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Design, System, Application Statement

Nanoporous materials (NPMs) have many adsorption-based applications. Owing to
their tunable structures, we have an abundance of possible NPMs for each
adsorption task. Given scarce resources and limited time, how can we efficiently
search through a library of NPMs to find the optimal NPM for a specific adsorption
task?

We explain and demonstrate Bayesian optimization (BO) to actively and intelligently
search through a library of NPMs to find the optimal one for a given task. BO relies
on (i) a continually updated surrogate model to capture our beliefs about the
NPM-structure--property relationship and (ii) an acquisition function to make
sequential decisions of which NPM to evaluate next, while balancing exploration
and exploitation. We show that BO can find the optimal NPM while evaluating only
a small fraction of the NPMs in the library of candidates. The adoption of BO for
NPM design for specific tasks would impact the discovery and deployment of NPMs
by (i) accelerating its schedule, (ii) reducing infrastructure needs, and (iii) lowering
costs.
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Abstract

Nanoporous materials (NPMs) could be used to store, capture, and sense many different
gases. Given an adsorption task, we often wish to search a library of NPMs for the one with the
optimal adsorption property. The high cost ofNPMsynthesis and gas adsorptionmeasurements,
whether these experiments are in the lab or in a simulation, often precludes exhaustive search.

We explain, demonstrate, and advocate Bayesian optimization (BO) to actively search for the
optimal NPM in a library of NPMs—and find it using the fewest experiments. The two ingredients
of BO are a surrogate model and an acquisition function. The surrogate model is a probabilistic
model reflecting our beliefs about the NPM-structure–property relationship based on observa-
tions from past experiments. The acquisition function uses the surrogate model to score each
NPM according to the utility of picking it for the next experiment. It balances two competing
goals: (a) exploitation of our current approximation of the structure-property relationship to
pick the NPM we believe [under uncertainty] will be the highest-performing, and (b) exploration
of regions of NPM spacewe have not visited, to pick anNPMwe are uncertain about and improve
our approximation of the structure-property relationship. We demonstrate BO by searching an
open database of ∼ 70000 hypothetical covalent organic frameworks (COFs) for the COF with
the highest simulated methane deliverable capacity (pertinent for vehicular adsorbed natural
gas storage). BO finds the optimal COF and acquires∼30% of the top 100 highest-ranked COFs
after evaluating only∼140 COFs. More, BO searches more efficiently than evolutionary and one-
shot supervised machine learning approaches.

1 Introduction

The selective gas adsorption properties of nanoporous materials (NPMs) endow them with many
possible applications in the storage [1, 2], separation [3], and sensing [4] of gases. As examples,
promising applications of NPMs include (i, storage) densifying hydrogen (H2)—a clean fuel—for com-
pact storage onboard vehicles [2, 5], (ii, separation) capturing carbon dioxide from flue gas of coal-
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fired power plants; subsequently sequester it to prevent global warming [6], and (iii, sensing) detect-
ing toxic compounds and explosives [7,8].

(a) (b) COF-366 (c) COF-66
Figure 1: Illustrating the modular synthesis of covalent organic frameworks (COFs) [9–11]. (a) The sql
(square lattice) network topology specifies the connectivity of tetratopic (green) and diptopic (blue)
building units. (b, c) Two examples of COFs in the sql topology are (b) COF-366 and (c) COF-66 [12].
(top) the crystal structures. (bottom) the building blocks: a planar, tetratopic building unit and a
linear, diptopic building unit. The building units are stitched together with covalent bonds, through
a condensation reaction, to form 2D COF sheets in the sql topology. The sheets stack into layers to
form 3D channels. Owing to their modular synthesis, on the order of one hundred COFs have been
experimentally synthesized and reported [13].
Several classes of NPMs, such as metal-organic frameworks (MOFs) [14], metal-organic polyhedra
(MOPs) [15], covalent organic frameworks (COFs) [9], and porous organic cages (POCs) [16], are syn-
thesized modularly by stitching together molecular building blocks via coordination (MOFs, MOPs)
or covalent (COFs, POCs) bonds to form ∼ crystalline (MOFs, COFs) or molecular (MOPs, POCs) ma-
terials. Fig. 1 illustrates the modular synthesis and rational design of COFs in the sql topology [12].
The many topologies [9, 17, 18], abundance of molecular building blocks, and post-synthetic mod-
ifiability [19, 20] permit an unlimited number of possible structures exhibiting diverse adsorption
properties.
A common goal is to find, among a large set of candidate NPM structures, the NPM structure(s) with
the optimal adsorption property for a given application. As opposed to an exhaustive search, our
goal is to search for the optimal NPM efficiently, by consuming minimal resources (computational
and/or physical) in the process. In the laboratory setting, synthesizing an NPM and measuring its
property costs labor and rawmaterials, and throughput is limited by the capital equipment in the lab.
In the computational setting, constructing a high-fidelity computational model of an NPM structure
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[21–25] and predicting its gas adsorption property through molecular simulations [26,27] consumes
electricity, and throughput is limited by computing resources. Thus, both in the laboratory and on
the computer, our goal is to find the optimal NPM(s) for a given adsorption task using the fewest
experiments (experiment = constructing an NPM and evaluating its adsorption property).
In this article, we explain, demonstrate, and advocate Bayesian optimization (BO) to actively and ef-
ficiently search for NPMs with an optimal property for a given adsorption task. Active, because BO
iterates, within a feedback loop, between: (a) conducting an experiment on an NPM, (b) updating
our belief about the structure-property relationship, and (c) selecting the NPM for the next exper-
iment. See Fig. 2. Efficient, because BO makes a data-informed decision on the NPM to select for
the next experiment, while balancing: (a) exploitation of our current data-driven belief about the
structure-property relationship—to pick an NPM that we believe, under uncertainty, will have the
optimal property and (b) exploration of regions of the NPM design space where our belief about the
structure-property relationship is weak—to pick an NPMwe are uncertain about and strengthen our
confidence in our approximation of the structure-property relationship.

Figure 2: Bayesian optimization (BO) is an active search method to find the input x that optimizes a
black-box objective function f (x). In the BO of nanoporous materials, we iterate within a feedback
loop: (1) Conduct an experiment that measures the property f (xn) of the material represented by
xn. (2) Using the new observation, update our belief about the underlying objective function f (x),
encapsulated by the surrogate model f̂ (x). (3) Use the acquisition function A(x) to pick the next
material xn+1 for an experiment.
The two key components of BO are a surrogate model and an acquisition function. The surrogate
model, with “surrogate” hinting at “substitute for the experiment”—is a probabilistic model for the
structure-property relationship. It is trained on all observations from past experiments. The sur-
rogate model cheaply predicts the properties of the unevaluated NPMs and, critically, quantifies
the uncertainty in its predictions. The acquisition function is used to make the decision of which
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NPM to select for the next experiment. It uses the surrogate model to score the utility of selecting
each unevaluated NPM for the next experiment by striking a balance in the exploitation-exploration
trade-off. The acquisition function is maximal in regions of the NPM design space where (i) we be-
lieve high-performing materials will reside and/or (ii) we are uncertain about the structure-property
relationship. The acquisition function relies on the surrogate model to give a resource-efficient, in-
telligent, active search for optimal NPMs in a wide variety of contexts.
We demonstrate BO of NPMs by efficiently searching an open database [28] of ∼70000 hypotheti-
cal COFs, represented by vectors of hand-designed features based on domain knowledge, for those
with the highest simulated methane deliverable capacity to store natural gas onboard vehicles [2].
BO recovers the optimal (COFs) using fewer experiments than incumbent strategies including ran-
dom search, evolutionary algorithms, and one-shot supervisedmachine learning. In the Outlook, we
discuss active research areas in BO that are likely to apply to several problems in NPM discovery: (i)
batch BO, where experiments are parallelized, (ii) multi-fidelity BO, where NPMs can be evaluated
using multiple methods which vary in accuracy and resource cost, (iii) multi-objective BO, where we
aim to find a Pareto optimal set of NPMs to optimize multiple properties, and (iv) constrained BO,
where our goal is to find high-performing NPMs which can be synthesized.

2 Review of previously used NPM search methods

TheNPM research community has adopted several approaches to efficiently search a library of NPMs
for the optimal NPM(s) [29,30]. We define the efficiency of a search strategy with respect to two naive
baselines, where we conduct the high-fidelity experiment on (i, exhaustive search) every NPM in the
library, and (ii, random search) a (uniform) random sample of the NPMs in the library.
Supervisedmachine learningmodels. A supervisedmachine learningmodel can serve as a cheaper,
albeit lower fidelity, surrogate for the high-fidelity experiment [29,31–35], thereby reducing the cost
of an exhaustive search. Amachine learning approach is predicated upon cheaply computed (relative
to the experiment) (i) vector representations of the NPMs– hand-engineered [36,37] or learned [38]–
that encode structural features and are correlated to the property or (ii) kernels that capture the
tendency for any given pair of NPMs to exhibit similar properties [39]. Training examples are gath-
ered by selecting a small (random or diverse [40,41]) subset of the library of NPMs and labeling them
with the property values via high-fidelity experiments. Using the training examples, the supervised
machine learning model learns to predict the property of any given NPM from e.g., its vector repre-
sentation. The trainedmodel is then used, as a surrogate for the high-fidelity experiment, to cheaply
predict, from their vector representations, the properties of the remaining NPMs in the library. Fur-
ther high-fidelity experiments may be directed on the NPMs predicted to be optimal by the machine
learning model. See Refs. [40,42–52] as examples.
Genetic algorithms. Genetic algorithms [53] are iterative, stochastic search methods inspired by
Darwinian evolution. Each NPM is represented by a “chromosome”– a vector of categorical vari-
ables that uniquely specifies its structure. A small initial generation (set) of property-labeled NPMs
is iteratively evolved by applying genetic operations to their chromosomes: mutation, replication,
selection, and recombination. At each generation, we conduct experiments on each newly evolved
NPM to evaluate its fitness. This guides the genetic operations used to evolve to the next generation
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of chromosomes (representing NPMs), with the ambition of both exploring NPM space and enriching
future generations with high-fitness NPMs. See Refs. [54–57] as examples.
Monte Carlo tree search. When the NPM search space can be framed as a tree, Monte Carlo tree
search [58] is more efficient than random search. Starting at the root node, a policy to select a child
node is iteratively applied, giving a path through the tree, culminating at a leaf node. The experi-
ment is then conducted on the NPM represented by the leaf node. Its measured property, viewed as
a reward, is back-propagated through the tree to update the statistics of each node along the path
to it. Both the visit counts and reward allocations of the nodes are used in the tree policy to balance
exploration of new branches of the tree that have not been visited often (or at all) and exploitation
of current knowledge to follow branches of the tree that appear likely to lead to optimal NPMs. See
Refs. [59,60] as examples.
Each of these prior approaches suffer from drawbacks. The supervised machine learning approach
selects training data to learn a good predictor of the property from the structure representation,
then uses the predictor to greedily acquire the NPMs with the highest predicted property. This pas-
sive approach can be viewed as one round of exploration and one round of exploitation. Active
learning [61] can be used to reduce the number of training examples to learn the structure-property
relationship but is not geared towards finding the optimal NPM using the fewest experiments. In
BO, we will actively collect training examples according to the goal of finding the optimal NPM with
the fewest experiments. Genetic algorithms are also sequential, active search procedures aimed
at quickly finding the optimal NPM. However, the genetic operations are heuristic and do not bal-
ance exploration and exploration rigorously. As a consequence, genetic algorithms can be difficult
to tune and could require many experiments to find the optimal NPMs. MCTS balances exploration
and exploitation more rigorously. But, it requires many NPM evaluations to identify promising re-
gions of the tree because it does not explicitly leverage the similarity among structures for principled
exploitation. Further, MCTS is limited to NPM design spaces which can be framed as a tree.

3 Problem setup: find the optimal material

Suppose we have a large database of candidate NPM structures, X , for some adsorption task. Let
f : X → R be a black-box objective function that, given a candidate NPM x ∈ X , returns the
relevant adsorption property y = f (x). Each evaluation of f corresponds to performing an expen-
sive experiment—either in the laboratory or in a molecular simulation—to measure the adsorption
property y of NPM x. Our goal is to find the highest-performing NPM x∗ fromX that maximizes the
objective function f ,

x∗ = arg max
x∈X

f (x), (1)
while conducting the fewest number of expensive experiments.
We can interpret f (x) as the [unknown] structure-property relationship [62, 63] since x [abstractly,
at this point in our discussion] represents the structure of a unique NPM and evaluating f means
conducting an experiment to measure its property, y .
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4 Overview of Bayesian Optimization

We explain the key ideas behind the Bayesian Optimization (BO) framework [64, 65] to find the
highest-performing NPM—solve the problem in eqn. 1—efficiently, by using the fewest (expensive)
experiments.

4.1 Defining an NPM feature space

While x as an abstract representation of an NPM suffices for defining the problem in eqn. 1, for BO
we must concretely define a NPM feature space or search space in which each NPM x lies.
Without loss of generality, take x to be a fixed-size (among all NPMs) vector representation of the
NPM that lies in a continuous feature space. The NPM feature vectors {xi}|X |i=1 should be designed
to (1) encode the relevant structural and chemical features of the NPMs, (2) be rotation-, translation-,
and, if the NPM is a crystal, replication-invariant, (3) be cheap to compute compared to conducting
the experiment (evaluating f ), and (4) ideally, each correspond to a unique NPM (injective mapping
NPM→ x) [66]. As a result of (1), we expect NPMs close in the feature space to exhibit close values
of the property y .
The simplest example of a representation x of an NPM is a list of hand-designed, based on domain
expertise, descriptors/features of its structure and composition, such as pore volume, surface area,
largest included sphere diameter, density, weight fraction carbon, etc. [67–69]. Alternatively, x could
be learned from a graph [70–72] or 3D image representation [73, 74] of a NPM by a graph neural
network [38] or convolutional neural network [75], respectively. See reviews in Refs. [29, 76] for
defining feature vectors ofNPMs andRefs. [40,42,44,52,77–80] for different examples ofNPM feature
spaces. As opposed to dwelling on how to define a good feature space of NPMs, we will instead focus
on BO, a technique to search the defined feature space for the optimal NPM x∗ in an efficientmanner.

4.2 Active search: exploitation vs. exploration

Even with an NPM feature space defined, in practice, the structure-property relationship f (x) is a
black-box function; analytical expressions for f (x) and/or its gradient∇xf (x) are not known, and it
may be multi-modal.
BO is a derivative-free method to actively and efficiently search the database of NPMsX for the NPM
x∗ that maximizes f (x). Active, because BO sequentially selects NPMs from X for experimentation
(to evaluate with f ), iterating between conducting an experiment andmaking a decision about which
experiment to conduct next. Efficient, because BO makes a data-driven decision to select the next
NPM for an experiment while taking into account all observed (NPM x, property y = f (x)) pairs
from previous experiments. Each decision to select the next unevaluated NPM from X to evaluate
with f must trade off two conflicting goals:
1) Exploitation suggests to use our current, but uncertain, approximation of the structure-property re-
lationship, based on the past observations, to select the NPM that appears to have themost promise
as a high-performing material.
2) Exploration suggests to select the NPM that we are most uncertain about to improve our approxi-
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mation of the structure-property relationship.
So, to balance exploitation and exploration, we must balance visits to regions of NPM feature space
that (i) appear to contain high-performing NPMs and (ii) have not been explored well. A colloquial ex-
ample of the exploitation-exploration dilemma in our lives is, in aiming to maximize our enjoyment
of food, whether to choose a restaurant that we have visited and knowwe like versus a new one [81].

4.3 The ingredients of BO for data-drivendecision-making: a surrogatemodel
and an acquisition function

In the BO framework, the two key components used to make each sequential decision of which
NPM to conduct an experiment on next are (1) a surrogate model that captures our beliefs, based
on past observations, about the structure-property relationship and (2) an acquisition function that
scores each NPM according to the utility of conducting the experiment on it next. The acquisition
function uses the surrogate model of the structure property-relationship f (x) to decide which NPM
to evaluate next while striking a balance between exploitation and exploration.
The surrogate model. The surrogate model is a probabilistic model of the structure-property re-
lationship f (x) trained on all observations1 {(xi , yi = f (xi))}ni=1 from past experiments. Typically,
adopting a Bayesian perspective, the surrogate model treats f (x) as a random variable that follows
a Gaussian distribution:

f (x) ∼ N (ŷ(x), σ2(x)) (2)
with mean ŷ ∈ R and variance σ2 ∈ R. The surrogate model reflects our current beliefs about
f (x) and serves two purposes in BO. First, to guide exploitation, ŷ(x) is a cheap-to-evaluate approx-
imation of the expensive-to-evaluate objective function f (x), allowing us to cheaply estimate the
properties of all unevaluated NPMs. Second, to guide exploration, σ2(x) quantifies the uncertain-
ties in the predicted properties of the unevaluated NPMs. This makes us aware of regions in NPM
feature space we need to explore to improve our approximation ŷ(x) and reduce the uncertainty in
our beliefs about f (x).
The surrogate model is updated in each iteration of BO, after the new observation (xn+1, yn+1 =

f (xn+1)) is gathered, to (i) improve the approximation of f (x) and (ii) account for the reduced uncer-
tainty in the region of the feature space surrounding the newly evaluated NPM xn+1. Consequently,let us denote the surrogate model after iteration n of BO as f̂n : x 7→ (ŷ , σ).
The acquisition function. The acquisition function A(x; f̂ (x)) : X → R scores the utility of, next,
evaluating NPM x ∈ X with the expensive objective function f . Here, “utility” is defined in terms of
our ultimate goal of finding the optimal NPM x∗ in eqn. 1 with the fewest experiments. The acquisi-
tion function employs the prediction of the property ŷ and the associated uncertainty σ2 from the
surrogatemodel f̂ (x) to assign a utility score to the NPM that balances exploitation and exploration,
respectively. Maxima of the acquisition function are located in regions of NPM feature space where
the predicted property is large and/or uncertainty is high.

1Without loss of generality, the observations are assumed noise-less for clarity of presentation.
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The decision of which NPM to evaluate next is made by maximizing the acquisition function:
xn+1 = arg max

x∈X\Xn
A(x; f̂n(x)), (3)

where Xn := {x1, x2, . . . , xn} is the acquired set of n NPMs that have been evaluated already. Im-
portantly, the acquisition function must be cheap to evaluate.

4.4 Summarizing: BO active search iterations

Fig. 2 illustrates an iteration of BO. At the beginning of iteration n, we conduct an experiment on
NPM xn, i.e., we evaluate NPM xn with the objective function f to obtain a new observation (xn, yn =

f (xn)). Next, we update the old surrogate model f̂n−1(x) to account for this new observation, giving
the new surrogate model f̂n(x). We then select the next (unevaluated) NPM to evaluate, xn+1, as theone that maximizes the acquisition function A(x; f̂n(x)).
We terminate BO after we either (i) expend our budget for experiments or (ii) find a material with
a satisfactory property value. The BO solution to the problem in eqn.1, x∗, then follows from the
evaluated NPM with the highest observed property, arg maxNi=1 yi , where N is the number of BO
iterations (=experiments) performed. Some theoretical work focuses on characterizing how, under
specific assumptions, the quality of the approximate optimum in BO scales with the number of iter-
ations [82].
N.b., typically, the surrogate model is retrained from scratch after each iteration of BO, but some
surrogate models can be trained online [83], reducing the computational cost of the search.

4.5 Remark: BO vs. active learning

We remark on a distinction between active learning [84] and Bayesian optimization. Both sequen-
tially collect training examples for a supervised machine learning model. In active learning, the ex-
amples are efficiently collected with the goal of reducing the uncertainty in the machine learning
model. In Bayesian optimization, the examples are efficiently collected with the goal of, instead,
finding the optimal material. BO is more efficient for finding the optimal material than active learn-
ing because it avoids collecting examples in regions of feature space that contain poor-performing
materials, whereas active learning will do so to reduce the uncertainty of themodel in those regions.

5 Surrogate models and acquisition functions

In this section, we explain surrogate models and acquisition functions commonly used in BO.

5.1 Surrogate models: Gaussian processes

Gaussian processes (GPs) [85, 86] are the most commonly used surrogate models in BO owing to
their flexibility as function approximators, principled uncertainty quantification, and compatibility
with the kernel trick. GPs are non-parametric models that can approximate complicated objective
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functions f (x) given labeled training data {(xi , yi)}ni=1. Through a Bayesian probabilistic framework,
GPs provide uncertainty estimates in their predictions and allow incorporation of prior beliefs. GPs
rely on a kernel function k(x, x′) : X ×X → R [87] to capture the similarity between any two NPMs
x and x′. This gives GPs the flexibility to approximate arbitrary, complicated (but well-behaved!)
functions f (x). Moreover, it gives GPs versatility in how to represent the NPMs, e.g., graph kernels
[88] can be used for NPMs represented as crystal graphs (e.g., [39]).
What is aGP? AGP is a stochastic process that treats the value of the objective function at any given
point in feature space, f (x), as a random variable. Specifically, GPs assume the joint distribution of
any finite collection of function values, say at points {x1, x2, ..., xm} on its domain, follows a multi-
variate Gaussian distribution

f ≡ [f (x1), f (x2), ..., f (xm)]ᵀ ∼ N (0,Σ) (4)
whose covariance matrix Σ ∈ Rm×m is given by the kernel function applied pairwise over the points
{x1, x2, ..., xm}, Σi ,j := k(xi , xj). The kernel function k(x, x′) quantifies the similarity of NPMs
x and x′; hence, the idea in GPs is that the properties f (x) and f (x′) of similar (dissimilar) NPMs
x and x′ are highly (un)correlated. [89] GPs effectively model the entire function f (x)— in a point-
wise manner— by assuming eqn. 4 holds for any arbitrary, finite collection of function values on its
domain. The mean of zero in eqn. 4 assumes the measurements are centered.
From a Bayesian perspective, eqn. 4 is a prior assumption about the structure-property relationship
f (x). When we gather new observations, we will update this prior assumption to arrive at the pos-
terior distribution reflecting our beliefs about the structure-property relationships in light of new
data.
Kernel functions. Examples of kernel functions that operate on vector representations of two
NPMs x and x′ include the linear, polynomial, and radial basis function (RBF) kernels:

k(x, x′) = σf x
ᵀx′ linear kernel (5)

k(x, x′) = σf (xᵀx′)d homogeneous polynomial kernel (6)
k(x, x′) = σf e

−||x−x′||22/(2γ2). radial basis function (RBF) kernel (7)
Each kernel possesses the hyperparameter σf , the signal variance, which is a scale factor controllingthe expected range of the functions represented by the GP. The polynomial kernel has a hyperpa-
rameter d that controls the order of the polynomial in the features, and the RBF kernel contains a
length-scale hyperparameter γ that controls how close x and x′ must be in the feature space to be
considered “similar” and the expected roughness of the functions represented by the GP. Implicitly,
each nonlinear kernel maps the two vectors x and x′ into a new, higher-dimensional feature space
through a mapping τ , then takes the inner product of the vectors in the new feature space:

k(x, x′) = τ(x)Tτ(x′). (8)
Interestingly, the feature map τ(x) corresponding to the RBF kernel in eqn. 7 maps vectors into
an infinite dimensional feature space! By implicitly operating in a higher-dimensional feature space,
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nonlinear kernels give GPs more flexibility, or expressiveness, for approximating complicated objec-
tive functions f (x). Notably, graph kernels [88] and image kernels [90] can define similarities of two
NPMs represented as graphs (nodes: atoms, edges: bonds) and images, respectively.
Inference with GPs. In BO, we exploit GPs for regression, with uncertainty quantification, to build
a surrogate model for f (x). We have observations {(xi , yi)}ni=1 from previous experiments (pre-
vious iterations of BO), with yi the measured property of NPM xi . Under the Bayesian view, yi isa noise-free observation2 of the random variable f (xi). We wish to know the distribution of the
random variable f (x) for an unevaluated NPM x, to determine the utility of evaluating it in the next
experiment. Imposing the assumption in eqn. 4 for a specific collection of points on the domain of
f (x) composed of (i) the n evaluated NPMs from the past experiments {x1, x2, ..., xn} and (ii) the
unevaluated NPM, x: [

f

f (x)

]
∼ N

(
0,

[
Σ σ

σᵀ k(x, x)

])
(9)

with f = [f (x1), f (x2), ..., f (xn)]ᵀ the vector of randomvariables representing the properties of the
previously evaluated NPMs, σ = [k(x, x1), k(x, x2), ..., k(x, xn)]ᵀ the vector of the kernel between
the unevaluted NPM and the previously evaluated NPMs, and Σ the n × n kernel matrix for the
previously evaluated NPMs, with Σi ,j = k(xi , xj). However, we have observations of the randomvariables in f , y = [y1, y2, · · · , yn]ᵀ. Conditioning the joint distribution in eqn. 9 on the observations
y of the random variables f , we arrive at the posterior distribution for the property f (x) of the
unevaluated NPM, also Gaussian:

f (x)|y ∼ N
(
ŷ(x), σ2(x)

)
, (10)

with mean and variance:
ŷ(x) = σᵀΣ−1y (11)
σ2(x) = k(x, x)− σᵀΣ−1σ. (12)

We can interpret eqns. 11 and 12. The predicted property of the unevaluated NPM, ŷ(x), is a linear
combination of the observed properties of the evaluated NPMs, y, with weights σᵀΣ−1. The weight
on eachmeasured property depends on the similarity between that NPM and the unevaluated NPM.
The variance σ2(x) describing the uncertainty associated with the prediction of the property of the
unevaluated NPM x is the prior assumption of k(x, x) reduced by σᵀΣ−1σ, which captures the
similarity of the unevaluated NPM x with the set of previously evaluated NPMs.
Fig. 3 illustrates aGPmodel of a toy function f (x), basedonanRBF kernel, over a toy one-dimensional
NPM feature space X ⊂ R, trained on five observations. The mean in the GP, ŷ(x), approximates
f (x), and the varianceσ2(x) expresses uncertainty in the approximation. Generally, the uncertainty
is small close to an observation and large when far from an observation.

2Note that we can pose GPs that relax the assumption that the observations are noise-free [85].
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Figure 3: Illustration of a Gaussian process (GP)model with an RBF kernel over a toy one-dimensional
NPM feature space. The black points are the observed data from a toy structure-property relation-
ship, f (x). The blue line and shaded region visualize the GP model trained on the observed data:
the line is the approximation ŷ(x) of the structure-property relationship, while the shaded region
illustrates the uncertainty by covering ŷ(x)± 2σ(x). The GP model shows large (small) uncertainty
in regions of feature space far from (close to) the observations.

Hyperparameters of GPs. GPs are non-parametric models, but most useful kernel functions used
in GPs contain hyperparameters. For example, the RBF kernel in eqn. 7 has the length-scale γ and
the signal variance σf hyperparameters. To learn the hyperparameters of the kernel that give us the
best approximation of f (x), typically we maximize the marginal likelihood of the observed data as a
function of the kernel hyperparameters. [89] Generally, at each iteration of BO, the hyperparameters
of the kernel are updated to account for the newly acquired observation.
Two further interpretations of GP models of functions. A GP model of the objective function
f (x) can be interpreted as (i, weight space view) Bayesian linear regression in the implicit feature
space of the kernel and (ii, function space view) a distribution over functions [85]. To clarify, the GP
model of f (x) in eqn. 4 is equivalent to the parametric model:

f (x) ∼ wᵀτ(x), (13)
with weightsw onwhich we place a Gaussian prior and τ themap associated with the kernel k(x, x′)

used in the GP. In the weight space view, GP inferencemodels the posterior distribution over weights
w in eqn. 13. In the function space view, GP inferencemodels the posterior distribution over the space
of functions represented in eqn. 13. Though eqn. 13 is helpful for understanding GPs and sampling
functions from the distribution over the function space they describe, we in practice conduct GP
inference using the kernel, through eqns. 11 and 12. E.g. τ(x) is a vector of infinite dimension in the
case of the RBF kernel, making the view of GPs in eqn. 13 unfriendly for computations.

5.2 Examples of acquisition functions

We provide three common examples of acquisition functions and explain how they use the surro-
gate model to, while trading exploration and exploitation, select the NPM to evaluate in the next
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experiment.
Upper confidence bound (UCB). The UCB acquisition function selects the point that maximizes
the upper confidence function:

A(x) := ŷ(x) + βσ(x) (14)
where ŷ(x) and σ(x) are the predicted property of NPM x and its associated uncertainty, respec-
tively, provided by the surrogate model. The parameter β explicitly trades exploration and exploita-
tion: If β is large (small), the UCB is exploratory (exploitative) and tends to select NPMs with the
highest uncertainty (predicted property). To explain the terminology of UCB, the top boundary of
the shaded region that bands ŷ(x) in Fig. 3 is the UCB for β = 2.
Expected improvement (EI). Another acquisition strategy is to select the NPM with the highest
expected improvement (EI) of the property of the best evaluatedNPM so far. Let the random variable
I(x) := max(0, f (x)−maxi yi) denote the improvement in the property of a NPM x over the best
observed NPM thus far. The EI is then:

A(x) :=

∫ ∞
−∞

I(x)N (y |ŷ(x), σ2(x))dy, (15)
which can be written in closed form:

A(x) =

{
(ŷ(x)−maxi yi)Φ

(
ŷ(x)−maxi yi

σ(x)

)
+ σ(x)φ

(
ŷ(x)−maxi yi

σ(x)

)
σ(x) > 0

0 σ(x) = 0,
(16)

with Φ and φ the cumulative and probability distribution functions, respectively, of the standard
normal distribution. The first and second terms in eqn. 16, respectively, capture the exploitation and
exploration component of EI.
Information-theoretic acquisition functions. The principle behind acquisition functions based
on information theory is to select the NPM x that maximizes the mutual information between (i)
the observation of its property y = f (x) and (ii) the location of the NPM x∗ in feature space that
maximizes f (x). Viewing both f (x) and x∗ as random variables, the following acquisition function
describes themutual information between the observation (x, y = f (x)) of the property of a newly
acquired NPM, x, and the location of the optimal NPM, x∗.

A(x) = MI[(x, y), x∗] (17)
= H[p(x∗)]−H[p(x∗|(x, y))] (18)

where MI[·, ·] is the mutual information between two random variables and H(·) is the entropy
of a probability distribution p(·). The mutual information is the reduction in the entropy of the
probability density function of the location of the optimum NPM, x∗, as a result of observing the
property y = f (x) of NPM x. The distribution p(x∗) could be approximated under a GP surrogate
model by sampling functions from eqn. 13 then optimizing them. In practice, eqn. 18 is expensive to
compute, but there are several acquisition functions based on instantiations of this idea [91].
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Figure 4: Illustration of one iteration of BOwhere (i) the acquisition function is used to select the next
NPMwhilst balancing exploitation and exploration and (ii) the surrogate GPmodel based on the RBF
kernel is updated to account for the newly acquired observation. (a) Iteration n. (b) Iteration n + 1,
after the surrogate model is updated by the new observation (xn+1, yn+1) acquired to maximize the
expected improvement (EI). In both (a) and (b), the top panel shows the surrogate model, and the
bottom panel shows the expected improvement (EI) acquisition function. For comparison, in (a) we
illustrate the NPM xn+1 that would have been selected under a pure exploitation or pure explorationacquisition strategy.

Illustrating BO acquisition and the exploration-exploitation tradeoff. Fig. 4a illustrates the EI
acquisition function in a toy one-dimensional NPM space under a GP surrogate model with n = 5

observations. The EI acquisition function exhibits two maxima. The first (global) maximum is in
a region of the feature space where the predicted property ŷ(x) is the largest. The second (local)
maximum is where the uncertainty σ(x) is largest. We select the NPM for the next experiment, xn+1,as the one that maximizes the EI acquisition function. Fig. 4a shows the acquired NPM assuming the
database of NPMs X covers all points on the domain shown. To illustrate how the EI acquisition
strategy balances exploration and exploitation, for comparison, we also show the acquired NPM
xn+1 if the acquisition strategy were purely exploration and purely exploitation. Pure exploration
dictates xn+1 = arg maxσ(x), but this NPM has a poor property. Pure exploitation dictates xn+1 =

arg max ŷ(x), but this NPM is too close to an existing observation. EI balances the trade-off by
picking an NPM with both a high uncertainty and high predicted property.

6 Experiments and Results

We now demonstrate Bayesian optimization by using it to efficiently search for covalent organic
frameworks (COFs) for vehicular natural gas storage [2]. Our experiments below use the open data
from Mercado et al. [28] and can be fully reproduced on a desktop computer using our computer
code at github.com/aryandeshwal/BO_of_COFs.
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6.1 Experimental problem setup

Our goal is to efficiently search a database of COFs for the one with the largest methane deliverable
capacity.
The database of COFs, X . The database of COFs contains 69840 2D and 3D predicted COF struc-
tures constructed by Mercado et al. [28].
The COF vector representation, x. We represent each COF structure with a vector x ∈ R12 of
structural and chemical features listed in Tab. 1 and computed by Mercado et al. [28]. We Min-Max
normalized each feature3 to lie in [0, 1]. This defines COF feature space as [0, 1]12.
The methane deliverable capacity, y . The COF property we wish to maximize is the simulated
deliverable capacity of methane [L STP CH4/L COF] at 298K under a 65bar to 5.8 bar pressure swing.The deliverable capacity of the COF primarily determines the driving range of a vehicle on a “full”
adsorbed natural gas fuel tank packed with the COF [2].
The expensive objective function, f (x). Evaluating the objective function f to give y = f (x)

involves conducting two grand-canonical Monte Carlo simulations of methane adsorption in the COF
structure represented by x– one at (65bar, 298 K) and one at (5.8 bar, 298K). The deliverable capacity
y then follows from the difference in the simulated methane adsorption at the two conditions. The
function f is expensive to evaluate, as the run time of the molecular simulations is on the order of
hours.
Goal: data-efficient search for the optimal COF, x∗. In an exhaustive search, we would conduct
expensive molecular simulations to predict the methane deliverable capacity of each candidate COF
in the database—i.e., collect {(x, y = f (x)) : x ∈ X}—to find the COF x∗ ∈ X with the highest
deliverable capacity. In contrast to an exhaustive search, instead, our goal is to find the optimal
COF x∗ efficiently– while conducting expensive molecular simulations in only a small proportion of the
candidate COFs.
We hypothesize that BO will provide a simulation-efficient search for the optimal COF, x∗. In re-
ality, Mercado et. al. [28] already simulated methane adsorption in all of the COFs at (65bar, 298
K) and (5.8 bar, 298K) and computed their methane deliverable capacities. Thus, (i) we know the
optimal COF x∗ and (ii) as opposed to actually conducting molecular simulations of methane ad-
sorption in a selected COF during the active search, we instead look up the result of the simulations
(the deliverable capacity) from the data of Mercado et al. [28]. Each data lookup, conceptually, rep-
resents conducting the two expensive molecular simulations of methane adsorption in a COF our-
selves. N.b., that we look up data as opposed to conducting a simulation ourselves has no impact
on the BO search efficiency when defined in terms of the number of molecular simulations needed

3We used the feature vectors of all COFs for the Min-Max normalization (both acquired and non-acquired COFs). This
does not constitute data leakage because, in our setting, (i) the features are cheap to compute and (ii) we have a finite
library of COFs for which it is feasible to compute all features for all COFs in X .
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to find the optimal COF. The exhaustive search of Mercado et al. [28] allows us to readily evaluate
the simulation-efficiency of different search strategies to find the optimal COF(s). We will compare
the search efficiency of BO to random search, an evolutionary algorithm, and one-shot supervised
learning.
Table 1: Features comprising the vector representation of a COF, x, broken into those that capture
its structure and chemical composition.

structural (geometrical) chemical composition
void fraction density of carbon

density density of flourine
largest included sphere diameter density of hydrogen
largest free sphere diameter density of nitrogen
gravimetric surface area density of oxygen

density of sulfur
density of silicon

6.2 Search strategies

We use several different strategies to search for the optimal COF x∗ exhibiting the highest methane
deliverable capacity y in the database X .
Random search. Random search is a naive baseline. At each iteration, we uniform randomly select
an unevaluated COF from X to evaluate.
Random search does not make a data-informed selection of a COF for the next evaluation, as it ig-
nores the past observations, {(xi , yi = f (xi))}. Thus, random search is expected to performpoorly.
Bayesian optimization (BO). For BO, we employ (1) a Gaussian process (GP) with the Matérn ker-
nel (ν = 2.5) [85] as our surrogate model and (2) the expected improvement (EI) in eqn. 16 as our
acquisition function. To initialize the GP surrogate model for BO, we first randomly select ten COFs
from the database and evaluate their methane deliverable capacity. Our [loose] reasoning for se-
lecting ten COFs to initialize the GP model for BO was to∼match the number of COF features. The
GP surrogate model is then trained on {(xi , yi)}10i=1, which count towards the number of evalua-
tions when we report the search-efficiency of BO. At each iteration of BO, we fit a new GP to all
past observations {(xi , yi)}, which includes choosing the hyperparameters of the Matérn kernel
(length-scale and signal variance) by maximizing the marginal likelihood of the data under the GP.
We implemented our BO procedure in the BoTorch library [92]. In accordance with the assumption
behind GPs, we z-score standardize the deliverable capacities to have mean zero and unit variance
(using the training data only). During the acquisition phase, we evaluate the acquisition function for
each COF in the database and select the COF with the highest value, in contrast to optimizing the
acquisition function over the continuous COF feature space.
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Evolutionary search (via CMA-ES). As an evolutionary search method, we use Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [93, 94], a state-of-the-art, stochastic optimizer for rugged,
non-convex, black-box objective functions. In CMA-ES, new COFs are stochastically selected from
the search space by sampling from a multivariate Gaussian distribution over the feature space. The
mean and covariance matrix of the distribution are updated over the search process, as COFs are
acquired and evaluated in batches (generations). To update the distribution, with the aim of increas-
ing the likelihood of acquiring and taking search steps towards high-performing COFs, (i) the mean is
updated using a weighted average of the most high-performing COFs in the generation (a selection
mechanism) and (ii) the covariance matrix is updated using a weighted average of the best search
steps (from the mean) towards the high-performing COFs [94].
CMA-ES has two hyperparameters: the initial standard deviation for each COF feature and the num-
ber of new candidate COFs acquired in each iteration (the population size). We initialized the CMA-ES
algorithmwith a randomly selected COF and set the initial standard deviation to 0.5 to cover our COF
feature space [0, 1]12. The population size, 11, was determined by a default heuristic in thecma library
in Python.
CMA-ES operates in a continuous search space. When it selects a point in COF feature space for the
next generation, it does not exactly correspond to a feature vector of a COF in the database; to apply
CMA-ES, we select the nearest (in feature space), unacquired COF in the database.
One-shot supervised learning (via RF). While one-shot supervised learning does not constitute
active search like BO, it is the most popular COF acquisition method to circumvent an exhaustive
search for the optimal NPM using the high-fidelity evaluation method. A one-shot supervised learn-
ing strategy progresses through three stages. (1) To explore, we select a small subset of the COFs and
evaluate them. This data serves as training examples for the supervised machine learning model.
(2) We use the trainedmodel to predict the deliverable capacity of the remaining, unevaluated COFs.
(3) Exploiting our trained model, we acquire the top-k unevaluated COFs with the highest predicted
deliverable capacities and evaluate them. Stages (1) and (3) both incur (costly) COF evaluations.
We compare one-shot supervised learning with the active search strategies by comparing the deliv-
erable capacities among their acquired sets of COFswhen given the same budget of COF evaluations.
Much like balancing exploration and exploitation, we elect to split the budget of evaluations for one-
shot supervised learning among stages (1) and (3) equally.
For stage (1), we assess two training set acquisition strategies: (i) uniform random selection and (ii)
max-min diversity selection [40, 95] of COFs. For (ii), we sequentially acquire COFs for the training
set: at each iteration, we select the COF with themaximumminimum distance (in COF feature space)
to a COF already in the training set. We initialize the diverse set with a random COF.
As the supervised learning model, we use the commonly-used [40–42, 46] random forest (RF) re-
gression model (100 trees, default parameters in scikit-learn) to approximate f (x) using the
(differently sized) training sets.
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6.3 Results

We now execute each strategy to search for the optimal COF x∗ exhibiting the highest methane
deliverable capacity y in the database X .
6.3.1 Search efficiency

Search efficiency curves for BO, in terms of different performance metrics, are shown in Fig. 5 (blue).
Each search efficiency curve describes the quality of the acquired set of COFs Xn as the number of
COFs evaluated/acquired, n, (= the number of BO iterations= the number of simulations/“experiments”)
increases. The metrics of acquisition set quality are (Fig. 5a) the maximum deliverable capacity
among the COFs in Xn, (Fig. 5b) the highest deliverable capacity rank—rank among the entire data
set X—among the COFs in Xn and (Fig. 5c) the fraction of the 100 COFs—top 100 in X—with the
highest deliverable capacity inXn. All 100 BO searches acquired the optimal COF after n = 139 COF
evaluations. After n = 250 COF evaluations, BO acquired 36% of the top 100 COFs in the data set
of ∼70000 COFs. This illustrates how BO can provide a simulation-efficient search for the optimal
COF, as opposed to conducting an exhaustive search.
N.b., the shaded bands surrounding the search efficiency curves in Fig. 5 show the standard deviation
among the 100 runs; the stochasticity for BO emanates from the initialization of the surrogatemodel,
where we acquired ten random COFs (different for each run) to train it.
BO also provides a more experiment-efficient search than random search, evolutionary search, and
the one-shot supervised learning approach. Given the same budget of COF evaluations (n = 250), a
random search (on average) acquires only the 340th ranked COF and 0.21% of the top 100 COFs. The
performance of random search is poor because it selects the next COF to evaluate without consider-
ing the previous observations. Evolutionary search and one-shot supervised learning (diverse train-
ing set) provide a much more efficient search than random search, acquiring the 11th/20th ranked
COF and the top 12%/15% of the top 100 COFs on a budget of 250 evaluations. Though, evolutionary
search nor the one-shot supervised learning strategy recover the optimal COF x∗ after 250 evalu-
ations. Thus, BO outperforms the baseline search methods of evolutionary search and one-shot
supervised learning using both metrics of (a) the highest deliverable capacity in the acquired set and
(b) the fraction of the top 100 COFs in the acquired set (when given a budget of fewer than 250 eval-
uations). N.b., BO is designed to optimize the performance metric (a), but BO could be tailored to
optimize a top-k metric [96,97].
Except when the training set is very small (10), the search performance of the one-shot supervised
learning strategy via a RF benefits from acquiring a diverse training set, compared to a randomly
selecting training examples.
6.3.2 Visualizing the BO acquisition set

To understand the behavior of BO for searching the database of COFs for the optimal COF x∗, we
visualize the acquisition set of COFs in feature space as one of the BO searches progresses. Given
that the feature space is 12-dimensional, we resort to principal component analysis (PCA) to [approx-
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Figure 5: The search efficiency of BO in comparison with random search, evolutionary search, and
one-shot supervised learning. The search efficiency curves show (a) themaximumdeliverable capac-
ity, (b) the highest rank (among the entire data setX ) of the deliverable capacity, and (c) the fraction
of the top 100 ranked (among X ) COFs– among the acquired COFs as the number of acquired COFs
increases. The shaded region shows the variance over 100 [stochastic] runs. To give (a) context, we
show the distribution of the deliverable capacities among the COFs in the entire data set, X , on the
right and two black bars to facilitate comparison of the scales on the y-axes.
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imately] reduce the dimension of the feature space to two. I.e., we project each COF feature vector
onto a reduced, 2D feature space through PCA of the data [x1x2 · · · x|X |].
First, we visualize the structure-property relationship f (x). Fig. 6a shows a depiction of f (x) as a
2D heatmap over the reduced 2D feature space. The color of each voxel in the reduced COF space
indicates the average deliverable capacity of COFs that fall in that voxel.
Fig. 6b shows the acquired set of COFs, colored by deliverable capacity, at 10 (initialization), 20, 40,
60, and 80 iterations of a BO run. For reference, (i) the gray background shows the coverage of COF
space by all COFs in the dataset, shown in Fig. 6a and (ii) the top left panel shows the search efficiency
curve for this run. The top right panel of Fig. 6b explains the acquisition decisions of BO by showing
the value of the EI acquisition function for each acquired COF, broken into contributions from the
explorative and exploitative components (see eqn. 16). Early in the search, exploration dominates,
while exploitation dominates at the later stages.
6.3.3 Effect of the initial training set size

The strategy to select and size of the training set to initialize the GP surrogate model for BO may
impact the search efficiency of BO. We opted to initialize the GP surrogate model for BO with a
training set of ten randomly selected then evaluated COFs from the library. Here, we conduct BO
searches using varying initial training set sizes (5, 10, 15, 20, 25) to assess the impact on the search
efficiency curve of BO. See Fig. S1. Interestingly, the trend is that BO acquires higher deliverable
capacity COFs sooner if initialized with fewer COFs. Another GP initialization strategy for BO is to
acquire a single COF closest to the center of the domain [98].
6.3.4 Balancing exploration and exploitation

We conceptually illustrated how the expected improvement acquisition function balances explo-
ration and exploitation in Fig. 4. We now show how balancing exploration and exploitation is crucial
for BO to recover the optimal COF with the fewest experiments. To do so, we compare the search
efficiency of BO using three different acquisition functions:

A(x) = EI(x) exploration-exploitation balance (19)
A(x) = ŷ(x) pure exploitation (20)
A(x) = σ(x) pure exploration (21)

The expected improvement (EI) acquisition function in eqn. 16 (used in Fig. 5) balances exploration
and exploitation; acquiring the COFwith the highest predicted deliverable capacity ŷ is pure exploita-
tion; acquiring the COF with the highest uncertainty σ in the predicted deliverable capacity is pure
exploration (active learning). Fig. 7 shows the search efficiency of BO under these three different
acquisition strategies, in terms of the highest deliverable capacity among the acquired set of COFs.
Both the pure exploitation and pure exploration BO acquisition strategies exhibit subpar search per-
formance compared to the the EI acquisition strategy that trades off exploration and exploitation.
The pure exploration acquisition strategy (active learning) performs the worst, as it acquires COFs
with low deliverable capacities to reduce the uncertainty in the surrogate model’s predictions about
COFs with low deliverable capacities.
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Figure 6: Interpreting the acquisition behavior of BO. (a) An attempt to visualize f (x). The plane
shows the first two principal components of COF feature space with each voxel colored according to
the average deliverable capacity of the COFs falling in it. (b) Pertaining to one BO run: (top left) Search
efficiency curve, marked by the stages at which we visualize the acquired set of COFs. (top right) The
value of the EI acquisition function (markers) of each acquired COF, partitioned into an exploratory
and exploitative (usally negative) component. (bottom) To visualize the acquired set of COFs, points
are the acquired COFs in reduced 2D COF feature space at 10, 20, 40, 60, and 80 iterations and are
colored according to the deliverable capacity (colorbar in (a) pertains). The gray background shows
the region of the feature space covered by the COFs in (a).
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Figure 7: BO search efficiency using three different acquisition functions: expected improvement
(balances exploration and exploitation), the predicted deliverable capacity (full exploitation), and the
uncertainty in the predicted deliverable capacity (full exploration).

6.4 Feature importance

The search efficiency of BO is largely predicated on the accuracy of the surrogate model, which in
turn is predicated on the information about the deliverable capacity of a COF provided by its feature
vector. Here, we determine which COF features in Tab. 1 are most predictive of their deliverable
capacity through a feature permutation importance study.
First, we randomly sample 5000 COFs (required owing to memory limitations with GPs) and split the
5000 (COF feature vector, deliverable capacity) pairs into an 80%/20% train/test set. Second, we fit
a GP with the Matérn kernel (ν = 2.5) to the train set. The parity plot in Fig. 8a indicates the good
performance of the trained GP on the test set (coefficient of determination R2 = 0.9, root mean
square error (RMSE) = 6.9). Third, we assess the importance of feature j for the predictions of the
GP by randomly shuffling the values of feature j among the COFs in the test set and observing the
deterioration of the R2 of the GP on the test data set with this feature permuted (average over five
shuffles). Fig. 8b displays the resulting feature importances. The two most important features are
the crystal density and void fraction.

6.5 Conclusions from experiments

BO is an active search method to find the optimal NPM in a library while evaluating, with some ex-
pensive method such as a molecular simulation, only a small fraction of the NPMs in the data set.
BO achieves this by leveraging a surrogatemodel to capture our beliefs about the structure-property
relationship, given the observations thus far, to make principled acquisition decisions that balance
exploration and exploitation. The adoption of BO could dramatically impact high-throughput com-
putational screenings of NPMs by reducing the computing cost of finding the optimal NPM, allowing
us to screen larger databases of NPMs, and enabling the use of higher-fidelity but more expensive
molecular models and simulation methods. Notably, BO applies to NPM search in the experimental
domain as well.
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Figure 8: Permutation feature importance in the GP model (using randomly selected set of 5000
COFs). (a) Parity plot showing the performance of the GP on the test set. (b) Permutation feature
importances.

7 Outlook

Weexplained the key ideas behindBayesian optimization (BO) anddemonstrated its use to efficiently
search databases of NPMs for the one with the optimal property, while synthesizing and evaluating
the fewest NPMs. The ideas of BO, to sequentially, actively make intelligent decisions on which NPM
to synthesize and evaluate based on the past experiments, can be applied to both the laboratory
(driven by humans or robots [99–103]) and computational settings. The two core ingredients of BO
are (1) a surrogate model that approximates the structure-property relationship and describes our
uncertainty in it and (2) an acquisition function that scores the utility of evaluating each NPM next,
designed to balance exploration and exploitation. We demonstrated BO of NPMs by using BO to
search through a database of ca. 70 000 COFs to find the COF with the highest simulated methane
deliverable capacity; all 100 BO searches acquired the optimal COF after evaluating only 139 COFs.
While preparing our article, Donval and Hand et al. [104] also demonstrated BO of MOFs and COFs
for the acceleration of virtual screenings.
There are several extensions to and modifications of Bayesian optimization that are useful for dif-
ferent problem settings in NPM discovery:

• Batch BO. In standard BO, we select a single NPM to evaluate in each iteration. However, we
may have parallel experimental resources to leverage to further accelerate the search for the
optimal NPM. In batch BO [97, 105–110], at each BO iteration, we select multiple NPMs to syn-
thesize and evaluate in parallel. Assuming the time required to evaluate each COF is the same,
we expect batch BO to reduce the total time to find the optimal COF, compared to sequential
BO. Assuming the resources required to evaluate each COF is the same, however, we expect
batch BO to consume more resources to find the optimal COF, compared to sequential BO.
The reason is that batch BOmakes sub-optimal acquisition decisions for the second, third, and
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so forth acquired COF of each batch; e.g. the second decision would be better informed if we
knew the outcome of the experiment from the first COF in the batch.

• Multi-fidelity BO. Often, we have a choice of multiple experimental methods to evaluate the
property of an NPM. These methods usually involve a tradeoff in resource cost and the ac-
curacy of the evaluation. For example, a molecular simulation of gas adsorption in an NPM
is a low-fidelity experiment (cheap, but inaccurate) while measurement of gas adsorption in
an NPM in a physical laboratory is a high-fidelity experiment (costly, but accurate). Intuitively,
it is possible to leverage low-fidelity experiments to prune NPMs with low property values
and to identify promising NPM candidates that can be searched further using high-fidelity ex-
periments. In multi-fidelity BO [111–120], we select both an NPM to evaluate and the fidelity
of the experiment in each iteration. This allows optimization of the overall resource cost of
experiments—of both low- and high-fidelity—for identifying high-performing NPMs.

• Multi-objective BO.We often need to optimize NPMs for multiple property objectives which
are conflicting in nature and cannot be optimized simultaneously. For example, for gas sep-
arations, we often wish an NPM to have both a high selectivity and a high working capacity
for the gas we wish to capture [54]. In [linear] scalarization, we aggregate the multiple objec-
tives into a single objective by specifying a weight for each objective describing our priority for
optimizing it [121]. However, such weights are often subjective or cannot be declared a priori.
In such multi-objective optimization problems, we wish to find the Pareto optimal set of solu-
tions and leave objective prioritization for downstream decision-makers who may weigh the
objectives differently. A solution is Pareto optimal if it cannot be improved in any of the ob-
jectives without compromising some other objective. The goal ofmulti-objective BO [122–128] is
to find the optimal Pareto set of NPMs using the fewest NPM evaluations. Similarly, the ε-PAL
algorithm [129] has recently been used to find Pareto optimal polymers.

• Constrained BO. Possibly, some NPMs in the search space cannot be synthesized. More, of-
ten we cannot know if an NPM is synthesizable until we attempt its synthesis, which still incurs
a cost. In this context, synthesizability is a black-box constraint over the search space. In con-
strained BO [130–136], we perform BO where the synthesizability of an NPM cannot be verified
without performing an experiment. The typical approach involves learning a statistical model
based on the past evaluations of constraint(s) and selecting high-utility NPMs from the pre-
dicted feasible region (minimal to no constraint violation). Notably, a random forest classifier
has been trained to predict the ease of synthesis of precursors for porous organic cages, using
data collected from human experts on organic synthesis [137]. See Ref. [77] for an overview of
strategies to optimize molecules with synthesizability in consideration.

• Cost-aware BO. The evaluation cost can vary from one NPM to another (e.g., cost of synthe-
sizing NPM). We would like to take this cost into account to reduce the overall costs incurred
during the search for the optimal NPM. In cost-aware BO [138, 139], the acquisition strategy
considers not only the information gain of acquiring an NPM but also the cost incurred to
synthesize it and measure its property.

• Robust solutions to BO.Wemay be uncertain about themeasured/computed features of the
NPMs and seek an optimum NPM that is robust to variations in its features. In robust BO, we
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account for the uncertainty in the inputs x when optimizing f (x) and seek flat as opposed to
sharp optima [140, 141].

• BO that searches spaces with categorical or hybrid inputs. In some cases, the search
space could be composed of categorical as opposed to continuous variables, or a mix of them;
developing BO frameworks that can handle categorical and hybrid search spaces is an active
area of research [142, 143].

Some popular software packages for BO include BoTorch [144], BayesOpt [145], and SMAC [146].
COMBO [147] is a BO library tailored to materials science.
In addition to efficiently searching forNPMswith optimal properties, BO is applicable to awide variety
of optimization problems in the chemical andmaterials sciences [148,149]. BO has been used in both
the laboratory and computational settings to efficiently search for optimal reaction conditions [150–
152], organicmolecules [153], ferroelectricmaterials [154], compositions of and processing conditions
for materials [101,155], ligands to dock on proteins [97,156,157], crystal structures [110,158,159], shape
memory alloys [160], and density functional models [161]. Formore general overview, see the reviews
of Coley [162], Coley et al [163], Terayama et al. [164], Frazier andWang [165], and Lookman et al. [166].
The effectiveness of BO is predicted upon an accurate surrogate model of the structure-property
relationship with calibrated uncertainty quantification [167]. In turn, the accuracy of the surrogate
model is predicated on (i) an information-rich representation x of the NPM that encodes the salient
features of its structure and chemical composition and (ii) a statistical model that (a) is sufficiently
flexible/expressive to approximate the underlying objective function and (b) learns in a data-efficient
manner. This gives important and currently active directions for future research. Particularly, engi-
neering useful vector representations x of NPMs, using domain knowledge, is a very active research
area. The representation should be invariant to rotations, translations, replications (if a crystal), and
permutations of the list of atoms comprising the structure. Moreover, the mapping fromNPM struc-
tures to feature vectors should be injective. Graph neural networks can, instead, learn vector rep-
resentations of NPMs from their crystal structures represented as graphs with node labels. Recent
work has developed graph neural networks capable of uncertainty quantification [157,168], enabling
the use of graph neural networks as surrogate models for BO.
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