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The manuscript provides our two-step strategies with a cellular automaton model and deep neural networks 

to consider lithium dendrite formation in highly concentrated ions such as ionic liquids. For the cellular 

automaton model, we developed a lattice Monte Carlo (MC) simulation based on the diffusion-limited 

aggregation model. The present study was motivated mainly by a puzzling observation in our experiment 

(presented in the supplemental information), in which ionic liquids significantly inhibited the dendrite 

formation and made the growth remarkably uniform. Despite the model’s simplicity, our lattice simulation 

is also consistent with this phenomenon and therefore serves as a tractable computational approach to design 

lithium-ion batteries with ionic liquids. Secondly, to generalize the model for future experimental analysis, 

we constructed ensemble neural networks (ENNs) via machine learning techniques that serve as a surrogate 

model for the MC simulation. Training our ENNs can be achieved with a small number of samples, and 

thus the simulation cost can be significantly reduced. Given that this sampling is also possible in 

experiments, our ENNs have the potential to be employed for facilitating the analysis of experimental data 

and efficiently designing lithium-ion batteries with ionic liquids.  
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Inhibition of Lithium Dendrite Growth with Highly Concentrated 
Ions: Cellular Automaton Simulation and Surrogate Model with 
Ensemble Neural Networks† 
Tong Gao,a Ziwei Qian, a Hongbo Chen, a,b Reza Shahbazian-Yassar c and Issei Nakamura *a 

We have developed a lattice Monte Carlo (MC) simulation based on the diffusion-limited aggregation model that accounts 
for the effect of the physical properties of small ions such as inorganic ions and large salt ions that mimic ionic liquids (ILs) 
on lithium dendrite growth. In our cellular automaton model, molecular and atomistic details are largely coarse-grained to 
reduce the number of model parameters. During lithium deposition, the cations of the salt and ILs form positively charged 
electrostatic shields around the tip of the dendrites, and the anions of the salt and ILs form negative local potential lumps 
in adjacent areas to the dendrite. Both of the effects change the distribution of the electrostatic potential and notably inhibit 
dendrite formation between electrodes. The applied voltage and the physical properties of the salt ions and ILs, such as the 
size of the ions, the size asymmetry between the cation and anion, the dielectric constant, the excluded volume of the ions, 
and the model parameter 𝜂𝜂, notably affect electric-field screening and hence the variation in the local potential, resulting in 
substantial changes in the aspect ratio and the average height of the dendrites. Our present results suggest that the large 
salts such as ILs more significantly inhibit the dendrite growth than the small ions, mainly because the ions highly dissociated 
in ILs can participate in electrostatic shielding to a greater degree. To reduce the computational complexity and burden of 
the MC simulation, we also constructed a surrogate model with ensemble neural networks.

I. Introduction 

Lithium metal deposition is a phenomenon that occurs during 
the charging and discharging of lithium-ion batteries. As the 
battery is charged, lithium ions are released from the positive 
cathode, travel through electrolytes, and are intercalated into 
the graphene layers of the graphite (negative anode). During 
this charge phase, deposits solidified on the surface of the 
anode can form branching tree-like structures, the so-called 
lithium dendrite (Fig. 1). The growth trend of the deposits is 

spatially uneven. Typically, needle-shaped or dendritic lithium 
grows on the surface of the anode over many discharge-
recharge cycles.1, 2 If dendrites grow too long, some dendrites 
may fall off and no longer participate in the reaction, which 
brings irreversible capacity loss to the battery.3-5 Additionally, 
the grown dendrite may pierce the separator between the 
cathode and anode, forming a short circuit and potentially 
causing a catastrophic fire.5-7 To maintain the safety of lithium-
ion batteries, it is essential to identify the critical factors that 
substantially affect the process of metal solidification in 
electrolytes. Specifically, a general treatment to inhibit the 
dendrite growth will not only help to improve the safety of Li-
ion batteries but also give further insights into the 
electrodeposition process in the electrochemical industry.8, 9 
Nevertheless, this research objective remains challenging 
because (1) there exist a wide choice of system parameters, 
such as the size of ions, the size asymmetry between the ions in 
electrolytes, dielectric constant, and applied voltage, and (2) 
the reactions associated with the dendrite growth involve 
multiple length and time scales. This complexity also often 
complicates the computational modeling of the dendrite 
formation under various environments, and thus a reduction in 
the number of model parameters would also help in identifying 
the optimal design of the electrolyte systems.   
 Over the past few decades, many studies have aimed to 
improve the stability of the electrodes,10-13 the qualities of 
electrolytes 4, 14-21 and separator materials,22, 23 and the charging 
methods 24-26 of lithium-ion batteries. Numerous researchers 
have recently reported metal electrodepositions in ionic liquid 
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Fig. 1  Lithium metal electrodeposition during the charging 
process in a lithium-ion battery. 
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(IL)-containing electrolytes.8, 15, 27-29 Among others, an 
experimental study by Pearson et al. 29 suggests that the ionic 
strength plays an important role in causing substantial 
differences in dendrite growth between ILs and conventional 
organic liquid electrolytes. For example, the number of the 
nuclei increases and the dendrite growth rate decreases as the 
ionic strength is increased. Moreover, ILs increase the 
electrolyte viscosity, thus retarding dendrite formation. 
Similarly, our experimental observation of lithium dendrite in a 
combination of 1M LiPF6 in EC/DMC electrolyte and 10% IL 
[BMIM][TFSI] also showed remarkably uniform, unconventional 
dendrite growth in Fig. S1†. Therefore, further theoretical 
investigation of the effect of the ionic strength on the inhibition 
of dendrite formation, particularly with the visualization of 
dendrite growth and electrostatic potential maps, would 
probably provide a deeper understanding of the inhibition 
mechanism of dendrite growth. 

Dendrite growth involves various physical and chemical 
interactions that occur over multiple lengths and time scales30. 
Accordingly, various computational approaches, such as Monte 
Carlo (MC) simulations,26, 31, 32 molecular dynamics (MD) 
simulations,33 Brownian dynamics (BD) simulations,26 and 
phase-field models,34-49 have been developed. For example, 
Selis and Seminario performed classical MD simulations and 
investigated the relationship between charging methods and 
lithium dendrite formation in a nanobattery.33 However, the 
time scale of the MD simulations is typically limited to the order 
of nanoseconds and cannot adequately account for the 
mechanism of mesoscopic or macroscopic metal dendrite 
growth associated with salt ions and ILs. BD simulations are also 
particle-based methods but can access longer time scales and 
larger length scales. Aryanfar et al. presented a novel coarse-
grained MC model based on Brownian motions to explore the 
effect of electric current density on dendrite formation.26 
Nevertheless, BD typically assumes implicit solvents, is often 
inadequate to account for strong electrostatic correlations, and 
is normally well-defined for solid bodies with vast amounts of 
collisions due to surrounding molecules within the momentum 
relaxation time. Phase-field models are powerful tools to study 
the nucleation and dendrite growth that occur on relatively 
longer time scales and larger length scales.34-49 Nevertheless, 
the model of the free energy often contains numerous 
adjustable parameters and may be constructed somewhat 
arbitrarily or empirically.39 Thus, the development of more 
computationally tractable models with a relatively small 
number of model parameters that account for metal dendrite 
growth on the timescales beyond nanoseconds and the length 
scales beyond nanometers would also be convenient and 
beneficial from both the theoretical and experimental 
viewpoints. 
 Along the lines of a simulation method consisting of a 
minimal set of model parameters, Chen and Jorné developed a 
lattice simulation model for metal dendrite formation by 
considering zinc electrodeposition,50 given that the diffusion-
limited aggregation (DLA) model captures the pattern formation 
of the dendrite growth. This hypothesis is legitimate because 
the DLA model serves as an algorithm (or a cellular automaton 

51, 52) that simulates the solidification in which the microscopic 
reaction mechanisms are largely unknown and/or practically 
intractable. For example, the super-rough dynamics of tumor 
growth were discovered to exhibit the linear molecular beam 
epitaxy universality class,53-55 a feature which can be simulated 
by the DLA (or Eden) model.56 In the study by Chen and Jorné, 
the electrodeposition and morphology of zinc dendrites in a 
two-dimensional battery were observed. The fractal dimension 
determined by digitizing photographs was 1.7 and was 
consistent with the value 1.71 calculated by the simulations 
using the DLA model originally developed for a dielectric 
breakdown proposed by Niemeyer et al.57 Thus, despite the 
drastic simplification of the coarse-grained lattice model, the 
agreement between theory and experiment is remarkable. 
Unfortunately, however, this lattice-simulation model has not 
been substantially developed over the past decades, and thus 
the application of the simulation model to salt-doped liquids 
and highly concentrated ions remains limited.  
 In this paper, we study the effect of small salt ions and large 
salt ions that mimic ILs on dendrite growth by considering the 
height and aspect ratio of the dendrite. We develop the DLA 
model on the lattice originally proposed by Niemeyer et al. to 
mimic lithium dendrite growth in electrolytes, mainly motivated 
by the model feasibility for zinc dendrite.50 Moreover, it is well 
known that although the DLA model (or cellular automaton 
model) largely simplifies or ignores reaction mechanisms on 
atomistic and molecular scales, it often captures the 
macroscopic formation pattern of solidification. Likewise, our 
present cellular automaton model for electrodepositions does 
not contain many atomistic and molecular details regarding the 
reaction mechanism of the metal solidification, yet it provides a 
convenient tool to investigate how the electrostatic 
interactions affect dendrite formation with a minimal set of 
model parameters and thus to identify a possible mechanism 
for the dendrite inhibition caused by the small salt ions and ILs. 
Regarding the thermodynamic ensemble of ion configurations, 
we employ the lattice model of large ions with the excluded 
volume by Borukhov et al.58 This lattice model accounts for the 
electrical double layer near charged surfaces. In this 
manuscript, we consider the dendrite growth to be limited to 
two-dimensional systems for computational simplicity. 

Nevertheless, the generalization of the MC simulations with 
various model parameters and the achievement of good 
statistical convergence with a large number of samples are not 
easy tasks in general.  Moreover, we are aware that like other 
simulation techniques for dendrite formation, the present 
lattice MC simulation model may still involve a limitation on the 
direct comparison between the simulation and experimental 
data because real systems are typically larger than the 
simulation length scale, and the entire description of the 
electrostatic nature on the nanoscales regarding the dendrite 
formation is often significantly challenging. Thus, we also need 
a generic, tractable method that provides the design principle 
of electrochemical devices for the dendrite inhibition in 
electrolytes. To this end, we also considered a surrogate model 
using ensemble neural networks (ENNs) in machine learning 
techniques, as ENNs, or their variant, have proved to be useful 
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tools that can outperform a single NN in various studies 59-63. 
We show that our ENNs reasonably captures the non-
monotonic trends of the MC simulation results, even though the 
number of simulation samples at each data point is decreased 
from the order of 200 to 20. Thus, our surrogate model serves 
as a convenient tool that enables fast characterization and 
design of the electrolytes with dendrite formation.  

II. Model and Simulation Methods 
Our lattice model based on the DLA algorithm consist of a 
cathode at the top, an anode at the bottom, and an electrolyte 
between them. The gist of the lattice DLA model includes the 
idea that when the reaction mechanism of microscopic events 
is intractable, the algorithm that solidification over the coarse-
grained, mesoscopic length scales occurs at the lattice points is 
assumed. The validity of the model is often checked against bulk 
values such as the fractal dimension and the scaling law of the 
growth rate of solidification. Here, the molar concentration of 
the lithium ion in Li-ion batteries typically falls in the range of 
0.1 to 1 [M]. In this case, the volume fractions of the lithium ion 
fall in the range of 0.00013 to 0.0013, and the molar 
concentrations are significantly smaller than those of other 
ionic species. For example, when the volume fraction of the 
added salt is 0.2, the ratio of the molar concentration of the 
lithium ion to that of the added salt falls in the range of 0.8 to 8 
%. In other words, the contribution of the ionic strength of the 
lithium ion to those of the added salt is relatively insignificant. 
Thus, as an analog of the DLA model for the zinc dendrite 
formation50, we treat the lithium ions dissolved in electrolytes 
as implicit (background) ions. The distance between each lattice 
point is 2 Å, and the lattice size is N×N, where N = 51. We fix the 
potentials of the anode (or dendrite) and cathode to 0 V and 0.5 
V (unless otherwise noted), respectively. The periodic boundary 
condition is used in the direction parallel to the electrodes (see 
Fig. 1). Here, note that normal lithium-dendric branches 
typically grow over the micrometer scales. However, the 
repetition of significantly inhibited dendrite growth in ionic 
liquids shown in the subsequent section is likely to occur with 
increasing the system size, mainly because highly branching 
growths are considerably inhibited and do not appear beyond 
one- or two-nanometer length scales in the present simulations. 

Such relatively homogeneous geometry would also be largely 
maintained in larger systems because the pattern formation in 
the DLA model exhibits fractal structure. Moreover, the Debye 
screening lengths (≲ 1 Å) in our simulations are significantly 
smaller than the system size. Thus, the system size is sufficiently 
large to consider the electrostatic correlations and the local 
growth mechanism of the dendrite. Nevertheless, the complete 
macroscopic pattern of the dendrite formation may also be 
further studied via other physical models such as the phase field 
model and Brownian dynamics simulation by accounting for the 
local growth mechanism derived from the present simulation 
model. 
 
 We illustrate our lattice system in Fig. 2. The blue circles 
represent the deposited lithium metals forming the lithium 
dendrite. The dendrite blobs stem from the negative electrode 
and thus have the same potential as that of the negative 
electrode. The white circles indicate the empty site for the 
candidate for the lithium dendrite in our MC method. Salt ions 
can also occupy those empty sites. The electric potential 𝜙𝜙𝑖𝑖,𝑗𝑗 at 
the lattice point ( 𝑖𝑖, 𝑗𝑗 ) consists of the electric potential 𝜙𝜙𝑖𝑖,𝑗𝑗𝐸𝐸  
produced by the electrodes and the Coulomb potential 𝜙𝜙𝑖𝑖,𝑗𝑗𝐶𝐶  
produced by the ions (treated as an explicit particle) as follows: 
 

 𝜙𝜙𝑖𝑖,𝑗𝑗 = 𝜙𝜙𝑖𝑖,𝑗𝑗𝐸𝐸 + 𝜙𝜙𝑖𝑖,𝑗𝑗𝐶𝐶  (1) 
 
Note that the growth of the lithium dendrite indicates changes 
in the shape of the anode surface. Accordingly, the electrostatic 
field between the electrodes also changes due to the change in 
the boundary condition of the electrostatic potential on the 
anode. With these altered boundary conditions due to the 
geometric changes, we need to solve Laplace’s equation 26  

 
 𝛥𝛥2𝜙𝜙𝐸𝐸 = 0 (2) 

Here, we write Eq. (2) on the lattice in the following form 57:  
 

 𝜙𝜙𝑖𝑖,𝑗𝑗𝐸𝐸 =
�𝜙𝜙𝑖𝑖+1,𝑗𝑗

𝐸𝐸 + 𝜙𝜙𝑖𝑖−1,𝑗𝑗
𝐸𝐸 + 𝜙𝜙𝑖𝑖,𝑗𝑗+1𝐸𝐸 + 𝜙𝜙𝑖𝑖,𝑗𝑗−1𝐸𝐸 �

4  (3) 

 
Here, 𝜙𝜙𝑖𝑖+1,𝑗𝑗

𝐸𝐸 , 𝜙𝜙𝑖𝑖−1,𝑗𝑗
𝐸𝐸 , 𝜙𝜙𝑖𝑖,𝑗𝑗+1𝐸𝐸 , and 𝜙𝜙𝑖𝑖,𝑗𝑗−1𝐸𝐸  designate the 

electrostatic potentials of four neighboring lattice points 
around the (𝑖𝑖, 𝑗𝑗) site. We note that the lattice model of Chen and 
Jorné included the effect of the electrical conductivity 𝜅𝜅  of 
water according to the modified Laplace equation, ∇ ⋅
[𝜅𝜅(�⃗�𝑟)𝜙𝜙(�⃗�𝑟)] = 0 50. However, the analysis of experimental data 
suggested that the electrical conductivity of water was about 
1% of that of the dendrite, and the effect on the lattice model 

Fig. 2 2D schematic illustration of the lattice model. The blue circles describe the 
lithium dendrites, whereas the white circles describe dendrite candidates (or 
solvents) and salt ions, respectively.

Fig. 3 Lattice occupancy of asymmetric particles in the lattice model.
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is insignificant. Given this situation, we do not consider the 
electrical conductivity 𝜅𝜅  in the present study. Concomitantly, 
this model simplification also enables us to explore the minimal 
effect to inhibit dendrite formation.  
 The Coulomb potential 𝜙𝜙𝑖𝑖,𝑗𝑗𝐶𝐶 with the dielectric constant 𝜀𝜀 is 
given by 

 𝜙𝜙𝑖𝑖,𝑗𝑗𝐶𝐶 =
1

4𝜋𝜋𝜀𝜀0𝜀𝜀
�

𝑞𝑞𝑘𝑘
𝑟𝑟𝑘𝑘𝑘𝑘

 (4) 

where 𝑞𝑞𝑘𝑘 is the k-th ionic charge and 𝑟𝑟𝑘𝑘 is the distance between 
the lattice point (𝑖𝑖, 𝑗𝑗) and the k-th ion. Fig. 3 illustrates the lattice 
occupancy of the ions with diameter d = 4 Å and d = 2 Å. The 
ions cannot be overlapped due to the effect of the excluded 
volume. A further remark about the treatment with the 
electrostatic interactions is discussed in the subsection, “A 
remark about the DLA model as a cellular automaton”.  
 We perform the MC update according to the local potential 
𝜙𝜙𝑖𝑖,𝑗𝑗 . This algorithm includes two update processes regarding 
the ion configuration and the dendrite growth. Our MC 
simulation causes the concentration gradient and the electric 
field gradient along the lines of the continuum theory for ion 
diffusion in Ref 64. Here, we note that the computational cost of 
solving Eq. (2) for the trial configuration for the MC update by 
interaction is nominal because the solution is very close to the 
original potential (i.e., the initial guess). The DLA algorithm of 
the nucleation (or the pattern formation) at the lattice point 
(𝑖𝑖, 𝑗𝑗)  in Refs. 50 and 57 assumes the following heuristic growth 
probability: 

 𝑝𝑝𝑖𝑖,𝑗𝑗 =
�𝜙𝜙𝑖𝑖,𝑗𝑗�

𝜂𝜂

∑ �𝜙𝜙𝑖𝑖,𝑗𝑗�
𝜂𝜂

⟨𝑖𝑖,𝑗𝑗⟩   
 (5) 

 
Eq. (5) indicates the nucleation probability that the empty 
lattice point adjacent to the occupied lattice point is converted 
to the new dendrite point caused by the lithium deposition. The 
denominator represents the sum of the electrostatic potentials 
of all dendrite candidates (i.e., empty points adjacent to the 
occupied points). When 𝜙𝜙𝑖𝑖,𝑗𝑗 ≤ 0, we set the probability to zero, 
assuming that the electron is unlikely to transfer from the 
electrode to the lithium ions in the negative potential area. The 
exponent 𝜂𝜂 is the model parameter suggested by Niemeyer et 
al. 57 and associates the local potential with the nucleation 
probability. Experiments show that different metals have 

different values of the fractal dimension of the dendrites 65. 
Thus, the exponent 𝜂𝜂  can be determined by the fractal 
dimension observed in experiments. For example, 𝜂𝜂 for the zinc 
dendrite may be fixed to reproduce the observed fractal 
dimension 1.7.50 However, we are not aware of the fractal 
dimension of the lithium dendrite and therefore vary the values 
in the present study. 
 Here we write the total potential energies of the system 
before and after updating the positions of the ions as 𝑈𝑈𝑜𝑜𝑜𝑜𝑜𝑜 and 
𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛 , respectively. If the trial update decreases or does not 
change the potential energy, we accept the new state; 
otherwise, we accept the new state if a uniform random 
number becomes smaller than the Boltzmann distribution 

𝑒𝑒−
(𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛−𝑈𝑈𝑜𝑜𝑜𝑜𝑜𝑜)

𝑘𝑘𝑘𝑘 . The dendrite growth is significantly slower than 
the translational motion of the ions in the electrolytes. 
Accordingly, we consider the ratio of the trial update of the 

dendrite growth to that of the ion positions to be 1:500. It 
should also be noted that the present DLA algorithm is a 
clustering method to account for the fractal pattern of 
solidification and does not involve the explicit timescale of the 
deposition process.50, 57 
 To examine the model applicability for highly concentrated 
ions, we performed dendrite-free simulations with the 
dielectric constant 𝜀𝜀 =20 for small [Fig. 4 (a)] and large [Fig. 4 
(b)] systems. Here, this dielectric constant compares favorably 

Fig. 4 Ion distributions from the electrodes for the dendrite-free simulation. The 
diameter of the cation (anion) is 2 Å. (a) Distance from the anode vs. the number N+ (N-) 
of the cations (anions). N=11 and the lattice occupancy of the ions is 76 %. (b) Distance 
from the anode vs. the ratio of N+ to N-. N=51 and the lattice occupancy of the ions is 60 
%. Fig. 5 ENN for the prediction of lithium dendrite growth. Each neuron contains an 

activation function.

Fig. 6 Sub-NN system. (a) Architecture of our sub-NN with one input layer, two hidden 
layers, and one output layer, consisting of 4,32,32, and 2 neurons, respectively. The 
first hidden layer and the output layer include the ReLU activation function, whereas 
the activation function in the second hidden layer can be the sine function. (b) Sub-
NNs’ training loss and validation loss decrease with epochs during the training process. 
The inset shows an example of bad training. 
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with the values of many common ILs and polar solvents. Overall, 
the results show the following two key features for large ions 
with excluded volume: the monolayer adsorption of the 
counterions near the electrodes and the recovery of the bulk 
density at a distance of a few monolayers from the electrodes. 
This fact is analogous to the results of the mean-field 
approximation 58 for ions with excluded volume and a molecular 
dynamics simulation 66 for ILs in a dielectric continuum. 
 A remark about the DLA model as a cellular automaton: The 
present lattice model is considered a cellular automaton, in 
which a minimal assigned rule on a regular grid of cells yields a 
qualitative feature of physical phenomena.  Typically, cellular 
automata involve model parameters to reproduce a certain 
degree of complexity in targeted growth mechanisms 51, 52. 
Here, note that our present treatment of the electrostatic 
interactions does not account for the effects of image charges 
(or induced surface charges) and the diffusion of the lithium 
ions near the dendrites, whereas these factors may also affect 
the dendrite growth. However, we assume that the electrostatic 
interactions due to these effects are electrically screened to a 
large degree by the highly concentrated ions, and thus the 
effects are relatively weaker. Therefore, we attribute the two 
effects to the model parameter 𝜂𝜂  for our cellular automaton 
model, as the consistency between the present computational 
algorithm for implicit-metal ion models and the observed fractal 
dimension of zinc dendrites was demonstrated by Chen and 
Jorné 50. 

 Ensemble neural network: We employed 20 samples for 
each volume fraction to train our ENNs using Keras 67. These 
samples are split into three parts: training, validation, and test 
datasets. As illustrated in Fig. 5, our ENN consists of an 
ensemble of 8 sub-NNs (Fig. 6) that have identical architecture 
with different activation functions. They are combined using 
linear regression. The topology of sub-NNs is 4-32-32-2, which 
represents the number of neurons in an input layer, the first 
hidden layer, the second hidden layer, and an output layer, 
respectively. We evaluated the model by the mean squared 
error (MSE) of the predicted value (𝑦𝑦�) and the target value (𝑦𝑦) 
(also referred to as a loss function) as follows: 
 

 MSE =  
∑(𝑦𝑦 − 𝑦𝑦�)2

𝑛𝑛  (6) 

 
The neurons are fully connected between the neighboring 
layers, and each connection has a weight. The weights of all sub-
NNs are randomly initialized and are optimized by minimizing 
the loss function. For the activation functions, we used ReLU, 
Gaussian, tanh, sigmoid, and trigonometric functions [Fig. 6(a)]. 
To reduce overfitting the model, we performed the early 
stopping of training with a patience setting of 20 epochs. Fig. 
6(b) shows the training loss and validation loss of a well-trained 
sub-NN during the training process. The training and validation 
loss stop when the early stop condition is satisfied. We 
employed the dielectric constant (𝜀𝜀 ), model parameter (𝜂𝜂 ), 
voltage (V), and volume fraction (𝜙𝜙) for the input variables and 
the average height (H) and aspect ratio (A) for the output layer. 

III. Results and Analysis 
In the subsequent subsections, we consider two cases as 
follows: (1) For symmetric ions, we set the grid size (2 Å) to the 
cation diameter 𝑑𝑑+  and the anion diameter 𝑑𝑑− . (2) For 
asymmetric ions, we consider (𝑑𝑑+, 𝑑𝑑−) = (4 Å, 2 Å) and (2 Å, 4 
Å). The amount of the salts is represented by the lattice 
occupancy that indicates the ratio of the number of the lattice 
sites occupied by the salt ions to the number of the total lattice 
sites. The objective of the present study is to examine how the 
dendrite surface grows with the salt ions. Thus, in addition to 
the calculation of the average height of the dendrite at a given 
MC step, we calculate the aspect ratio H/L of the dendrite to 
characterize the dendrite morphology, where H and L designate 
the height and width of dendrites, respectively (Fig. 7). For 
example, when the dendrite shape is relatively flat with a wider 
length and smaller height, the aspect ratio becomes small. We 
take a statistical average of 200 samples for each data point. 

Mechanism of dendrite inhibition 

Before we present each simulation result, we will discuss the 
primary mechanism that substantially suppresses the dendrite 
formation observed in our simulations. Note that a tip with a 
sharp edge on the metal electrode exhibits a stronger electrical 
field 68. Thus, lithium ions tend to be deposited preferentially 
around the pointy regions of the dendrite, compared to 

Fig. 7 Schematic illustration of lithium deposition: (a) Tip effect and (b) electrostatic 
shielding due to electric-field screening. Note that the actual electrostatic fields do not 
align parallel but are in highly anisotropic directions due to the dendrites.

Fig. 8 Snapshot of the potential map for 1 % salts. The color bars indicate the potential 
difference from the anode potential. The brighter the color, the larger the potential. The 
dielectric constants of the electrolytes are (a) 𝜀𝜀  = 80 and (b) 𝜀𝜀 = 20. Blue and yellowish-
green particles represent the cations and anions, respectively. 
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rounded or smooth regions. This is referred to as “tip effect” 
(Fig. 7a). Accordingly, the dendrite solidification near the pointy 
regions tends to grow rapidly and form tree-like structures. 
However, when ILs are added, the cations tend to accumulate 
near the pointy regions of the dendrite, forming a layer of 
positive charges that cause electrostatic shielding (Fig. 7b). 
These positively charged layers repel incoming Li ions from the 
pointy regions, and accordingly cause the Li ions to be deposited 
more preferentially on the adjacent area of the pointy regions. 
Thus, this deposition mechanism suppresses the rapid growth 
of the pointy regions of the lithium dendrite and leads to a 
relatively uniform formation of the dendrite. The anions 
clustered near the dendrite structure lower the local potential 
of the regions for dendrite candidates, and accordingly, this 
mechanism enhances the inhibition of the dendrite growth. 

Symmetric ions with 𝒅𝒅+  =  𝒅𝒅− 

We first illustrate the electric potential map for 1 % salt 
concentration with no dendrite formation in Fig. 8. When the 
dielectric constant is high (Fig. 8a), the color gradually becomes 
brighter from the anode to the cathode, indicating a moderate 
change in the electric potential between the cathode and 
anode. The cations (blue) and anions (yellowish-green) are 
isolated from each other. However, ion pairing and ion 
clustering occur as the dielectric constant decreases to 𝜀𝜀 = 20 
(Fig. 8b). The spatial changes in the color gradation between the 
cathode and anode becomes relatively more inhomogeneous. 
These preliminary results suggest that both the ion aggregation 
and the resultant spatial inhomogeneity of the electric potential 
may become critical in considering the dendrite growth. 

We now consider the dendrite formation (Fig. 9). In Fig. 9a 
and Fig. 9b, the black line indicates that the addition of tiny 
amounts of salt ions (≤5 %) causes significant decreases in the 
aspect ratio and average height 〈𝐻𝐻〉. However, the changes in 
both the aspect ratio and average height 〈𝐻𝐻〉 with increasing 
salt concentration vary non-monotonically, and thus there 
appear to be optimal values of salt concentration to maximize 
the uniformity of the dendrite shape and to inhibit the dendrite 
growth. Here, we attribute the rise from the local minima 
around 2 % of the volume fraction to increases in the number 
of ion pairs that do not participate in electrostatic shielding. 
Moreover, to consider the significance of the electrostatic 
interactions for dendrite growth relative to that of the excluded 
volume interactions, we eliminate the ionic charges on the salt 
ions. In other words, for comparison, we replace the salt ions 
with uncharged particles. However, the addition of the 
uncharged particles (1) does not substantially decrease the 
aspect ratio unless the volume fraction exceeds about 50 % (Fig. 

Fig. 9 Effects of the ionic charge, the dielectric constant, the parameter 𝜂𝜂 , and the 
applied voltage on dendrite growth for the symmetric ions (𝑑𝑑+ = 𝑑𝑑−). The x-axis is the 
lattice occupancy of the salts or uncharged particles. 〈𝐻𝐻〉 designates the average height 
calculated after 2×107 MC steps. The applied voltage is 0.5 V in (a) – (f) and (i) – (l). The 
dielectric constants are 𝜀𝜀 = 80, unless otherwise noted. Insets in the figures in the left 
column: the anode (black), cathode (black), lithium dendrites (red), cations (light blue), 
anions (blue), and uncharged particles (silver). Insets on the right: lithium dendrites 
(green), cations (blue), anions (yellowish-green), and uncharged particles (silver). 
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9a) and (2) causes no noteworthy change in the average height 
〈𝐻𝐻〉 (Fig. 9b). These results suggest that the large inhibition of 
dendrite growth arises primarily from the effect of the 
electrostatic interactions. 

Importantly, the salt ions cause the spatial gradient of the 
electric potential to be more locally inhomogeneous but more 
globally isotropic than the uncharged counterparts do. This is 
particularly notable in the regions around the dendrite (see the 
insets in Fig. 9b) Here, note the basic rule that the tip of the 
dendrite tends to grow to the brighter regions for the positive, 
higher electric potential. However, due to the global uniformity 
of the potential gradient near the dendrite, such a dendritic 

formation becomes notably more isotropic. Thus, we suggest 
that this effect facilitates the lateral growth of the dendrite, 
significantly flattening the dendrite shape. 

Next, we consider the effect of the dielectric constant on the 
dendrite growth (Fig. 9c and Fig. 9d). As in Fig. 9a and Fig. 9b, 
sharp decreases in the aspect ratio Fig. 9c) and average height 
(Fig. 9d) from 0 % to 5 % occur. Here, the difference in the 

dielectric constant does not notably change the overall trend of 
the aspect ratio and the average height when the lattice 
occupancy of the salt ions is ≲ 40 %. However, when the volume 
fraction exceeds about 40 %, the effect of the dielectric 
constant becomes distinct. It is not entirely clear why 
decreasing the dielectric constant to 𝜀𝜀  = 20 causes the local 
maximum point to shift to the region at the lower salt 
concentration. Nevertheless, the potential map in the inset 
shows that the dendrite in the electrolyte with 𝜀𝜀  = 20 is 
surrounded by the black regions that indicate that the electric 
potential is lower than that of the anode. Thus, as indicated by 
Eq. (5), these negative potential spots appear to inhibit the 
dendrite growth. 

Fig. 9e and Fig. 9f show the effect of the model parameter 𝜂𝜂 
in Eq. (5) on the dendrite growth. The average height (Fig. 9f) is 
significantly affected by the 𝜂𝜂  value, whereas the changes in 
aspect ratios are relatively insignificant. Moreover, the 
difference in the trend of the average height among the lines 
(Fig. 9f) changes non-monotonically. That is, the results change 
as “black”  “red”  “blue”  “purple” when increasing the 𝜂𝜂 
value from 0 to 2. Fig. 9f also indicates that the decrease in the 
average height when increasing the salt concentration is 
monotonic when 𝜂𝜂 = 0.5. Thus, in terms of the Li-ion battery 
design, we do not need to be concerned about the optimal salt 
concentration that maximally inhibits the dendrite growth. 

Fig. 11 illustrates the significance of the value 𝜂𝜂  for the 
dendrite growth at 60 % salt concentration. The results also 
suggest that it is important to evaluate the 𝜂𝜂  value [or the 
accurate form of the probability in Eq. (5)] using more atomistic 
models that account for the probability of dendrite deposition. 

In Fig. 9g and Fig. 9h, we change the applied voltage from 0.5 
V to 5.0 V. In the case of large voltages such as 5.0 V, we 
observed the charge separation between the conducting plates, 
as illustrated by the inset of Fig. 9g. The overall trends of both 
the aspect ratio and average height remain similar when the 
applied voltage is changed. However, notable non-monotonic 
variations in these values occur when the salt concentration 
exceeds about 40 %. Accordingly, 0.5 V becomes the optimal 
operating voltage to inhibit the average height. 

Fig. 11 Snapshots of the dendrite structure with different 𝜂𝜂 values for 60% symmetric ILs 
and the dielectric constant 𝜀𝜀  = 20. The light blue and blue points correspond to the 
cations and anions, respectively.

Fig. 10 Effects of the ionic charge, the dielectric constant, the parameter 𝜂𝜂, and the 
applied voltage on dendrite growth for the asymmetric ions (𝑑𝑑+:𝑑𝑑−= 2:1). The x-axis is 
the lattice occupancy of the salts or uncharged particles. 〈𝐻𝐻〉 designates the average 
height calculated after 2×107 MC steps. The applied voltage is 0.5 V in (a) – (f). The 
dielectric constants are 𝜀𝜀 = 80, unless otherwise noted. The color classification is the 
same as that in Fig. 9. 
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In Fig. 9i-l, we also consider relatively larger symmetric ions 
and their uncharged counterparts with 𝑑𝑑 = 4 Å to study the size 
effect. These large ions also mimic an IL. Interestingly, unlike the 
result in Fig. 9b, the larger uncharged particles promote the 
dendrite inhibition (Fig. 9j), probably due to the larger excluded 
volume. Nevertheless, the ions more significantly inhibit the 
dendrite growth. Moreover, unlike the result in Fig. 9b, the 
inhibition trend is nearly monotonic. Therefore, ILs would be 
more tractable in designing Li-ion batteries. 

Note that changes in the 𝜂𝜂 cause substantial differences in 
the aspect ratio and average height (Fig. 9k and Fig. 9l). As in the 
case of Fig. 9f, 𝜂𝜂 = 0.5 gives rise to a significant inhibition of the 

average height, and the inhibition effect is even more 
significant. Note that the overall trends of the aspect ratio and 
average height are the same among the different 𝜂𝜂  values. 
Thus, we suggest that a choice of the 𝜂𝜂 value does not alter our 
conclusion obtained in the present study.  

To conclude this subsection, we briefly summarize the 
mechanism of the dendrite growth with the symmetric small 
ions as follows: (1) Small amounts of salt ions enhance 
electrostatic shielding near the dendrite and particularly its 
pointy regions, and accordingly the dendrite growth is 
significantly inhibited. (2) Increasing the salt concentration 
enhances ion clustering, and such ionic aggregates reduce the 
number of ions that participate in electrostatic shielding. 
Accordingly, ion clustering weakens the driving force for the 
inhibition of the dendrite growth until a very high salt 
concentration such as 80 % is reached. Our results and 
simulation animation suggest that when the salt concentration 
is very high, small ion clusters tend to aggregate and to form 
larger clusters, coherently moving over the entire system. These 
ions do not tightly bind to each other, and the ion clusters do 
not live as independent charge-neutral objects. Such large 
clusters widely cover the dendrite surface and yield the effect 
of electrostatic shielding. (3) Alternatively, the large ions that 
mimic ILs significantly inhibit ion clustering, and this effect 
continues to inhibit the dendrite growth more significantly than 
the small ions do. This result would probably rationalize the 
remarkably uniform, unconventional dendrite growth observed 
in our experiment in Fig. S1†. Nevertheless, the current 
observation is on the macroscopic scale, whereas our 
simulation is on the nanometer scale. Thus, further study to 
bridge the gap between the length scales is required. 

Asymmetric ions with 𝒅𝒅+  =  𝟐𝟐𝒅𝒅− 

In this subsection, we demonstrate that the size asymmetry 
between the cation and anion can be critical to inhibit the 
dendrite growth. We consider the cation and anion diameters 
to be 4 Å and 2 Å, respectively. 

Both the aspect ratio (Fig. 10a) and average height (Fig. 10b) 
decrease upon the addition of small amounts of salt ions. 
However, unlike the symmetric uncharged particles in Fig. 9a, 
the aspect ratio does not notably change even when the salt 
concentration is as high as 80%. Importantly, these variations 
are monotonically decreasing and nearly reach plateaus. Thus, 
we do not need to be concerned about identifying the optimal 
salt concentration to inhibit the dendrite growth. The inhibition 
trend for the asymmetric ions is relatively simpler to control 
than for the small symmetric ions. Here, we observed in the 
snapshots that ion pairing and clustering are relatively 
weakened, probably because the cations are large. Thus, we 
attribute the observed plateaus in the aspect ratio and average 
height to this size effect. 

In contrast to the results in Fig. 9, we observed nearly 
monotonically decreasing functions in Fig. 10c-h. The results are 
almost unchanged compared to the changes in the dielectric 
constant, the model parameter 𝜂𝜂 , and the applied voltage, 
except for Fig. 10g. As in the case of the symmetric ions (Fig. 9), 

Fig. 12 Effects of the ionic charge, the dielectric constant, the parameter 𝜂𝜂, and the 
applied voltage on dendrite growth for the asymmetric ions (𝑑𝑑+:𝑑𝑑−= 1:2). The x-axis is 
the lattice occupancy of the salts or uncharged particles. 〈𝐻𝐻〉 designates the average 
height calculated after 2×107 MC steps. The applied voltage is 0.5 V in (a) – (f). The 
dielectric constants are 𝜀𝜀 = 80, unless otherwise noted. The color classification is the 
same as that in Fig. 9.
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Table 1 Training, validation, and test errors of different ENNs. The MAPE is shown in parentheses. 

 

Table 2 Training, validation, and test errors of the sub-NNs in No.4 ENN. The MAPE is shown in parentheses. 

 

 the decrease in the average height is maximized when 𝜂𝜂 = 0.5 
(Fig. 10f). Specifically, unlike the symmetric ions, the effect of 
the applied voltage on the average height 〈𝐻𝐻〉  is relatively 
insignificant over nearly the entire salt concentrations (Fig. 
10h). These results also suggest that the inhibition of dendrite 
growth can be relatively easier when the cation size is large 
enough to weaken ion pairing and clustering. Probably due to 
this fact, ILs would serve as a good substance to substantially 
inhibit and flatten the dendrite growth. 

Asymmetric ions with 𝟐𝟐𝒅𝒅+  =  𝒅𝒅− 

Finally, we consider the cation and anion diameters to be 2 Å 
and 4 Å, respectively. The overall trends of the results in Fig. 12 
are very similar to those in Fig. 10. Nevertheless, unlike the 
results in Fig. 10, the effect of the dielectric constant on the 
aspect ratio and average height 〈𝐻𝐻〉 becomes insignificant (Fig. 
12c and Fig. 12d). Moreover, the increase in the voltage slightly 
increases the dendrite growth (Fig. 12g and Fig. 12h). Thus, we 
suggest from the strong similarity between Fig. 10 and Fig. 12 
that a critical factor to inhibit dendrite growth is not to change 
the type of the size asymmetry in ILs, but instead, to decline ion 
pairing and clustering. 

Ensemble neural networks for symmetric ions with 𝒅𝒅+  =  𝒅𝒅− 

Finally, we construct a surrogate model that accounts for the 
lithium dendrite growth via training datasets derived from the 
MC simulations. We use the dielectric constant 𝜀𝜀, the model 
parameter 𝜂𝜂, the voltage V, and the volume fraction 𝜙𝜙 for the 
input and set the aspect ratio and the average height in the 
output layer. In the present study, one hidden layer is not 
sufficient to capture the training datasets, especially for the 
non-monotonic trend of the results, but two hidden layers are 
adequate. From the calculation of the MSE, we also empirically 
found that the sub-NN with 32 neurons per hidden layer serves 
as a good architecture. 

Table 1 and Table 2 show the architectures of our ENNs and sub-
NNs, respectively, with their training, validation, and test errors. We 
trained 4 ENNs with different activation functions (Table 1). Table 2 
shows the architecture of sub-NNs of No.4 ENN in Table 1 as an 
example. Here, the chance of overfitting tends to decrease as the 
difference between the training error and validation error is 
decreased. Note that some sub-NNs are poorly trained with an error 
of about 500, yet the corresponding ENN outperforms any sub-NNs 
and thus provides a good prediction with relatively small errors. 
Thus, the ENNs can efficiently avoid the local minimum in the MSE 
that is more likely to occur in a single NN. Despite the large MSE 

#sub-NNs 
(ID number) 

Topology Activation Functions in the sub-NN  Training Error Validation Error Test Error 

8 (1) 4-32-32-2 relu-X-relu, X=sine, cosine, sigmoid, gaussian 13.582 (25.6%) 13.646 (24.8%) 15.323 (29.4%) 
8 (2) 4-32-32-2 relu-X-relu, X=relu, cosine, sigmoid, gaussian 13.593 (24.6%) 13.965 (24.2%) 14.959 (28.8%) 
8 (3) 4-32-32-2 relu-X-relu, X=sine, tanh, sigmoid, gaussian 13.356 (24.7%) 13.348 (23.9%) 14.998 (29.0%) 
8 (4) 4-32-32-2 relu-X-relu, X=sine, relu, sigmoid, gaussian 13.573 (25.5%) 13.863 (26.0%) 14.823 (29.0%) 

Sub-NN (No.4) Topology Activation Functions Training Error Validation Error Test Error 
1 4-32-32-2 relu-X-relu, X = sine 506.762 (60.8%) 486.218 (60.8%) 495.212 (61.0%) 
2 4-32-32-2 relu-X-relu, X = sine 506.761 (59.9%) 486.217 (60.0%) 495.210 (60.2%) 
3 4-32-32-2 relu-X-relu, X = relu 507.018 (100%) 486.466 (100%) 495.465 (100%) 
4 4-32-32-2 relu-X-relu, X = relu 17.232 (25.0%) 18.275 (26.9%) 18.838 (27.7%) 
5 4-32-32-2 relu-X-relu, X = sigmoid 14.942 (26.0%) 15.282 (28.0%) 16.785 (28.9%) 
6 4-32-32-2 relu-X-relu, X = sigmoid 14.520 (24.0%) 15.728 (25.8%) 16.814 (26.7%) 
7 4-32-32-2 relu-X-relu, X = Gaussian 15.175 (23.9%) 15.658 (25.9%) 17.162 (26.6%) 
8 4-32-32-2 relu-X-relu, X = Gaussian 15.528 (25.2%) 15.524 (26.8%) 17.186 (27.5%) 

Fig. 13 Comparison between the MC simulation and No.5 sub-NN in Table 2 for the 
average height and the aspect ratio. The solid lines indicate the prediction from the sub-
NN in the range of 1% to 80% volume fraction of salts. The squares indicate the statistical 
averages calculated from the same datasets of the MC simulations as those used in Fig. 
9c-h.
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values, the sub-NNs with the sine functions are essential to capture 
the non-monotonic feature of the simulation results. Such a large 
MSE value is tamed when incorporated into the ENN. 

The MSE is a standard error when evaluating NNs’ performance, 
but relative errors can also serve as a measure to analyze the 
performance. Thus, we also provide the mean absolute percentage 

error (MAPE) 100%
𝑛𝑛

∑ �𝑦𝑦−𝑦𝑦�
𝑦𝑦�
� in the tables. No. 1 and No. 2 sub NNs in 

Table 2 include large errors, yet their relative errors are smaller than 
100%. The relative errors appear to be large because the training 
data for each volume fraction consists of only 20 samples and 
includes large statistical fluctuation. Here, we remark that reducing 
the relative error instead of the absolute error may cause significant 
inconsistency between the qualitative features of the predicted and 
targeted data. Thus, in this study, the relative error should be viewed 
as a measure to consider how efficiently the ENNs can predict the 
“true” statistical average out of noisy information.  

We plotted the predicted average heights and the aspect ratio of 
lithium dendrites in Fig. 13 and Fig. 14. In Fig. 13, we compared the 
MC simulation result with one of the excellent sub-NNs (No.5 sub-
NN in Table 2) containing the sigmoid function for the activation 
function in the second layer. Note that we used only 20 samples for 
each volume fraction (i.e., each data point in the figures) to train 
each sub-NN. Still, our ENNs can reasonably capture and predict the 
non-monotonic trend of both the average height and the aspect 
ratio. Fig. 14 shows the comparison between the MC simulation 
result with the prediction from No. 4 ENN in Table 1. Other ENNs also 
provide similar consistencies between the MC simulation and ENN 
prediction. Although some sub-NNs may have large errors, their 
combination with good sub-NNs tends to provide a robust, relatively 
accurate ENN. Overall, we suggest that although a single NN can be 
employed as a surrogate model for the MC simulations, the ENNs are 
not sensitive to initial weights and are robust against the choice of 
the activation functions, compared to a single NN.  

IV. Summary and Conclusion 
We have developed the DLA model proposed by Niemeyer 57 
and later developed for zinc dendrite growth by Chen and Jorné 
50. The present study was also motivated by our recent 
experimental observation regarding remarkably uniform, 
unconventional lithium dendrite growth in Fig. S1†. Despite the 
simple algorithm of the growth patterns, the original toy model 
accounts for the fractal dimensions observed for dielectric 
breakdown and zinc dendrite. In other words, the model 
contains an adjustable parameter that controls the growth 
probability, but it can be fixed when the fractal dimension is 
determined in experiments. The present study relies on the 
strong applicability of the model to the pattern formation due 
to the electrostatic fields. Thus, we applied the algorithm of the 
pattern formation to metal dendrite growth in salt-containing 
liquids between the conducting plates. The main conclusion in 
our study is summarized as follows: (1) The addition of salt ions 
can significantly flatten the dendrite shape and inhibit the 
dendrite growth, primarily due to electrostatic shielding near 

the pointy regions of the dendrite. (2) It is critical to weaken ion 
pairing and clustering in electrolytes to inhibit the dendrite 
growth. Our results show that small salt ions appear to have 
difficulty achieving this requirement and lead to the undesirable 
non-monotonic behavior of the dendrite growth as a function 
of the salt concentration. However, large salts such as ILs can be 
dissociated near the operating temperatures to a great degree 
to solve this issue. (3) The size asymmetry that occurs when 
either the cation or the anion is large (4 Å or larger) affects the 
dendrite’s shape and growth, primarily because ion pairing and 
clustering are significantly inhibited. In this case, the inhibition 
of the dendrite growth is not significantly affected by changes 
in the dielectric constant and applied voltage. The overall 
conclusion from (1) to (3) remains unchanged when 0≤ 𝜂𝜂  ≤2, 
and appears to hold true in general.  Thus, we suggest that ILs 
be a prospective material to inhibit metal dendrite formation. 
Among others, the present simulations suggest that ILs with 
large size asymmetry between the cation and anion serve as a 
good electrolyte in lithium-ion batteries, as consistent with our 
experimental observation for lithium deposits under 1M LiPF6 
in EC/DMC + 10% [BMIM][TFSI] in ESI†. Concomitantly, the 2D 
growth appears to be more constrained than the 3D growth. In 
the case of a 3D model, the dendrite growth in the new lateral 
direction may easily occur when the ions inhibit the longitudinal 
growth of the dendrite toward the cathode. Still, this lateral 
growth appears to facilitate the uniformity of the dendrite 
surface. Thus, we anticipate that our overall conclusion remains 
unchanged even in a 3D model. 

Finally, we considered a surrogate model that accounts for the 
MC simulations using ENNs. In our study, we found that a single 
NN can be consistent with the MC simulation results, but ENNs 
with sub-NNs can be more robust against the choice of the 
activation functions and can easily be trained from various 
initial weights. This is mainly because the ENNs can be trained 
well when poor sub-NNs are combined with good sub-NNs. 

Fig. 14 Comparison between the MC simulation and ENN prediction for the average 
height and the aspect ratio. The symbols and lines are defined as in Fig. 13. 
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Importantly, unlike 200 samples for the average of the MC 
simulation results for each volume fraction (i.e., each data 
point), we used only 20 samples for training. Thus, our 
surrogate model serves as an alternative to the computationally 
demanding MC simulations.   
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