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Bimetallic nanoclusters exhibit interesting properties that make them attractive for a wide 
variety of application contexts. To that end, the identification of stable bimetallic nanocluster 
designs of various sizes and compositions is an important first step to enable a multitude of 
rigorous investigations involving such materials. However, even for a fixed particle size, the 
design space of a bimetallic nanocluster is highly complex, as the combinatorics of shape 
selection compound with that of chemical ordering. In this manuscript, we develop a 
computational framework to identify highly cohesive bimetallic nanocluster designs of various 
particle sizes and composition ratios. Starting from monometallic nanoclusters obtained via a 
previously proposed shape optimization approach, we develop a hybrid “structure-first-order-
second” decomposition that enables the efficient exploration of the full design space. In 
particular, a metaheuristic search optimization algorithm is tasked with identifying promising 
nanocluster shapes, iteratively improving upon those, while a mixed integer linear 
programming-based algorithm complements the former to identify optimal chemical orderings 
in light of given shapes. Comprehensive computational studies on AuAg, AgCu and CuAu 
nanoclusters reveal highly cohesive configurations as well as instances of alloyed clusters that 
possess greater cohesive energy than their monometallic counterparts. 
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Abstract

Determining the energetically most favorable structure of nanoparticles is a fundamentally

important task towards understanding their stability. In the case of bimetallic nanoclusters,

their vast configurational space makes it especially challenging to find the global energy opti-

mum via experimental or computational screening. To that end, this work proposes a two-step

optimization-based design framework to address this hard combinatorial problem. Given a nan-

ocluster of fixed shape, a rigorous mixed-integer linear programming model is formulated based

on a bond-centric cohesive energy function to identify the most cohesive bimetallic configuration

for a given composition. This capability is coupled with a metaheuristic strategy that searches

over the space of nanocluster shapes to obtain optimal structures. We apply our proposed

methodology on AgCu, AuAg and CuAu systems, quantifying how the size and composition

of a nanocluster influences its overall cohesion. Furthermore, we observe various synergistic

effects between Cu and Au in promoting cohesive energy, while multiple segregation patterns

are identified in all three studied binary systems. Our methodology serves as an efficient com-

putational tool for investigating bimetallic nanoclusters stability properties as well as provides

model nanoclusters for further investigations.

Keywords: bimetallic nanoclusters, cohesive energy, mathematical optimization, mixed-integer

linear programming.
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1 Introduction

Sub-nanometer transition metal clusters exhibit unique catalytic, magnetic, electronic, and optical

properties. They are promising materials in a wide range of next-generation technological advances,

such as catalysis, electronics, and optics, among others [1]. Compared with their monometallic

counterparts, bimetallic nanoclusters have unique advantages, including improved performance

and cost reduction. In addition, special additive and synergistic effects between the two metals

may be achieved via tuning the particle’s size, shape, composition, and chemical ordering [2]. The

flexible design space of bimetallic nanoclusters, combined with growing synthesizing capability to

near-atomic precision, motivates the research to identify optimal nano-configurations for target

functionalities.

Among all desirable functionalities, stability is of fundamental importance to nanocluster re-

search. Determining energetically favorable nanocluster configurations has attracted particular re-

search interest in understanding stability and other equilibrium properties at low temperatures [3].

This is a hard problem, given the vast combinatorial design space afforded by the applicable lattice

geometries. For a given number N of atoms, the number of unique geometrical isomers is estimated

as O(eN ) [4]. In the case of bimetallic nanoclusters, the complexity increases further due to the

existence of homotops, that is, clusters with the same geometry and composition but featuring dif-

ferent chemical ordering [5]. Consider that, even if a specific cluster shape is assumed, there are still

O(N !) possible ways of labeling it using two atomic identities. The configurational space caused

by isomers and homotops makes it impossible to screen every possible nanocluster configuration.

Therefore, it is essential to devise efficient algorithms to guide the optimization over such complex

design spaces.

In the literature, various metaheuristic methods, such as genetic algorithms, particle swarm

optimization, and basin-hopping have been utilized along with empirical or ab-initio potential

energy functions to identify the energetically most favorable nanoclusters [6, 7, 8, 9, 10, 11]. Those

methods sample the design space randomly or semi-randomly for better solutions and terminate

after some stopping criterion–often an arbitrary computation time limit–is met. Although highly

stable nanoclusters may be discovered by those approaches, the underlying methods lack the ability

to provide a metric of solution optimality. Furthermore, the performance of metaheuristic methods

is profoundly sensitive to hyper-parameter settings, calling for a careful tuning effort before they
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can be applied. In contrast to the above methods, one can utilize mathematical optimization to

explore the design space more systematically. The main benefit of this approach is that, once we

formulate the design problem as a formal optimization model, we can employ established numerical

algorithms and powerful commercial implementations to obtain optimal designs. This approach

has been illustrated in the design of transition metallic surfaces [12, 13], doped perovskites [14],

and monometallic nanoclusters [15], in which the design of transition-metal based nanostructured

materials was modeled in the form of a mixed-integer linear program (MILP), a well-known class of

optimization models. Notably, in contrast to methods based purely on meta-heuristics, an MILP-

based approach offers the ability to determine the incumbent solution’s quality, including whether

or not this solution is the globally optimal one in light of the objective metric of choice, as well

as how far it can be from the anticipated global optimum. With such guarantees, those previous

studies were able to discover various non-intuitive designs and interesting trends. The downside of

a mathematical optimization approach is their generally poor tractability when addressing highly

complex combinatorial design spaces, limiting the size of the particles, or the unit cells of periodic

structures, that can be designed in this way.

A highly complex combinatorial design space arises, for example, when one seeks to design

bimetallic nanoclusters, where the degrees of freedom associated with the shape and size of the

particles are compounded by the possible identities of each of their atoms, as dictated by the

applicable composition limits. To that end, we propose in this work a hybrid optimization approach

that integrates mathematical optimization and metaheuristic search to alleviate the complexity

challenges and identify highly stable bimetallic nanoclusters that are globally optimal in light of

the stability function one postulates. Conceptually, the optimization model we seek to solve can

be cast as follows:

maximize
d∈D

Stability(d)

subject to Size(d) = N1 +N2

Composition(d) =

[
N1

N2

]
,

where variable d abstractly encodes the cluster design, D represents the associated design space,

while N1 and N2 are the specified number of atoms for each of the cluster’s two elements.

To instantiate a formal design model using the above conceptual formulation as the basis, a

3
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relationship between a specific configuration d and its stability is needed. Multiple energetic de-

scriptors can be employed to approximate the thermodynamic stability of metal nanoparticles [16],

with the surface energy of the particle being a popular consideration. However, recognizing that

subsurface atoms and their chemical ordering plays an important role in the stability of the small

bimetallic clusters we are targeting to design in this work, we have chosen to instead focus on a

cluster’s cohesive energy as a metric of its stability. To that end, in order to find the most stable

configuration of such a cluster, we will seek to maximize its cohesive energy, subject to constraints

on its size and composition. Here, we select the simple, yet sufficiently accurate, bond-centric (BC)

cohesive energy function, which has been shown to predict cohesive energies in good agreement

with density functional theory (DFT) calculations for a wide range of binary alloy clusters [17].

Note how, in our context, the BC model can be viewed as the structure-function relationship of

interest.

Another important aspect of instantiating a specific design problem is the choice of the design

canvas, which corresponds to the superstructure of possible lattice locations that atoms might

occupy in any given design. For crystalline materials, such as the nanoclusters contemplated in

this work, the geometry may be described with standard Bravais lattices. In the computational

investigations of this paper, we shall utilize the face-centered cubic (FCC) lattice as a representative

canvas geometry via which to illustrate our design framework, but we highlight that our developed

design methodology is generic and can be easily adapted to other lattice types. Choosing the

geometry and the expanse of the canvas is often at the discretion of the modeler, but these choices

should not be entirely arbitrary, as they could affect model accuracy and numerical tractability.

For example, the choice of a canvas geometry that is not consistent with the specific chemistry

(i.e., metal species) of interest, or the choice of a small canvas compared to the target size of the

nanocluster, could over-constrain the problem and lead to erroneous results. At the same time, an

overly large canvas could make the optimization problem harder to solve due to the much larger

combinatorial complexity.

The remainder of the manuscript is organized as follows. In Section 2, we briefly introduce the

BC model for bimetallic cluster cohesive energy evaluation. Using this model as the basis for eval-

uating stability, we present in Section 3 our optimization-based methodology for the identification

of highly cohesive particle designs. In Section 4, we present our computational studies to derive

4
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stable nanocluster designs, and we analyze the latter to elucidate the impact of size, shape, and

composition on a nanocluster’s stability and equilibrium segregation patterns. We then conclude

with some final remarks in Section 5.

2 Bond-centric Cohesive Energy Model for Bimetallic Nanoclus-

ters

The cohesive energy, Ecoh, is defined as the energy difference between infinitely separated neutral

metal atoms and the crystalline cluster formed by those atoms [18]. It measures the average strength

of interatomic bonding, thus indicating the overall stability of a nanocluster. By identifying the

most cohesive bimetallic nanocluster, we essentially obtain the thermodynamically most stable

bimetallic nanoclusters configurations at low temperatures.

The following bond-centric cohesive energy function [17] is utilized as the structure-function

relationship in this work.

Ecoh =
1

N

∑
(i,j)∈B

beij (1)

beij =
γk`E

bulk
coh,k√

CNbulk
k

√
CNi

+
γ`k E

bulk
coh,`√

CNbulk
`

√
CNj

∀ (i, j) ∈ B (2)

Given the number of atoms, N , and the complete set of bonds, B, Equation (1) describes the

per-atom cohesive energy Ecoh of the particle as the summation of each bond i− j’s contribution,

beij , to the overall cohesion, while Equation (2) assumes that such bond contributions only depend

on the bonding atoms’ coordination numbers, CNi and CNj , and their elemental types, k and `,

respectively for atoms i and j. In regards to the various parameters, Ebulk
coh,m is the bulk cohesive

energy and CNbulk
m is the bulk coordination number of a metal of type m (where m is either

k or ` in the above formula). The weighting parameters γk` and γ`k are introduced so as to

differentiate contributions from two types of metal atoms in heterolytic bonds. We note that, when

γk` = γ`k = 1, this bond-centric function reduces to the well-established Square Root Bond-cutting

cohesive energy function [19]. The cohesive energy’s dependence on the coordination number can

be explained by the inherent nearsightedness in transition metals, where perturbations beyond one

lattice constant are dampened [20].

5

Page 6 of 28Molecular Systems Design & Engineering



The above bond-centric model is reported to provide promising cohesive energy predictions in

a wide range of binary nanoalloy systems using only a small set of parameters and minimal DFT

calculations [17]. Its two key parameters, γk` and γ`k, depend on dimer bond dissociation energies

and can calculated by solving the following system of equations:

γ`k BDE`−` + γk`BDEk−k = 2BDEk−` (3)

γ`k + γk` = 2, (4)

where BDE`−`, BDEk−k, and BDEk−` are the dimer bond dissociation energies of the homolytic

bonds `− ` and k− k, and the heterolytic bond k− `, respectively; these energies can be obtained

from either computational or experimental sources. We note that the underlying assumption of this

calculation is that the dimer bond dissociation energy trends match bulk cohesive energy trends,

which means the bond-centric model can capture around 85% percent of transition metal alloys

(298 bimetallic nanoalloys out of all 353 possible binary alloys) [17]. In addition to describing

stability of bimetallic nanoparticles, this function has also been successfully used as a descriptor

for chemical adsorption on the surface of bimetallic nanoparticles [21].

3 Optimization-based Design Framework

As discussed, the inherent complexity of bimetallic nanoclusters’ design space brings challenges for

any effort to rigorously optimize their configuration. The need to decide on both the presence and

type of atoms at each and every site leads to many combinations of otherwise feasible decisions.

To that end, we develop here a two-step solution approach, which we refer to as a “structure-

first-order-second” strategy. As its name suggests, the existence of atoms within the design canvas

is first determined without consideration of the types of atoms at each location. Then, with the

shape of the nanocluster considered fixed, the metal type identities of the atoms that exist in the

provisional design are decided afterwards (i.e., chemical ordering). The two searches are integrated

in an outer-inner loop scheme, which proceeds until convergence to an optimal structure is reached.

With this approach, we are essentially decomposing the full problem into two less complex sub-

problems that are more manageable to address. A similar strategy of identifying structures without

type labels to inform bimetallic nanocluster discovery was also adopted in a recent study of Pt-Co

systems [22].

6
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The remainder of this section discusses our approach in more detail. More specifically, in

Section 3.1, we present a rigorous mixed-integer linear programming (MILP) optimization model

for identifying the chemical ordering of a particle of given shape and composition that maximizes

its cohesive energy as per the bond-centric model of Section 2. In Section 3.2, we discuss how this

capability can be embedded in a two-step search approach to optimize over the space of particle

configurations using metaheuristic search algorithms described in Section 3.3.

3.1 Optimal Chemical Ordering Model

Let a bimetallic nanocluster of given size (i.e., number of atoms N), composition (i.e., partitioning

of N into N1 and N2, the number of atoms of each its two elements), and shape (i.e., set of bonds

connecting the atoms). We denote with I the set of all locations in this nanocluster, while for each

location i ∈ I, we denote with Ji ⊂ I all neighboring locations that are connected with i via an

atom-atom bond.

Given this setting, we define binary decision variables xik to indicate the presence/absence of

a particular type-k atom at each location i. More specifically, if xik = 1, a type k atom exists at

canvas location i; otherwise, when xik = 0, the site i does not contain a type k atom (and rather

contains an atom of the other element ` 6= k). The search for the best design, d∗, is then equivalent

to identifying an optimal set of decision variables x∗ik. Additionally, we define binary variables zijk`

to represent the existence of a bond between atom types k and ` that are respectively placed in

locations i and j. Finally, auxiliary continuous variables beij are utilized to represent the bond

(i − j)’s contribution to the overall cohesion. Equations (5) through (12) constitute the complete

optimization model.
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maximize
xik,zijk`,beij

1

N1 +N2

∑
i∈I

∑
j∈Ji

1

2
beij (5)

subject to
∑
i∈I

xik = Nk ∀ k ∈ {1, 2} (6)

2∑
k=1

xik = 1 ∀ i ∈ I (7)

{xik ∧ xj`} ⇔ zijk` ∀ ` ∈ {1, 2} ∀ k ∈ {1, 2} ∀ j ∈ Ji ∀ i ∈ I (8)

beij =

2∑
k=1

2∑
`=1

 γk`E
bulk
coh,k√

CNbulk
k

√
|Ji|

+
γ`k E

bulk
coh,`√

CNbulk
`

√
|Jj |

 zijk`

∀ j ∈ Ji ∀ i ∈ I (9)

xik ∈ {0, 1} ∀ k ∈ {1, 2} ∀ i ∈ I (10)

zijk` ∈ {0, 1} ∀ ` ∈ {1, 2} ∀ k ∈ {1, 2} ∀ j ∈ Ji ∀ i ∈ I (11)

beij ∈ R+ ∀ j ∈ Ji ∀ i ∈ I (12)

As shown in Equation (5), the model’s objective is to maximize the cohesive energy, as the

latter is calculated by the bond-centric model, normalized per atom of the particle to readily facil-

itate comparisons among designs of different sizes. Equations (6) specify the cluster composition,

while Equations (7) ensure that exactly one atom type is designated per each location i. Then,

Equations (8) dictate the logic defining the auxiliary variables zijk`. The latter are then referenced

in Equations (9), which evaluate beij , i.e., the contribution of each bond i− j to the total cohesive

energy. We remark that only the appropriate one out of four possible atom type pairs k−`, namely

the one for which zijk` = 1 (or equivalently, the one for which xik = 1 and xj` = 1 at the same

time) will contribute to the right-hand side summation; thus, by summing across all possibilities for

atom type assignments, we essentially retrieve bond i− j’s contribution to the objective function in

variable beij . Note how, in Equations (9), the cardinalities of sets Ji correspond to the applicable

coordination number of the atom occupying each location i. Finally, Equations (10) and (11) de-

clare the binary nature of decision variables xik and zijk`, respectively, while Equations (12) declare

the intermediate quantities beij as non-negative continuous variables.

In order to formulate a model of MILP form, the logical constraints (8) need to be first equiv-

alently transformed into their linear counterparts using the well-known Glover linearization tech-
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nique, resulting into the following constraints (8′).

zijk` ≤ xik
zijk` ≤ xj`
zijk` ≥ xik + xj` − 1

 ∀ ` ∈ {1, 2} ∀ j ∈ Ji ∀ k ∈ {1, 2} ∀ i ∈ I (8′)

The reformulated model can now be instantiated and solved by well-established MILP solvers.

More specifically, to do so for a given system of interest, the modeler has to define: (1) the nanoclus-

ter shape, namely the locations I and their bond connectivity Ji for all i ∈ I; (2) the applicable

metal types and overall cluster composition, N1 and N2, as well as collect bulk cohesive energies

and calculate parameters γk` and γ`k from dimer bond dissociation energies. We highlight how the

above model is presented generically and independently of lattice type. In particular, it is implied

that the sets I and Ji have been chosen consistently with the lattice geometry one expects to apply

given the chemistry of interest. For example, if one targets the design of FCC clusters, one should

choose sets that encode FCC patterns, and should do so similarly for any other lattice geometries.

If solved to algorithmic termination by a suitable MILP solver, this bimetallic nanocluster

chemical ordering model can provide the mathematically guaranteed global optimal solution, up

to the accuracy imposed by the bond-centric model. This optimal solution would then correspond

to the most cohesive bimetallic design for a given shape, size, and bimetallic system composition.

In this work, we solved our model instances using one of the most popular commercially-available

MILP solvers, namely CPLEX version 12.9 [23].

Our experience suggests that the numerical tractability of this model is very good, as we were

able to reliably obtain provable optimal solutions within seconds of CPU time and for systems

with up to several hundreds of atoms. Hence, the above model is deemed amenable to serve as the

evaluator of an iterative algorithm searching in the space of nanocluster shapes at an outer loop.

3.2 Two-step Solution Strategy

Before we present our proposed solution strategy, we would like to remark that we conducted

extensive investigations using a full-space MILP model that attempted to co-optimize directly on

the space of shapes and homotops, i.e., to simultaneously determine the presence of atoms on

a lattice superstructure as well as the types of atoms in each occupied location. However, the

observed numerical tractability of such a full-space model was not promising. More specifically,

9
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for many of the instances under consideration and across a wide range of nanocluster sizes and

compositions, attempting to solve the full-space model monolithically using the state-of-the-art

CPLEX code did not yield algorithmic termination in a reasonable amount of time. In particular,

we found that the solver could not always converge to a provably globally optimal solution before

the CPU time limit of one hour, while instead the solver returned feasible solutions with optimality

gaps that in some cases exceeded 100% , which means that the true global optimum cluster could

have featured more than double the cohesive energy of the solution at hand. Furthermore, by

inspecting the bimetallic nanocluster designs corresponding to those feasible solutions, we observed

a high degree of randomness in terms of nanocluster shapes and chemical ordering, which suggests

that the feasible solutions obtained by the solver at the imposed time limit were not the optimal

solutions we were looking for.

These empirical observations led us to pursue a “structure-first-order-second” two-step com-

putational strategy to overcome these limitations. As discussed, the main idea is to decompose

the bimetallic nanocluster design problem into a shape optimization step and an chemical ordering

step, integrating the two steps in an iterative co-optimization process. Another benefit brought by

this strategy is that the shape optimization step can leverage previously developed capabilities for

the design of stable monometallic nanoclusters [15]. More specifically, the work of [15] has demon-

strated how an MILP model can be used to design monometallic nanoclusters of given size that

maximize their dimensionless cohesive energy, Ecoh := Ecoh/Ecoh
bulk. We note here that the work

of [15] utilizes the square root bond-cutting (SRBC) cohesive energy function as the objective of

focus. However, since this metric does not account for the differences in interactions between dif-

ferent elemental types, it cannot be applied to optimizing chemical ordering, which is why we have

chosen the bond-centric cohesive energy function instead. Regardless, the highly cohesive shapes

that stem from the use of the SRBC model can still be considered as candidates for bimetallic

particle shapes. To that end, by employing an MILP code like CPLEX on the monometallic design

model, one may obtain a hierarchy of P optimal solutions (a.k.a. a solution pool) that consist

of the distinct nanocluster shapes featuring cohesive energies from the highest to the P th-highest

possible values. Here, P is a predefined small integer that constitutes an algorithmic parameter

(we will later select the value of P = 20). All the shapes in this hierarchy are collected as they are

likely to exhibit a high degree of cohesiveness in a bimetallic setting as well, and whereas the shape
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corresponding to the most cohesive monometallic cluster might not be the one corresponding to

the most cohesive bimetallic cluster, the latter is likely to be found among those in this solution

pool.

At a first pass, one may select any and all of the designs from this solution pool, use it to

define the set of locations I, and apply the chemical ordering MILP model introduced in the

previous section to rigorously search over the space of bimetallic homotops corresponding to the

same particle shape. Below, we propose an efficient workflow for an integrated two-step decision-

making process whereby the provisional shape is iteratively updated based on some metaheuristic

search algorithm and the chemical ordering model is successively applied to optimize across all

corresponding homotops, leading to an improved design that features highest cohesive energy. We

remark that the iterative scheme might not reach a globally optimal solution with respect to both

shape and ordering; however, as we will demonstrate later in our computational studies, the two-

step solution strategy that utilizes a purpose-built metaheuristic search algorithm is able to identify

highly cohesive bimetallic designs.

The overall two-step optimization process is synopsized in Figure 1. Given specifications for

the target nanocluster size and composition, as well as given applicable values for all atom type-

related parameters, the process begins by obtaining the pool of the P most cohesive monometallic

nanocluster shapes from the work of [15]. Using each of the shapes as the input, we apply the

above presented chemical ordering MILP model to obtain the best possible bimetallic nanocluster

design conforming to each given shape. By comparing all such designs, we pick the one with the

highest cohesive energy as our initial design.

However, the shapes represented in the pool of highly cohesive monometallic nanoclusters might

not contain the optimal shape for a bimetallic cluster. To that end, we expand our search effort

to the full space of cluster shapes by utilizing a purpose-built metaheuristic search process that is

detailed in the next subsection of this paper. For any new shape iterate that is postulated via this

process, we apply again our MILP model to evaluate its cohesiveness in light of the optimal chemical

ordering afforded by this shape. The process iterates until we reach some termination condition,

which could be a limit on the CPU time and/or iterations through the loop or a detection that

the solution progress has stagnated (e.g., not having identified a better design within a predefined

number of recent iterations).

11
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Input N1, N2, γ,
Ebulk

coh , and CNbulk

Obtain initial bimetallic
design based on the
best P monometallic

clusters from [15]

Are termination
conditions satisfied?

Step 1: Update cluster
shape via metaheuristic

search algorithm

Step 2: Apply MILP
model and identify the
best bimetallic design
for the given shape

Output best
bimetallic design

No

Yes

Figure 1. Two-step solution strategy for the identification of highly cohesive bimetallic nanoclus-

ters

3.3 Metaheuristic Search for Optimal Cluster Shapes

Given early bimetallic designs, as obtained by optimizing chemical ordering of nanoclusters that

are known to be highly cohesive as monometallics, we can now apply an appropriate, purpose-

built metaheuristic search algorithm to improve those designs further. Metaheuristic search is an

optimization paradigm that aims to iteratively modify provisional solutions according to a suitably

defined local neighborhood, which constitutes a direction of search in the problem’s decision space,

into potentially better solutions [24, 25]. Proper strategies to initialize solutions, modify existing

solutions, decide the acceptance or not of new solutions, and terminate the search are essential for

designing efficient metaheuristic search algorithms. There exist a lot of algorithmic frameworks

that follow this paradigm of search, including genetic algorithms, simulated annealing, variable

neighborhood search, ant colony optimization and particle swarm optimization, to name but a

few [26]. As also mentioned in the introduction, however, metaheuristic search algorithms provide

no optimality proof at termination. Hence, selecting a scheme that is found to perform efficiently
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in each application and properly tuning its hyperparameters, is important. There in fact exists

a lot of prior work that utilizes such methods to search for stable nanoclusters [6, 7, 8, 9, 10,

11]. Our algorithm differs from the literature work in the sense that each iterate in our search

constitutes a large collection of bimetallic designs to include all possible homotops, the best of

which is selected after optimizing the chemical ordering via the MILP model presented earlier. In

effect, our proposed approach may also be classified as a matheuristic algorithm [27, 28], which to

the best of our knowledge, constitutes the first employment of such an algorithm in the context of

designing nanostructured materials.

After some numerical experimentation with other options, we decided to pursue the development

of a simulated annealing (SA) scheme to guide the search in terms of particle shapes. The SA

scheme is inspired by the annealing process followed in metallurgy, where heating and controlled

cooling are coupled to improve material properties. In an SA guided search, improving solutions are

always accepted, while worsening solutions are accepted with specific probabilities. A parameter T

(mimicking the temperature that constantly drops in the real annealing process) determines those

probabilities via a Boltzmann factor. Initially, the parameter T is larger, enabling more frequent

acceptances of worsening local search moves to diversify the search, but as the search progresses,

T decreases and the likelihood of accepting worsening solutions diminishes, intensifying the search

around the locally applicable optimum. In essence, at each iteration the algorithm evolves across the

spectrum from random sampling (accepting all moves) to greedy search (only accepting improving

modifications). The initial temperature setting and the rate of cooling are hyper-parameters that

require careful tuning, while a search trajectory may undergo multiple cycles of cooling followed by

subsequent reheating to the initial temperature. For further details on how to set up an efficient

SA implementation, we refer interested readers to a multitude of literature on the topic (see,

e.g.,[26, 29]).

The local moves applied during each SA iteration are proposed based on the applicable neigh-

borhood of search, which is usually purposely defined in each application. In our case, we define

this neighborhood as the repositioning of a single surface atom. We focus on repositioning only

surface atoms due to the underlying hypothesis that the less coordinated surface atoms will have a

more significant impact on the cohesive energies. Furthermore, it is important to highlight that this

specific neighborhood of search does not restrict the accessible search space, as all transitions from

13

Page 14 of 28Molecular Systems Design & Engineering



any shape to any other shape can be achieved via successive single surface atom repositionings.

After each surface atom repositioning, the CPLEX code is applied to re-determine the chemical

ordering that is most cohesive in light of all homotops of the new shape. Indeed, the ability to con-

sider all homotops at once reduces the number of needed iterations and improves search efficiency

compared to a less sophisticated implementation that would have incorporated atom labeling as

part of the SA neighborhood definition.

4 Computational Results

Three bimetallic systems, namely AuAg, AgCu and CuAu are chosen based on the assumption that

they tend to form at equilibrium face centered cubic (FCC) crystalline solids, where CNbulk = 12.

Bulk cohesive energies, as found in literature for the three types of metals involved, are taken

as Ebulk
coh,Au = 3.81 eV, Ebulk

coh,Cu = 3.49 eV, and Ebulk
coh,Ag = 2.95 eV [30]. Weighting parameters

are calculated via Equations (3) and (4), using dimer bond dissociation energies obtained from

experimental data in the literature [31]. The applicable parameters are γAuAg = 1.281 and γAgAu =

0.719 for the AuAg system, γAgCu = 1.389 and γCuAg = 0.611 for the AgCu system, and γCuAu =

−0.357 and γAuCu = 2.357 for the CuAu system.

For each of these bimetallic systems of interest, we consider a particle size range N between

6 and 65, as well as all applicable compositions from pure metal type A to pure metal type B.

In total, we consider 6, 570 different test instances that were generated for these computational

experiments. The exact atomic coordinates of all optimal structures are provided as XYZ files in

the ESI.† In the remainder of the paper, a unique combination of size, composition, and bimetallic

system is referred to as AmBn, where A and B are the metal species, while m and n are the number

of atoms for each respective type.

4.1 Correlation Between Monometallic and Bimetallic Solutions

For each AmBn system, we shall apply the monometallic nanocluster design methodology from [15]

and compute the pool of the P = 20 best solutions and their corresponding dimensionless cohesive

energies, Ecoh. These solutions represent different nanocluster shapes of size m + n that we can

now rank from one to twenty in terms of the above energies. Then, focusing on each of these

shapes, one at a time, we solve the chemical ordering MILP model to obtain corresponding optimal

14

Page 15 of 28 Molecular Systems Design & Engineering



bimetallic designs and the associated cohesive energy values, Ecoh, according to the bond-centric

model. With these results at hand, we shall first investigate the extent to which the optimality of

a cluster shape in the monometallic case correlates to the cohesiveness of bimetallic clusters.

Figure 2a presents a histogram of the monometallic solution ranks from which the various best

cohesive bimetallic designs were obtained. In other words, each bar in the histogram represents

the count of AmBn systems for which the best (out of twenty) bimetallic clusters originated from

a monometallic cluster shape (among the twenty such shapes) with a given rank (from the highest

to the twentieth highest in terms of dimensionless cohesive energy). From this histogram, we can

observe that around 80% of the best bimetallic designs can be derived from nanocluster shapes that

ranked first in the monometallic solution pool. We can thus utilize the occurrence frequency of a

given rank in this histogram to approximate the probability of generating an optimal bimetallic

design from a monometallic solution of this rank. Since the occurrence frequency shows a gen-

eral decreasing trend for all three chemistries of interest, we conclude that the probability of a

given shape corresponding to the optimal bimetallic design decreases rapidly, as the monometallic

optimality of a cluster shape decreases, while it is relatively unlikely that the optimal bimetallic

cluster shape is not represented in one of the first four or five monometallic optimal shapes. This

observation motivates our algorithmic choice of P = 20 as the size of the collection of monometallic

clusters that are to be considered when initializing the search for optimal bimetallic designs.

We now seek to establish a direct quantitative metric of the correlation between Ecoh and

Ecoh. To do so, we expand our focus to a total of 100 cluster shapes for each AmBn, consisting

of the original P = 20 ranked ones as well as an additional 80 shapes obtained via the CPLEX

code’s solution pool facility applied on the monometallic nanocluster model from [15]. Following

the previous procedure, we apply the chemical ordering MILP model and calculate Ecoh for all

resulting bimetallic clusters. These are then compared against the dimensionless cohesive energies

of the monometallic clusters, Ecoh. With all AmBn systems we studied, we noticed generally positive

correlations between Ecoh and Ecoh. Figure 2b plots such correlations for an example composition

of A19B18, for the three chemistries of interest. In particular, the AuAg clusters show a near perfect

correlation with an R2 value of 0.997, the AuCu clusters show strong correlation with an R2 value

of 0.921, while the CuAu system exhibits a relatively weaker correlation with an R2 value of 0.558.

We remark that similar correlation trends are observed for the other compositions The correlations
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between Ecoh and Ecoh suggest that, for the systems we have investigated, the shape of a bimetallic

nanocluster plays a important role in determining its cohesive energy. Arguably, a highly cohesive

monometallic nanocluster shape is a good starting place for designing a highly cohesive bimetallic

nanocluster, motivating our decision to pursue the proposed two-step solution strategy.

(a) (b)

Figure 2. (a) Histogram of Ecoh ranks of optimal bimetallic cluster shapes. (b) Parity plot

between Ecoh and Ecoh for representative test instances Au19Ag18, Ag19Cu18 and Cu19Au18

4.2 Improving Designs via Metaheuristic Search

In this section, we discuss our computational experiments to validate the effectiveness of our

purpose-built SA metaheuristic scheme for searching over the design space of nanocluster shapes.

More specifically, we compare the cohesive energies of the best identified cluster before and after

applying the two-step solution strategy. Furthermore, in order to validate the utility of applying

the chemical ordering MILP at each step of the metaheuristic search, we also implemented a bare-

bones version of the SA search whereby the repositioned surface atoms retain their atomic labels,

skipping the chemical ordering step to relabel every atom of the new cluster. In the following, we

refer to these two approaches as “SA-MILP” and “SA-only”, respectively.

Figure 3 presents example computational results for the case of 39-atom CuAu clusters, using
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a CPU time limit of 100 seconds in all cases. We should highlight that, just like many other meta-

heuristic algorithms, simulated annealing invokes a random number generator to decide whether

any non-improving designs are accepted as part of the solution trajectory. To that end, in order to

avoid any randomness effects due to the choice of the random number generator seed, the cohesive

energies presented in this figure correspond to the best values among 10 runs of the SA process,

each time utilizing a different seed for the random number generator.

The plot reveals that, compared to the initial solutions (“no SA”) corresponding to shapes

of monometallic nanoclusters, both the ”SA-MILP” and “SA-only” approaches help to improve

solution quality. The improvements are most significant in composition ratios between 0.3 and 0.5,

when the amounts of the two metals are comparable and where the combinatorial complexity is the

greatest. In addition, we note that the “SA-MILP” approach tends to find better solutions than the

“SA-only”, suggesting that the MILP chemical ordering step indeed accelerates the search process.

For example, focusing on the Cu14Au25 system (singled-out in Figure 3), we notice that the best

cluster considering only optimal orderings of monometallic nanocluster shapes (i.e., the green dot)

exhibits noticeably lower cohesiveness than what can be achieved by subjecting those structures

to atom rearrangements via the SA search process (i.e., the red dot), while with the integration

of MILP-based chemical ordering optimization at each step of the search, an even better structure

is identified (i.e., the blue dot). Noting that these results are representative of other instances we

have tested, we conclude that our purpose-built SA-based algorithm to search over cluster shapes,

combined with an MILP-based search over chemical orderings, constitutes an efficient strategy

for designing highly cohesive, and hence stable, bimetallic nanoclusters. The optimality boost

provided by the metaheuristic is especially helpful for systems with a relatively weaker Ecoh−Ecoh

correlations, such as the CuAu case.

4.3 Trends Among Bimetallic Solutions

The two-step methodology we presented in this paper is a powerful tool for systematically exploring

the design space and understanding bimetallic nanoclusters’ stability. The framework’s most direct

usage is to identify optimally stable designs for given sizes, compositions, and bimetallic systems.

The obtained designs can then serve as model nano-structures for further experimental and theo-

retical investigations. At the same time, when considered collectively, the complete library of stable
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Figure 3. Comparison of solutions obtained via different search strategies for representative

clusters CumAun with m+ n = 39.

bimetallic nanoclusters can build intuition on how different factors interact and affect stability.

In our previous study on the stability of monometallic nanoclusters [15], we observed that,

as the particle size increases, its cohesive energy asymptotically approaches the bulk value but

with noteworthy discontinuities of the trend at certain so-called magic numbers. In general, magic

number effects may be arising in highly symmetrical structures and based on enhanced stability

of their electronic structure. To investigate the size effect for bimetallic nanoclusters, we compare

here results across various sizes of the same specified compositions. As shown in Figure 4a, a

similar trend of asymptotically increasing cohesive energies applies. We also notice deviations from

a purely monotonic increase at specific sizes and compositions (e.g., CuAu system at N = 10),

which may be explained by applicable magic number effects that are however far less understood

in bimetallic systems.

With bimetallic nanoclusters, it is also important to investigate how composition affects their

stability. Researchers are especially interested in minimum compositions of noble metal in cata-

lysts [32] and magic compositions of additive or synergistic effects. To that end, we can scan our

results library at given sizes and compare structures along various compositions. As Figure 4b
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shows, among the three systems investigated, AuAg and AgCu show direct additive effects between

their two metals in terms of cohesive energy, where adding atoms of higher bulk cohesion (Au

and Cu, respectively) increases the particle’s total cohesive energy linearly. In contrast, for the

CuAu system, we observe nonlinear synergistic effects between those two metals, whereby mixed

nanoclusters tend to have higher cohesive energy than their pure counterparts. More specifically,

for the range of sizes represented in this plot, an most cohesive composition arises at approximately

40% Cu to Ag ratio where the highest cohesive energy is attained.

(a) (b)

Figure 4. Impact on optimal cohesive energies of bimetallic nanoclusters of (a) size N at three

composition ratios R ∈ {25%, 50%, 75%} (b) composition ratios R at three sizes N ∈ {26, 39, 55}.

In addition to investigating optimal solutions in terms of the cohesive energy values, we can

also study their structure features qualitatively. We are particularly interested in the segregation

patterns exhibited by stable designs, because these patterns significantly affect catalytic reactivity

and magnetic properties. In our studies, we observed that nearly all of the optimal solutions

are quasi-spherical, and hence, we employ the mean distance to the geometric center (MDG) as

a suitable metric for the level of segregation. For example, if a certain type of atoms tends to

segregate to the surface, then we should observe a divergence of the MDG of the two atom types

in the cluster.
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Figure 5a reports MDG calculations for our optimal solutions across all composition ratios and

for the representative cluster size N = 39. From these plots, we can clearly infer the corresponding

segregation patterns. More specifically, in the CuAu system, the Au atoms tend to have larger

MDG than the Cu atoms, indicating that the Au atoms tend to distribute at the surface, while the

Cu atoms aggregate into the center of the particle. Similar trends also appear in the AgCu system,

with the Ag atoms preferentially distributing at the surface. The AuAg system shows a more

complicated pattern. When fewer Au atoms are in the particle, Ag atoms tend to have larger MDG

values. However, as the number of Au atoms increases, the pattern shifts to having more Au atoms

on the surface. Those observations suggest interesting configurations of optimally stable bimetallic

nanoclusters. By inspecting detailed AgCu configurations more closely, we can note Cu@Ag core-

shell structures for instances with a few Cu, when Ag tends to segregate to the surface. When

more Cu atoms and a few Ag atoms exist in the particle, highly symmetric Cu-core Ag-decorated

structures are identified. Similar configurations are observed in the CuAu system. It should be

noted that those configurations are highly symmetric. For the AuAg system, Ag tends to segregate

to the surface at low Au composition, while Au@Ag core-shell structures are observed. In contrast,

at high Au composition, Au tends to segregate to the surface, and Ag@Au core-shell structures are

found. These structural trends have been also observed on minimum-energy structures of larger

bimetallic nanoparticles (sizes reaching 4,000 atoms) by combining the bond-centric model with

a genetic algorithm, where Cu resides in the core of AuCu and AgCu nanoparticles and AgAu

particles show well-mixed behavior [11]. This could be partially explained by the fact that the bulk

cohesive energy value of copper is higher than that of silver and, hence, optimal designs tend to

form many Cu-Cu bonds in the core. In general, the final designs result from an optimized trade-off

between many factors, such as number of bonds, strength of bonds, and the overall geometry of

the lattice.

Next, we attempt to validate that the structures obtained via our design approach retain their

stability characteristics as well as the associated trends even when subjected to DFT relaxations.

In order to apply DFT calculations, we note that there exists systematic deviations of ab initio

calculated and experimental bulk cohesive energies, which are essential parameters in the bond-

centric model. Thus, for a fair comparison, we feed the DFT-calculated key parameters to our

methodologies. The identified optimal bimetallic configurations are then relaxed with DFT calcu-
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lations. More specifically, for each structure, we pre-optimized by scaling the atomic coordinates to

minimize the energy according to Effective Medium Theory (EMT), as implemented in the Atomic

Simulation Environment (ASE) [33]. A full DFT optimization was then carried out on the pre-

optimized structure. We utilized CP2K [34, 35] in conjunction with the PBE functional [36] and the

DZVP basis sets of VandeVondele and Hutter [37], along with the pseudopotentials of Goedecker,

Teter, and Hutter [38] and a planewave cutoff of 500 Ry. The self-consistent field (SCF) proce-

dure was converged to within 10−8 Ha, and geometries were optimized until forces were below

4.5× 10−4 Ha/Bohr.

We then take the final DFT-relaxed structures and report their MDG values in Figure 5b. As can

be observed by comparing the respective MDG values, there exists a good quantitative agreement

between the DFT-relaxed and FCC optimal solutions, while qualitatively, we also confirm the DFT-

relaxed structures maintain the mixing patterns observed previously. We acknowledge that DFT

optimization is always contingent to the initial structure that is provided as input. However, if the

optimization methodology would result to unrealistic bimetallic nanocluster designs, this should

be depicted in the DFT optimization where significant cluster reconstruction should occur. Thus,

Figure 5b demonstrates that the clusters retain their structural trends after DFT optimization.

These results further illustrate the ability of the two-step approach presented in this paper to yield

bimetallic nanocluster structures that are indeed highly stable and that retain their general shape

and associated segregation pattern under lattice relaxation.

4.4 Effect of Lattice Type on Segregation Patterns

Given our framework’s amenability to consider various lattice types, we provide here a brief in-

vestigation of how the choice of lattice might affect the optimal chemical orderings and resulting

segregation patterns expected in highly stable clusters. More specifically, we reran our chemical or-

dering optimization model on N = 13 and N = 55 perfect icosahedron enclosure shapes, for various

compositions, and compared the results with the corresponding designs based on a cuboctahedron

lattice (i.e., FCC). As illustrated in Table 1, optimal orderings within icosahedral clusters show

slightly higher cohesiveness than optimal orderings in their cuboctahedral counterparts. This can

be explained by the fact that, for the same size, there are more bonds in icosahedral clusters than

in cuboctahedral ones. Among the five example instances, Ag12Cu1 exhibits the highest cohesive
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(a) (b)

Figure 5. MDG values and standard deviations for size N = 39 (a) FCC optimal designs, and

(b) DFT-relaxed designs; gold, silver, and copper colors encode the respective metals.

energy ratio between icosahedron and cuboctahedron shapes, suggesting that, at this size and com-

position, the AgCu system has a greater tendency to form icosahedron shaped nanoclusters rather

than FCC ones. Despite these absolute differences in cohesive energies, the optimal orderings are

similar, exhibiting the same segregation patterns. For example, Ag12Cu1, Ag42Cu13, Cu1Au12,

and Cu13Au42 all form core-shell structures with Cu cores, while highly symmetric Cu-core/Au-

decorated structures of Cu43Au12 are observed, in both icosahedron and cuboctahedron shapes.

Overall, the above analyses support the conclusion that the segregation patterns observed earlier

in this paper for FCC clusters would not change significantly, if icosahedron shapes are in effect.

5 Conclusions

We have developed a rigorous design framework, hybridizing exact MILP-based and metaheuristic

search optimization, for identifying highly stable bimetallic nanoclusters. To alleviate obvious

tractability challenges when faced with a highly combinatorially complex design space such as those

arising for bimetallic particles, we proposed a clever “structure-first-order-second” decomposition

of the full design task into two steps, namely the optimization of the particle shape followed by
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Lattice Ag12Cu1 Ag42Cu13 Cu1Au12 Cu13Au42 Cu43Au12

Icosahedron

Eico
coh (eV) 1.89 2.30 2.29 2.65 2.84

Cuboctahedron (FCC)

Ecub
coh (eV) 1.76 2.21 2.17 2.58 2.74

Eico
coh/E

cub
coh 1.07 1.04 1.05 1.03 1.04

Table 1. Comparison of optimal designs under cuboctahedron (FCC) and icosahedron geometries.

the optimization of chemical ordering within a given shape. To that end, we applied simulated

annealing to guide the search across nanocluster shapes, coupled with an MILP model to identify

the optimal homotop associated with each nanocluster shape visited in the search trajectory.

In the course of our computational experiments, we obtained an excess of six thousand optimal

solutions of AuAg, AgCu and CuAu nanoclusters with up to 65 atoms, demonstrating that our

design framework can identify highly cohesive bimetallic nanocluster configurations. The latter can

serve as model particles for further investigations, enabling the efficient and systematic exploration

of their stability properties. Many unintuitive bimetallic configurations were obtained, including

core-shell structures and symmetric core-decorated structures. We also looked at how size and

composition affect a cluster’s cohesion, revealing many interesting instances whereby alloyed clusters

demonstrated greater cohesive energy than their monometallic counterparts. Furthermore, we

observed various interesting segregation patterns that remained unaffected when submitting the

clusters to DFT relaxations. Most notably, we confirmed that Cu atoms tend to segregate into the

core in both AgCu and CuAu systems.
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