed to 258 different alloy 
compositions. However, a hidden statistical correlation exists after averaging over the 258 random 
compositions. Notably, excellent linear correlations exist for  vs. T for all elements (Fig. 4D):𝛼𝑖

Dis

), (2)𝛼𝑖
Dis(𝑇) =  𝛽𝑖 ∙ (𝑇 ― 𝑇C

where is the slope. Notably, the linear regression lines of  vs. T for all five elements cross 𝛽𝑖 𝛼𝑖
Dis

over at nearly the same point on the T axis (Fig. 4D), which is denoted as TC (~ 1388  51 K). 

Taking Cr as one example, the MC/MD-simulated  has linear relation with  statistically ΓCr ΓDis

(Fig. 4C). The positive slopes (  > 0) of the   vs.  regression lines are related to the 𝛼Cr
Dis ΓCr ΓDis

positive Cr segregation at the GB. The fitted  value linearly decays by increasing the 𝛼Cr
Dis

temperature with a negative slope of , and intersects with the T axis at TC = 1347 K (Fig. 4D). 𝛽Cr

Similar behavior can also be found for Mn (with moderate positive GB segregation), where  > 𝛼Mn
Dis

0 (Suppl. Fig. S10(b)),  < 0, and TC = 1464 K (albeit a high uncertainty in TC due to the small 𝛽Mn

slope). In contrast, the slopes of  vs.  regression lines are negative ( < 0) due to ΓFe(Co) ΓDis 𝛼Fe(Co)
Dis  

the depletion of Fe or Co (Suppl. Fig. S10(c-d)); consequently,  linearly increases with 𝛼Fe(Co)
Dis

increasing temperature (  > 0; TC = 1370 K for Fe and 1371 K for Co, respectively, in Fig. 𝛽Fe(Co)

4D). Finally, there is only a weak correlation in  vs.  with a small negative slope due the ΓNi ΓDis

small  values, which also results in large relative noises in Suppl. Fig. S10(e) and possibly a ΓNi

large error on the projected TC (due to small slope and large uncertainty).

A physics-informed data-driven model (PIDDM)

Next, we propose a physics-informed data-driven model or PIDDM based on above analysis 
of the large MC/MD-simulated dataset. The detailed derivation and data-fitting of this PIDDM can 
be found in Methods section and Supplementary Discussion 6. Here,  and  as functions of T Γ𝑖 𝛤𝐷𝑖𝑠

and X ( ) of an HEA can be expressed as:= {𝑋𝑖}

,  (3)Γ𝑖(𝑇,𝑋) = 𝛽𝑖 ∙ (𝑇 ― 𝑇C) ∙ [𝛤𝐷𝑖𝑠(𝑇,𝑋) ― 𝛤0
Dis] + ∑

𝑗(𝜅Seg
𝑖, 𝑗 ∙ 𝑋𝑗)

and

.  (4)𝛤𝐷𝑖𝑠(𝑇,𝑋) = ∑
𝑖(𝜅Dis

𝑖 ∙ 𝑋𝑖) ∙ exp ( ―
𝐸Dis

A

𝑘B𝑇)
Here,  is the coupling coefficient for the GB segregation between component i and j,  is an 𝜅Seg

𝑖, 𝑗 𝐸Dis
A

activation energy (in an Arrhenius relation),  is the Boltzmann constant, and  is the coupling 𝑘B 𝜅Dis
𝑖

coefficient for GB disorder and component i. By using the best fitted parameters listed in Suppl. 
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Tables S1 and S2, the predicted GB properties from this PIDDM agree with MC/MD simulations 
with a small root-mean square error (RMSE) of ~2.3 nm-2 (Suppl. Fig. S11). 

Here, a distinct merit of this PIDDM (in contrast to the ANN model) is that all the model 
parameters have clear physical meanings. The fitted  and  values (Suppl. Tables S1 and 𝜅Dis

𝑖 𝜅Seg
𝑖, 𝑗

S2) represent the couplings between segregation and disorder, as well as segregation of different 
elements, which are fully consistent with the trends observed in our MC/MD simulations, as 
discussed in Supplementary Discussion 6. Notably, we can predict the  with relatively Γ𝑖(𝑇,𝑋)
small RMSEs for each element using this simple analytical Eq. (3), as shown in Suppl. Table S2. 
Furthermore, the parity plots show that the PIDDM predictions agree well with the hybrid MC/MD 
simulations for all elements (Suppl. Fig. S11). 

Interestingly, this PIDDM provides a new physics insight via decoupling the effect of GB 
disorder on segregation. The first term, , represents the “disorder 𝛽𝑖 ∙ (𝑇 ― 𝑇C) ∙ [𝛤𝐷𝑖𝑠(𝑇,𝑋) ― 𝛤0

Dis]
contribution” (albeit it is in fact a coupled disorder and segregation effect). The second (typically 
smaller) term  in Eq. (3) is the composition contribution to the GB adsorption 𝛤0

𝑖 (𝑋) = ∑
𝑖(𝜅Dis

𝑖 ∙ 𝑋𝑖)
at the minimum disorder. Thus, we can further quantify the fractions of this disorder contribution 
(the first term) to the 1032 model-predicted  values and plot them in histograms for all five Γ𝑖

elements in Fig. 5A. The large factions of 0.70 for , 0.71 for , and 0.66 for , respectively, ΓCr ΓFe ΓCo

suggest the significant roles of GB disorder in influencing the GB segregation of Cr, Fe, and Co. 
However, the fractions of disorder contributions are moderate (~0.46) for  and almost zero for ΓMn

 (Fig. 4A). Interestingly, the fraction of disorder contribution is proportional to the absolute ΓNi

value of coupling coefficient . These findings demonstrate the importance of GB disorder on |𝛽𝑖|
influencing GB segregation in HEAs, particularly for Cr, Fe, and Co in this case. Again, Eq. (3) 
shows that  obtained from fitting Eq. (1) only represents a statistical correlation between  𝛼𝑖

Dis Γi

and  after averaging the last term  over 258 different  values.ΓDis ∑
𝑗(𝜅Seg

𝑖, 𝑗 ∙ 𝑋𝑗) ≡ 𝛤0
𝑖 (𝑋) 𝑋 = {𝑋𝑖}

The physical meaning and origin of  are briefly discussed here. Eq. (3) implies that at , 𝑇C 𝑇 = 𝑇𝐶

 and Fig. 4C shows that  is a small number. Thus,  Γ𝑖(𝑇𝐶,𝑋) = ∑
𝑖(𝜅Dis

𝑖 ∙ 𝑋𝑖) ∑
𝑖(𝜅Dis

𝑖 ∙ 𝑋𝑖) = 𝛤0
𝑖 ~0 𝑇C

represents an isoequilibrium temperature due to an (incomplete) enthalpy-entropy compensation 
effect39-41 to produce  ~ 0. Note that “isoequilibrium” is the preferred term adopted here Γ𝑖(𝑇𝐶,𝑋)
(vs. “compensation” 39) based on the terminology discussion by Liu and Guo.41 Here, we can use 
a general adsorption isotherm to discuss this isoequilibrium effect:

             . (5)
𝑋GB

𝑖

𝑋GB
1

=
𝑋Bulk

𝑖

𝑋Bulk
1

exp ( ―
∆𝐺Seg(eff)

𝑖→1

𝑘𝐵𝑇 )

where  and  are the fractions of solute element i at the GB and bulk, respectively, i = 1 is 𝑋GB
𝑖 𝑋Bulk

𝑖

a “reference” element (e.g., Ni), and  is the free energy of segregation by swapping of a ∆𝐺Seg
𝑖→1

solute atom i inside the bulk (grain) with an atom 1 at the GB. In general, an isoequilibrium effect39-

41 can occur at  if the effective GB segregation entropy ( ) and enthalpy ( ) are 𝑇𝐶 ∆𝑆Seg (eff)
𝑖→1 ∆𝐻Seg(eff)

𝑖→1
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linearly related:

, (6)∆𝐻Seg(eff)
𝑖→1 = ∆𝑆Seg (eff)

𝑖→1 ∙ 𝑇𝐶 +𝐶

so that  (Fig. 5B). In the current case, the constant C must vanish for a perfect ∆𝐺Seg(eff)
𝑖→1 = 𝐶

isoequilibrium effect due to the network constrain ( ), albeit the enthalpy-∑
𝑖𝑋

Bulk
𝑖 = ∑

𝑖𝑋
GB
𝑖 = 1

entropy compensation is not perfect (leading to small residual ).  𝐶𝑖 = 𝛤0
𝑖 (𝑋) = ∑

𝑖(𝜅Dis
𝑖 ∙ 𝑋𝑖) ≠ 0

Comparing Eq. (6) with Eq. (3), we conclude that this entropic effect must be related to the 
increased GB disorder . Thus, we can now envision the following physical meaning and Δ𝛤𝐷𝑖𝑠

origin of . The increased GB disorder  can reduce the effective GB free energy of 𝑇C Δ𝛤𝐷𝑖𝑠

segregation ( ) through the entropy of GB segregation, where ∆𝐺Seg(eff)
𝑖→1 = ∆𝐻Seg(eff)

𝑖→1 ―𝑇 ∙ ∆𝑆Seg(eff)
𝑖→1

the reduction is proportional to  and more significant for strong segregating or depleting ∆𝐻Seg(eff)
𝑖→1

element. Thus, with increasing GB disorder , GB segregation (or depletion) for different Δ𝛤𝐷𝑖𝑠

elements is reduced and equalized due to this enthalpy-entropic compensation effect. The effective 
 virtually vanishes (or is minimized) at , as shown in Fig. 5B.∆𝐺Seg(eff)

𝑖→1 𝑇C

It should be noted that this compensation effect is likely only an approximate relation because 
 is small but not exactly zero. Our data (Fig. 4D and Suppl. Table S2) also show variations Γ𝑖(𝑋)

in the best fitted  values for different elements ( 1388  51 K). We should also note that this 𝑇C ~  ±
predicted  is from an extrapolation. As the temperature approaches the bulk solidus curve, 𝑇C

premelting-like interfacial phases6, 31, 42, 43 can develop at GBs to change the projection. See 
Supplementary Discussion 12 for further elaboration about the origin and physical meaning of TC. 

It is interesting to further compare the fitted compositional coefficients ( ) with the 𝜅Seg
𝑖, 𝑗

corresponding segregation enthalpies in binary alloys. In our sign convention, a positive  ( ―∆𝐻Seg
i,  𝑗)

(i.e., a negative ) indicates a preference for segregation (in the opposite to that used in a prior ∆𝐻Seg
i,  𝑗

model 44 where we obtained the data). Taking Cr as one example, Fig. 5C shows the parity plot of 
Cr segregation enthalpies  ( )44 vs. corresponding compositional ( ―∆𝐻Seg

Cr,  𝑗) 𝑗 = Mn, Fe, Co, Ni
coefficients  fitted from our PIDDM. The excellent linear relation with R2 = 0.95 indicates a 𝜅Seg

Cr, 𝑗

strong positive correlation. In addition, signs of the  and  are always consistent. For ( ―∆𝐻Seg
Cr,  𝑗) 𝜅Seg

𝑖, 𝑗

instance, both a positive  or  in the classical segregation model and a ( ― ∆𝐻Seg
Cr,Fe) ( ― ∆𝐻Seg

Cr,  Co)
positive  or  in our PIDDM indicates preferred segregation of Cr at the GB of Fe or Co. Seg

Cr,Fe Seg
Cr,Co

Likewise, negative  or  and  (or ) suggest preferred depletion of ( ―∆𝐻Seg
Cr,Mn) ( ―∆𝐻Seg

Cr,  Ni) Seg
Cr,Mn Seg

Cr,Ni

Cr at the GB of Mn or Ni. Thus, the compositional coefficients ) are well correlated with (𝜅Seg
𝑖, 𝑗

binary segregation enthalpies. 

Both the PIDDM and ANN models can be used to map out the GB thermodynamic properties 
for HEAs in a 5D space as functions of four independent compositional DOFs and temperature.  
In comparison with the PIDDM, the ANN model is more accurate for predicting GB properties 
with smaller RMSEs (Suppl. Tables S1-S2). However, the ANN model predicts GB properties in 
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a “black-box” approach without offering any physics insights. Moreover, lacking the physical 
interpretation inhibits the model transferability. In contrast, the simple analytical formulae of the 
PIDDM, where all model parameters have clear physical meanings, can provide understandings of 
the underlying physical interactions (including their signs and strengths in a quantitative way) in 
HEAs. Thus, this PIDDM represents a general and transferrable model for HEAs. 

Comparisons with classical and other existing segregation models

First, we compare the GB segregation predicted by classical segregation models for binary 
alloys vs. the hybrid MC/MD-simulated GB segregation in HEAs. Here, we adopt the Wynblatt-
Ku model47 (considering both chemical and elastic contribution to GB segregation; see 
Supplementary Discussion 7) to compute GB fractions (XGB) of Cr as functions of bulk fractions 
of Cr (x = XCr) for four CrxM1-x ( ) binary alloys at 1000 K (Fig. 5D). Then, we 𝑀 = Mn, Fe, Co, Ni
select four HEAs, including CrxMn0.4-xFe0.2Co0.2Ni0.2 ( , as well as three variants 0.05 ≤ 𝑥 ≤ 0.35)
where we swap Mn with Fe, Co, or Ni; we further plot MC/MD-simulated   curves as functions  ΓCr

of x in Fig. 5E. We notice several major differences in the trends of segregation in binary alloys 
vs. HEAs. The segregation strengths of Cr in binary alloys are ranked as Fe > Co > Ni > Mn (Fig. 
5D), while they are ranked as Mn  Ni > Co  Fe in HEAs (Fig. 5E). More complex and ≈ ≈
intriguing compositional dependences, e.g., saturation of Cr segregation with x > 0.2 in 
CrxMn0.2Fe0.4-xCo0.2Ni0.2 and CrxMn0.2Fe0.2Co0.4-xNi0.2 vs. acceleration of Cr segregation after x > 
0.2 in CrxMn0.2Fe0.2Co0.2Ni0.4-x, are also observed in HEAs (Fig. 6B). 

Second, Xing et al. developed a lattice-type model for predicting GB segregation for ternary 
alloys48, and we further extended this model to quinary alloys in Supplementary Discussion 9. 
Although this model can predict some general trends, e.g., the positive segregation enthalpies for 
Cr, Mn, and Ni (segregation) vs. negative segregation enthalpies for Fe and Co (depletion), we 
cannot make quantitative predictions of GB segregation for non-equimolar HEAs. 

Third, Li et al. proposed a density-based thermodynamic model for GB segregation.23 This 
phenomenological model assumed that GB energy can be written as a function of GB density, 
which suggested the importance of GB free volume (VFree). In contrast, the PCC heat map (Fig. 
4A) shows that VFree almost has no correlations with GB adsorption properties ( ). Instead,  Γ𝑖 ΓDis

exhibits strong correlation with  (Fig. 4A). Thus, we suggest that GB disorder (instead of density Γ𝑖

or free volume) should be treated as a key parameter for developing future phenomenological 
models. See Supplementary Discussion 8 for further discussion.

Key characters of various GB segregation models are compared in Fig. 5F.

It is important to note that most of the above simplified models and analyses (discussed in this 
and last sections) do not consider segregation entropies, as well as multilayer adsorption and 
different segregation free energies, which are important and can affect GB segregation 
substantially. The entropic effects of GB segregation have been considered in prior studies of 
binary and ternary alloys.45, 46 Here, we have discovered a  due to an (incomplete) enthalpy-𝑇C
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entropy compensation effect (Eq. (5) and (6)), which represents an entropic effect of the 
segregation in this five-component system. 

Generality of the predictions and DFT validation

In this study, most MC/MD simulations are based on an asymmetric Σ81 (mixed tilt and twist) 
GB to represent the behaviors of general GBs. To test generality of our predictions, we have also 
performed MC/MD simulations for three other GBs, including an asymmetric Σ15 (mixed tilt and 
twist) GB, a Σ41 symmetric tilt GB, and a Σ13 symmetric twist GB. For each of them, four non-
equimolar HEAs selected based in the simulations of the asymmetric Σ81 GB diagrams, where the 
first three (HEA1-3) exhibit strong Cr segregation while last one (HEA4) has weak Cr segregation, 
were examined. Notably, MC/MD simulations show similar and consistent trends for all four GBs: 
HEA1-3 always have large , but HEA4 always has small  (Suppl. Table S4 and Fig. S15). ΓCr ΓCr

Furthermore, DFT calculations also confirm that  (around -0.026 eV/atom) of HEA1-3 is 𝐸Cr
Seg

significantly lower than that for HEA4 (~ 0.0001 eV/atom), as shown in Supplementary Table S4. 
In conclusion, the trends predicted based on the asymmetric Σ81 (mixed tilt and twist) GB are 
likely representative. See Supplementary Discussion 10 for elaboration.

Probing segregation mechanisms by first-principles calculations of electronic structures 

We have also calculated sum of bond ordering (SBO) values for the four non-equimolar HEAs 
discussed above to further understand how the bonding environment affects the Cr segregation 
(see Methods). Since SBO represents the total number of electrons that form bonds, similar SBO 
values indicate similar bonding environments. Interestingly, Fe, Cr, and Co atoms always have 
similar SBO values, which are ~4.04, ~3.95, and ~3.78, respectively. In contrast, Mn and Ni 
exhibit two distinct SBO values of ~4.20 and ~3.49, respectively (Suppl. Fig. S16). Therefore, the 
preferred Cr segregation at the Fe- or Co-rich GBs can be understood because Fe or Co can provide 
more favorable segregation sites with similar bonding environments. On the other hand, the 
different bonding environments at Mn- or Ni-rich GBs can inhibit Cr segregation.

A recent study suggested that SBO can be used as a descriptor to predict and subsequently 
tailor GB segregation.28 For example, if we want to promote segregation of a certain element (e.g., 
Cr) in HEAs, we can increase the composition of the elements with similar SBO values (e.g., Fe 
and Co) and/or reduce the composition of those with different SBO values (e.g., Mn and Ni). It is 
interesting to note that large chemical-affinity disparity of different elements can foster segregation 
in HEAs.37 Here, it is shown that the atomic pairs of Cr-Fe and Cr-Co have relatively larger 
chemical-affinity disparity than Cr-Mn and Cr-Ni, thereby suggesting that Fe and Co will promote 
Cr segregation to CrMnFeCoNi GBs.37 This is consistent with the SBO calculations.

Conclusions

In this study, we used large-scale hybrid MC/MD simulations to generate a large dataset of GB 
properties for CrxMnyFezColNim HEAs. The machine learning technique was firstly used to predict 
the GB properties of HEA as a function of four compositional DOFs and temperature in a 5D 
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space. In addition, we found that interfacial disorder, as well as the interactions among 
segregation/depletion of five elements and GB disorder, can induce new and complex interfacial 
phenomena in HEAs, beyond the prediction of classical GB segregation theory. Notably, we 
discovered a GB critical compensation temperature in HEAs. Based on a careful analysis of the 
large dataset, we further created a physics-informed data-driven model or PIDDM to represent GB 
segregation and disordering in the 5D space, where all parameters have clear physical meanings 
(vs. the black-box machine learning model). This work has enriched the classical GB segregation 
theory and developed a predictive and transferrable model for a range of HEA systems. 
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Methods

Composition Selection and Principal Component Analysis (PCA). In this work, the composition of each 
element was fixed in a range from 5 at% to 35 at% with a step of 5 at% for CrxMnyFezColNim. Since x + y 
+ z + l + m = 1, there are 1371 possible compositions in total. Among them, we randomly selected 258 
subsystems to perform high-throughput MC/MD simulations to generate a dataset. Principal component 
analysis (PCA) was used to analyze the composition distribution for these 258 subsystems to ensure the 
randomness of our selection, where the singular value decomposition (SVD) algorithm was chosen. The 
PCA were performed by Matlab2019a. 

Interatomic Potential: Validity and Limitation. We adopted the second nearest-neighbor modified 
embedded atom method (2NN MEAM) potential.49 This potential was initially developed for the equiatomic 
alloys but is extended to model non-equiatomic compositions from 5 to 35 at% in this study. It was based 
on validated MAEM potentials for unary, binary, and ternary alloys, which suggests its extendibility to 
predict short-range interactions in non-equiatomic compositions. This is perhaps the best available 
interatomic potential for the CrMnFeCoNi system. Wynblatt and Chatain have also applied this MEAM 
potential to study the GB thermodynamic properties of CrMnFeCoNi for 13 twist GB and produced Σ
simulation results were supported by experiments (albeit most of GBs in the experimental studies have 
random orientations).24 In addition to 13 twist GB, our MC/MD simulations were performed for 15 Σ Σ
asymmetric tilt GB, 41 symmetric tilt, and Σ81 mixed GB. Our simulations showed that Cr and Mn Σ
elements always have the strongest segregation for all four GBs (Suppl. Fig. S15), thereby suggesting the 
generality of our predictions. Moreover, we believe this study can offer insights on new physics of 
segregation phenomena in HEAs (even if the prediction is limited by the potential). Notably, this study can 
help us to validate the new methodology of modeling GB segregation in HEAs (e.g., computing GB 
diagrams and establish new analytical models), which can be used for other systems and/or when improved 
potentials are developed in future.   

Hybrid MC/MD simulation for GB diagrams. The GBstudio50 website was used to construct a mixed 
twist-tilt Σ81 GB with boundary planes (1 0)//(7 7) to represent general GBs of a large simulation cell 1 8
containing 11,664 atoms. The energy minimization for each GB was first performed at 0 K by conjugate 
gradient (CG) algorithm. Subsequently, the hybrid Monte Carlo and molecular dynamics (hybrid MC/MD) 
simulations in constant NPT ensembles were carried out to swap atoms and find energetically favorable GB 
structure. Five MC trial moves were conducted between each MD step with a 0.1 fs MD time step and 105 
hybrid MC/MD steps performed for each simulation to achieve convergence. The NPT-based MC/MD 
simulations can consider the coupling of GB disordering and segregation. All MD and MC/MD simulations 
were performed using the LAMMPS code.51 1032 individual hybrid MC/MD simulations were performed 
(for 258 compositions  4 different temperatures) to generate a large 10326 (5 bulk compositions plus 
temperature) dataset to train ANN models. Note that all MC/MD simulations were performed from 1000 K 
to 1300 K because experiments show that CrMnFeCoNi HEA has single FCC phase at this temperature 
range.33 

The methods used to calculate GB excess of solute (i.e., GB adsorption amount ΓCr, ΓMn, ΓFe, ΓCo, ΓNi) 
and disorder (ΓDis) diagrams were same as our prior studies. The GB excess of disorder ΓDis was computed 
based on: , where the disorder parameter  (  = 1 means liquid  ΓDis = ∫ +∞

―∞[𝜂Dis(𝑧) ― 𝜂Dis( ± ∞)]𝑑𝑧 𝜂Dis 𝜂Dis

and = 0 represents perfect crystal) was calculated of each atom following a procedure proposed by Chua 𝜂Dis
et al..34 More detailed procedures are described in our prior works.20, 28, 52 The exact value of  is difficult ΓDis
to be measured directly by experiments. However, the relative levels of structural disorder at the GB can 
be examined by STEM and compared with simulated  (see, e.g., our recent study52). To calculate GB ΓDis
free volume (VFree), we used the relation of VFree = VTotal , where VTotal is the total volume of GB structure ∙ ∑𝛤𝑖
and i = Cr, Mn, Fe, Co, or Ni. To minimize the thermal noise effect, we calculated each GB property based 
on the average of five random structures during the last five MC/MD steps. 
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It should be noted that we set an overall global composition in a hybrid MC/MD simulation. The bulk 
composition is recalculated based the grain composition (away from the GB region) after achieving the 
chemical equilibrium, which is subsequently used for both training the ANN model and further analysis 
and developing a data-based analytical model. It is important to note that we always plot the GB segregation 
and other properties as a function of actual bulk composition measured at the center of the grain (instead of 
the global composition). Thus, the grain size effect is not included.

Machine Learning models. To identify the best machine learning model for the data-driven prediction and 
discovery of GB properties, we trained and tested an artificial neural network (ANN) model, along with 
three other linear regression-based machine learning models: support vector machine (SVM), regression 
tree (Tree), and rational quadratic Gaussian models. To avoid overfitting, 5 folds was chosen as a cross-
validation value for training the SVM, regression tree and Gaussian models. All data processing and 
development of machine learning models were performed by Deep Learning Toolbox and Regression 
Learner Toolbox in Matlab2019a. 

By comparing the RMSE values of predicting six GB properties of training ANN model and other three 
linear regression models (Fig. 2(J)), we found that the RMSEs of the ANN model always have the lowest 
values among all four machine learning models. Thus, we adopted the ANN model as the machine learning 
engine for this data-driven prediction of GB properties.

For training and validating the ANN models, we split the data set into training, validation, and test 
subsets in a ratio of 0.7:0.15:0.15. The Levenberg-Marquardt backpropagation function was adopted to 
train ANN models. We found the optimized network architectures for the ANN (ni-n[i]-1, where ni is the 
number of input parameter, n[i] (the number of neurons in the single layer) is set to be 6-20-1. The random 
dropout values were set to default setting 0.5. To prevent over-fitting issues for training ANN models, we 
always train ANN models until the prediction of training, validation, and test data have similar MSE errors. 

Derivation of a physics-informed data-driven model (PIDDM). Based on the linear regression analyses 
shown in Fig. 4C and Suppl. Fig. S10, the adsorption amount, , is statistically correlated with the 𝛤𝑖(𝑇,𝑋)
GB excess of disorder, , linearly with the slope  at a given temperature , where is 𝛤𝐷𝑖𝑠(𝑇,𝑋) 𝛼𝑖

Dis(𝑇) 𝑇 𝑋 = {𝑋𝑖} 
a concise form to note the bulk composition of the HEA. Thus, we statistically have the following linear 
correlation:

  = , (7)𝛤𝑖(𝑇,𝑋) ― 𝛤0
𝑖 𝛼𝑖

Dis(𝑇) ∙ [𝛤𝐷𝑖𝑠(𝑇,𝑋) ― 𝛤0
𝐷𝑖𝑠]

where (  , ) is the intersection point of all linear regression lines for different temperatures in each 𝛤0
𝑖  𝛤0

𝐷𝑖𝑠
panel of Fig. 4C, and they are virtually independent of temperature. Here, we use an overbar on  to 𝛼𝑖

Dis
denote that it is a statistical average value. In other words, we do not suggest a simple linear relation between 

 and ; on the contrary, we know it is not (because of  , where overbar means a statistically Γi ΓDis 𝛤0
𝑖 = 𝛤0

𝑖 (𝑋)
averaged value, as the individual  is not a constant based Eq. (9) below). Scattered data points in Fig. 𝛤0

𝑖 (𝑋)
4C can be ascribed to 258 different compositions . However, a hidden statistical correlation exists 𝑋 = {𝑋𝑖}
after averaging over the 258 random compositions . We can observe in Fig. 4C that  is a relatively small 𝑋 𝛤0

𝑖

number:  . Furthermore, the linear regression analyses shown in Fig. 4D suggest:𝛤0
𝑖 = 𝛤0

𝑖 (𝑋) ≪ Γ𝑖(𝑇,𝑋)

), (8)𝛼𝑖
Dis(𝑇) =  𝛽𝑖 ∙ (𝑇 ― 𝑇C

where is slope of the linear regression line in Fig. 4D. Here,  is a critical temperature 𝛽𝑖 𝑇C  1388  51 K
shown in Fig. 4D. At , (see Suppl. Fig. S10), so this critical temperature is the so-𝑇 = 𝑇C 𝛤𝑖(𝑇𝐶,𝑋) = 𝛤0

𝑖 ~0 
called “isoequilibrium” (or “compensation”) temperature of GB segregation.39, 40 Eqs. (7)-(8) are same as 
Eqs. (1)-(2) in the main text. We further propose:

. (9)Γ𝑖(𝑇,𝑋) = 𝛽𝑖 ∙ (𝑇 ― 𝑇C) ∙ [𝛤𝐷𝑖𝑠(𝑇,𝑋) ― 𝛤0
Dis] + 𝛤0

𝑖 (𝑋)
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Here, we can assume =  (or the minimum among all possible HEAs compositions), which are 𝛤0
𝐷𝑖𝑠 𝛤min

Dis
approximately held based on Fig. 4C and Suppl. Fig. S10, except for the case of Ni, where there are too 
high noises due to the small values of . In Eq. (7) and Fig. 4 and S10,  is a fitted constant independent Γ𝑁𝑖 𝛤0

𝑖
of X. In Eq. (9), we further generalize Eq. (7) to allow this constant  to be a function of X to enable more  𝛤0

𝑖

accurate fitting, where we have . Here, we may adopt a linear expression as a first-order  𝛤0
𝑖 ≡ 𝛤0

𝑖 (𝑋) 
approximation:

(10) 𝛤0
𝑖 (𝑋) =  ∑𝑗(𝜅Seg

𝑖, 𝑗 ∙ 𝑋𝑗)
where  is a coupling coefficient for the GB segregation. Thus, we have:𝜅Seg

𝑖, 𝑗

. (11)Γ𝑖(𝑇,𝑋) = 𝛽𝑖 ∙ (𝑇 ― 𝑇c) ∙ [𝛤𝐷𝑖𝑠(𝑇,𝑋) ― 𝛤0
Dis] + ∑

𝑗(𝜅Seg
𝑖, 𝑗 ∙ 𝑋𝑗)

Since GB disorder should increase with temperature, we propose the following relation:

, (12)𝛤𝐷𝑖𝑠(𝑇,𝑋) = 𝛤𝐷𝑖𝑠, 0(𝑋) ∙ exp ( ―
𝐸𝐷𝑖𝑠

𝐴

𝑘B𝑇)
where  is the activation energy of disordering, and  is the Boltzmann constant. We again adopt a 𝐸𝐷𝑖𝑠

𝐴 𝑘B
linear expression as a first-order approximation for the temperature-independent pre-factor:

(13) 𝛤𝐷𝑖𝑠, 0(𝑋) =  ∑𝑖(𝜅Dis
𝑖 ∙ 𝑋𝑖)

Next, we can use all hybrid MC/MD-simulated data points to fit Eqs. (12) and (13). Finally, by combining 
Eqs. (11)-(13), we can obtain:

 . (14)Γ𝑖(𝑇,𝑋) = 𝛽𝑖 ∙ (𝑇 ― 𝑇C) ∙ [∑
𝑖(𝜅Dis

𝑖 ∙ 𝑋𝑖)exp ( ―
𝐸𝐷𝑖𝑠

𝐴

𝑘B𝑇) ― 𝛤0
Dis] + ∑

𝑗(𝜅Seg
𝑖, 𝑗 ∙ 𝑋𝑗)

Further discussions about the physics-informed data-driven model (PIDDM) and the physical meaning and 
origin of TC can be found in Supplementary Discussions 5 and 6.  

Density functional theory (DFT) calculations. The first-principles DFT calculations were performed by 
using the Vienna ab initio Simulations Package (VASP).53, 54 The Kohn-Sham equation was used to solve 
the projected-augmented wave (PAW) method55, 56 along with standard PAW potentials. All GB structures 
were fully relaxed until the Hellmann-Feynman forces were smaller than 0.02 eV/Å. The Brillouin-zone 
integrations were sampled on a Γ-centered 2×2×1 k-point grids. The kinetic energy cutoff for plane waves 
was set to 368 eV. The convergence criterion for the electronic self-consistency was set to 10-4 eV. The 
“high” precision setting was adopted to avoid wrap around errors. The spin-polarization was not considered 
due to weak effect on atomic arrangement.57 The SBO was calculated by using the state-of-the-art DDEC06 
method58 following the all-electron static calculations.
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Fig. 1. Workflow of the machine learning prediction of grain boundary (GB) diagrams, data-based 
discovery of new interfacial phenomena, and development of a physics-informed data-driven model 
(PIDDM). (A) Schematic diagram of non-equimolar five-element CrxMnyFezColNim alloys. (B) Principal 
component analysis (PCA) verifying the randomness in the selection of 258 HEAs. (C) The equilibrium 
structure of an asymmetric Σ81 GB in Co0.2Ni0.2Cr0.2Fe0.35Mn0.05 at 1000 K obtained by hybrid Monte Carlo 
and molecular dynamics (hybrid MC/MD) simulations. In total, 1032 such individual hybrid MC/MD 
simulations were performed for 258 HEAs at four different temperatures to calculate GB excesses of solutes 
(i.e., , ) and disorder ( ), and free volume (VFree). (D) Schematic diagram of an artificial ΓCr  ΓMn,ΓFe,ΓCo,ΓNi ΓDis
neural network (ANN) model for predicting six GB properties (excluding VFree, because of its small values 
and weak correlations with other variables); three other machine learning models have also been trained 
and tested, while the ANN model is selected because of its best performance. (E) An example of GB 
diagrams predicted by the ANN model for a ternary CrxMnyFezCo0.2Ni0.2 (x + y + z = 0.6) subsystem, 
showing three isothermal sections of the Cr adsorption ( ) diagrams. (F) Screenshot of strong Cr ΓCr
segregation in different GBs, which is also verified by DFT calculations. (G) Correlation analysis of GB 
properties. (H) Schematic of new interfacial phenomena in HEAs. (I) A data-driven discovery of a GB 
critical temperature TC. (J) A PIDDM that can be used to predict GB properties with parameters of clear 
physical meanings.
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Fig. 2. ANN performance for predicting GB properties. (A) Parity plot of ANN predictions vs. MC/MD 
simulations for the GB excess of Cr adsorption ( ). (B-C) MC/MD-simulated vs. ANN-predicted isopleths ΓCr
of  diagrams as functions of temperature and Mn bulk composition (x = XMn) for the Cr0.4-ΓCr

xMnxFe0.2Co0.2Ni0.2 system. (D-I) Representative ternary isothermal sections of ANN-predicted GB 
diagrams of , , , , , and  for CrxMn0.2FeyCo0.2Niz (x + y + z = 0.6; x  = XCr, y = XFe, z = ΓCr  ΓMn ΓFe ΓCo ΓNi ΓDis
XNi) at 1000 K. Note that different color bars are used for different diagrams better represent different ranges. 
Specifically, the color bars of  and  diagrams represent from zero (blue for weak segregation) to ΓCr ΓMn
positive values (red for strong segregation) in Panel (D, E, I), while those in the , , and  diagrams ΓFe ΓCo ΓNi
represent from zero (blue for weak depletion) to negative values (red for strong depletion) in Panel (F, G, 
H). (J) Comparison of RMSEs for six GB properties predicted by the ANN model, three other machine 
learning models, i.e., support vector machine (SVM), regression tree (Tree), and rational quadratic Gaussian 
models, and the PIDDM. The ANN model is selected to predict GB diagrams because it yielded the lowest 
RMSEs among the four machine learning models. 
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Fig. 3. Unique coupled interfacial disordering and GB co-segregation behaviors in HEAs, exemplified 
by comparing the same asymmetric Σ81 GB in equimolar CrMnNi vs. CrMnFeCoNi alloys at 1000 
K. (A) Schematic of the site competition in relatively ordered GBs. (B) Schematic of the coupling of 
interfacial disordering and co-segregation of Cr and Mn in quinary alloys, which can enhance each other. 
(C) MC/MD-simulated GB structure of the equimolar CrMnNi alloy and the corresponding disorder 
parameter ( ) and atomic density profiles. This GB exhibits an GB excess disorder  of ~39 nm-2, 𝜂𝐷𝑖𝑠 ΓDis
moderate segregation of Cr (  = ~5.3 nm-2), and weak segregation of Mn (  = ~0.8 nm-2). (D) MC/MD-ΓCr ΓMn
simulated GB structure of the equimolar CrMnFeCoNi and the corresponding disorder parameter ( ) and 𝜂𝐷𝑖𝑠
atomic density profiles. In comparison with the same GB in the ternary CrMnCr alloy, this GB in the 
quinary Cantor alloy is more disordered with a larger  of ~43 nm-2 and strong co-segregation of Cr and ΓDis
Mn (  = ~18.3 nm-2 and  = ~7.0 nm-2, which represent ~3.5 and ~9 increases, respectively, from ΓCr ΓCr
those in the ternary alloy). More examples and further discussion can be found in Supplementary Discussion 
4.  
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Fig. 4. Correlation analyses of GB thermodynamic properties. (A) Heat map of Pearson correlation 
coefficients (PCCs) between all pairs of the seven GB properties. (B) Calculated correlation coefficients 
between GB excess of disorder ( ) and six other GB properties (GB excesses of Cr, Fe, Co, Ni and Mn, ΓDis
as well as GB free volume) at different temperatures. (C) Plots of GB excess of Cr ( ) vs. GB excess of ΓCr
disorder ( ) at 1000 K, 1100 K, 1200 K, and 1300 K for 258 different HEAs. The dashed lines are ΓDis
regression lines of  vs.  at four different temperatures, where the statistical linear correlation ΓCr  ΓDis
coefficient is denoted as . The plot for other four GB adsorption properties vs.  can be found in 𝛼Cr

Dis  ΓDis

Suppl. Fig. S10. (D) The fitted  (  = Cr, Mn, Fe, Co, Ni) as functions of temperature (T) for five elements. 𝛼𝑖
Dis 𝑖

The slopes of  vs. T regression lines are labelled as . Notably, all five fitted linear lines cross over at 𝛼𝑖
Dis  𝛽𝑖

nearly one point on the horizonal T-axis ( ) at TC  1388 K. 𝛼𝑖
Dis = 0
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Fig. 5. Analyses and comparisons of the classical segregation models, MC/MD simulations, and 
PIDDM. (A) Histograms of the disorder contribution to GB adsorption of each element based on the 
DBAM. (B) Schematic illustration of an isoequilibrium effect40 due to a perfect enthalpy-entropy 
compensation (albeit this compensation is likely incomplete in the current case).  (C) Parity plot of  ∆𝐻Seg

Cr,𝑗
(the segregation enthalpy of Cr in the binary Cr-j alloy, where j = Mn, Fe, Co, and Ni, calculated used a 
lattice-type model44) vs.  (the compositional coupling coefficients in the PIDDM). The positive (or 𝜅Seg

Cr,𝑗
negative) values of  or  indicate Cr is favorable (or unfavorable) to segregate. (D) Calculated GB ∆𝐻Seg

Cr,𝑗 𝜅Seg
Cr,𝑗

adsorption (  = Cr) vs. the bulk Cr fraction ( )  for four Crx-j1-x (  = Mn, Fe, Co, and Ni) binary alloys 𝑋GB
Cr 𝑋bulk

𝐶𝑟 𝑗
at 1000 K using the Wynblatt-Ku model47. (E) MC/MD-simulated  vs.  for four HEAs at 1000 K. ΓCr 𝑋bulk

𝐶𝑟
The compositions are noted in the legend, where in each case the increase in the Cr fraction is compensated 
by one selected element while keeping the fractions of the three other elements at the constant level of 0.2. 
(F) Comparison of various GB segregation models discussed in the text and supplementary discussions.
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