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Quantitative particle agglutination assay for point-of-care testing 
using mobile holographic imaging and deep learning
Yi Luoa,b,c †, Hyou-Arm Joung a,b,c †, Sarah Esparzac, Jingyou Raod, Omai Garnere, Aydogan 
Ozcana,b,c * 

Particle agglutination assays are widely adapted immunological tests that are based on antigen-antibody interactions. 
Antibody-coated microscopic particles are mixed with a test sample that potentially contains the target antigen, as a result 
of which the particles form clusters, with a size that is a function of the antigen concentration and the reaction time.  Here, 
we present a quantitative particle agglutination assay that combines mobile lens-free microscopy and deep learning for 
rapidly measuring the concentration of a target analyte; as its proof-of-concept, we demonstrate high-sensitivity C-reactive 
protein (hs-CRP) testing using human serum samples. A dual-channel capillary lateral flow device is designed to host the 
agglutination reaction using 4 µL of serum sample with a material cost of 1.79 cents per test. A mobile lens-free microscope 
records time-lapsed inline holograms of the lateral flow device, monitoring the agglutination process over 3 min. These 
captured holograms are processed, and at each frame the number and area of the particle clusters are automatically 
extracted and fed into shallow neural networks to predict the CRP concentration. 189 measurements using 88 unique patient 
serum samples were utilized to train, validate and blindly test our platform, which matched the corresponding ground truth 
concentrations in the hs-CRP range (0-10µg/mL) with an R2 value of 0.912. This computational sensing platform was also 
able to successfully differentiate very high CRP concentrations (e.g., >10-500 µg/mL) from the hs-CRP range. This mobile, 
cost-effective and quantitative particle agglutination assay can be useful for various point-of-care sensing needs and global 
health related applications. 

Introduction
Particle agglutination assays are widely used immunological tests 
based on antigen-antibody interactions1,2. Latex particles are 
sensitized through the adsorption of antibodies onto their surfaces. 
Once the sample is introduced, the corresponding antigens attach to 
the antibody binding sites and the micro particles form clusters due 
to the target antigen’s capability of binding to different sites 
simultaneously. The amount of agglutination between the particles 
is indicative of the amount of antigen present in a sample. Particle 
agglutination assays have been used to test for antigens in a number 
of bodily fluids, including e.g., saliva, urine, cerebrospinal fluid, and 
blood. A range of illnesses can be diagnosed using particle 
agglutination assays, including bacterial, fungal, parasitic and viral 
diseases3–12. Its major advantages in point-of-care diagnosis include 

short reaction time, low sample volume, low-cost, and high 
specificity. The operation of conventional particle agglutination 
assays includes two steps. First, an expert will mix the sample of 
interest with a pre-processed liquid that contains antibody-coated 
particles. The turbidity of the mixture then changes as agglutination 
occurs during the mixing process. Most often, an expert will compare 
the mixture to a pre-existing standard of turbidity to give an 
estimation of the antigen’s concentration using the naked eye. One 
of the barriers to its wider application lies in the assay’s low 
sensitivity and lack of quantitative measurements13,14. A simple 
practice to get semi-quantitative analysis is to perform multiple tests 
simultaneously with pre-diluted samples of different concentration 
gradients. Other research has also focused on measuring optical 
turbidity or light scattering with the help of a spectrometer to give 
quantitative readouts15–21, which relatively complicates the system 
and consumes a large sample volume (e.g., 1 mL per test15). Another 
possible solution, rather than solely measuring the turbidity, is to use 
optical microscopes to monitor the agglutinated particle clusters in 
the assay. However, such an improvement will further complicate 
the diagnostic system and relatively increase the cost per test22.  A 
wave of democratizing optical microscopes for point-of-care 
applications has been observed in the past decade23–30. Among these, 
lens-free holographic microscopes gained interest given their 
advantages, such as cost-effectiveness, portability, high resolution, 
and large field of view31. A lens-free holographic microscope uses a 
partially coherent light, usually from a light emitting diode (LED), to 
illuminate a thin and transparent sample that is placed right above a 
complementary metal oxide semiconductor (CMOS) sensor-array, by 
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which an inline hologram of the sample is recorded31,32. Portable 
microscopy devices based on this method have been applied in many 
fields, including water quality monitoring33,34, pollen detection35,36, 
and virus sensing37–40. By combining holographic microscopic 
imaging with deep learning, challenging tasks can be achieved 
including e.g., birefringent crystal detection41 and virtual staining42. 

     In this paper, we demonstrate a rapid and cost-effective 
quantitative particle agglutination assay using deep learning-based 
analysis (Fig 1(a)), automatically measuring high sensitivity C-reactive 
protein (hs-CRP) levels in human serum samples. CRP is a general 
biomarker produced by the liver as a response to inflammation in the 
body which has a concentration in the range of up to ~1000µg/mL, 
whereas hs-CRP, in the range of 0.5 to 10µg/mL43,  is an indicator for 
the risk of myocardial dysfunction and heart failure. In our particle 

agglutination assay, human serum samples with various CRP 
concentrations are mixed with latex particles and the mixture is 
immediately loaded into a custom-designed, dual-channel capillary 
lateral flow device (Fig. 1(b)). Agglutination takes place automatically 
while the mixture flows through the capillary channels of the lateral 
flow device (Fig. 1(c)) for ~3 min without any further operation steps. 
Time-lapsed holographic images of the mixture are acquired in real 
time with a mobile lens-free microscope (Figs. 1(d) and (e)) to 
monitor and quantify the agglutination. Two neural networks are 
designed and trained to work sequentially to measure the 
concentration of hs-CRP and differentiate it from acute inflammation 
(>10 - 1000µg/mL). For this, a classification network is first used to 
identify CRP concentrations higher than 10µg/mL and a 
quantification network is sequentially applied specifically to hs-CRP 

Fig. 1. Quantitative particle agglutination assay using dual-channel capillary-based lateral flow device and mobile lens-free microscopy. (a) 
Operation procedure of the quantitative particle agglutination assay. (b) A photograph of the dual-channel capillary lateral flow device. (c) 
Schematic of particle agglutination inside both the test and control channels under different CRP concentration levels. (d) A photograph of the 
mobile lens-free microscopy device. (e) Schematic drawing of the system.
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range to predict the concentration (≤ 10µg/mL) of the sample. To 
demonstrate the success of this platform, we measured 88 patient 
serum samples, 65 for training and validation and 23 for blind testing, 
covering a CRP concentration range of 0.2 to 500 µg/mL, and 
achieved an R2 value of 0.912 on blind testing set with respect to the 
ground truth measurements, captured by an FDA-approved clinical 
instrument. We foresee that this computational sensing platform can 
be used in point of care settings to provide rapid and cost-effective 
measurements of various analytes.

Materials and Methods

Dual-channel capillary lateral flow device fabrication
The dual-channel capillary lateral flow device is composed of 
different types of sheet materials (Supplementary Fig. S1). Optically 
clear transparent sheets (AZ42, Aztek Inc., Irvine, CA, USA) are cut 
into different shapes to serve as the floor and ceiling of the device 
using a laser cutter (60W Speedy 100 CO2 laser, Trotec, USA). A 
double-sided tape (12X12-6-467MP, 3M Inc, USA) is cut to form the 
side walls of both the test and control channels, as well as the loading 
posts. The absorbing membranes are cut from MMM 0.8 sheet 
(T9EXPPA0800S00M, Pall Corporation, USA). Before the assembly, 
the transparent sheets are cleaned using an ultrasonic bath. Then, 
the transparent floor piece, double sided tape, absorbing pads and 
transparent ceiling piece are stacked together to form a sandwich-
like structure. 

Preparation of test and control particles
Both the control and test particle solutions are prepared using the 
CRP Latex Reagent component of the CRP Latex Test Kit (310-100, 
Cortezdiagnostics Inc, USA), which has an average particle diameter 
of 0.81 µm. To prepare the test particles, 100µL of Latex Reagent is 
centrifuged at 3000 rpm for 10 min. After removal of the resulting 
supernatant, the beads are re-suspended in an equal volume of 
glycine buffer. The CRP saturated control particles are prepared by 
saturating antibody binding sites on the test particles; for this, the 
particles are diluted three times by PBS buffer and CRP antigen (30-
AC10, Fitzgerald) is added to the solution to reach a final CRP 
concentration of 0.5mg/mL. Following a 2-hour incubation with an 
orbital shaker and the addition of 1% BSA, the prepared particles are 
stored at 4 °C.  

Assay procedures
To perform the assay, we add 5 µL of the activation buffer (0.5% 
tween 20 in DI water) into both test and control channel inlets. We 
then dry off the channels and place the sensor onto the CMOS image 
sensor with a custom-designed holder. Next we mix 2 µL of the serum 
sample with 4.2µL of test and control particle solutions individually, 
and load them into the corresponding inlets. Following this, the 
measurements start, recording the in-line holograms of the channels 
for 3 min. 

Collection of clinical samples
The use of human serum samples was approved by UCLA IRB (#19-
000172) for CRP testing. The CRP levels of these patient samples 
were measured by CardioPhase hsCRP Flex® reagent cartridge (Cat. 
No. K7046, Siemens) and Dimension Vista System (Siemens) at UCLA 
Health System, which constituted our ground truth measurements.

Mobile lens-free microscope
A mobile lens-free microscope was developed for monitoring of the 
particle agglutination assay reactions inside the capillary device. A 
fiber-coupled light emitting diode (LED, peak wavelength: 850 nm) is 
used to illuminate the capillary device to form inline-holograms31. A 
CMOS sensor (IMX 219, Sony Inc.) is placed right beneath the sample 
holder (with a sample-to-sensor distance of ~ 2.5mm) to capture the 
holograms at a frame rate of 1 fps. The illumination LED and the 
CMOS sensor-array are controlled by a Raspberry Pi microcomputer 
with a customized graphic user interface (GUI) that is programmed 
using Python. 

Particle localization measurements using multi-height digital back 
propagation
The captured time-lapsed holograms are automatically processed 
using MATLAB. The test and control channels are first identified and 
cropped out. The background of each channel, which contains 
randomly located dust particles that are attached to the bottom of 
the microfluidic chip, is estimated using the first five frames of the 
image sequence. The axial distance ( ) between the microfluidic 𝑧2

chip and the CMOS sensor is approximated by auto-focusing on these 
immobile particles44. Knowing the thickness of the transparent sheet 
(100μm) and the height of the channels (100μm), the raw hologram 
of each channel is back propagated to multiple axial locations using 
the angular spectrum method40,45, ranging from  + 100μm to  + 𝑧2 𝑧2

200μm with an axial step size of 10μm. At each axial plane, a binary 
particle map is generated using the amplitude channel of the 
propagated hologram, by applying a threshold (i.e., mean amplitude 
value minus three standard deviations). The binary masks of ten 
different axial locations are summed up after removing false 
detections that only appeared in a single axial location. 
Immobile/stationary particles were also removed by comparing two 
consecutive frames of the binary masks. Morphological analysis is 
applied to this merged binary mask, which results in the estimation 
of the total particle area (  and ) and the total particle 𝐴𝑡(𝑡) 𝐴𝑐(𝑡)
number (  and ), as a function of time , in the test and 𝑛𝑡(𝑡) 𝑛𝑐(𝑡) (𝑡)
control channels, respectively.

Neural network architecture 
Two shallow neural networks (see Supplementary Fig. S2) were 
trained to quantitatively measure the CRP concentration over a large 
dynamic range. The total particle area and the total particle number 
in both the test and control channels are time-averaged with a non-
overlapping sliding time-window and used as inputs to train the 
neural networks. The classification network (Supplementary Fig. S2a) 
contains one fully-connected hidden layer with 2048 neurons and 
one output layer with 2 neurons, ( ), which are used to indicate𝑂1, 𝑂2
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Fig. 2. Operation principle of the quantitative particle agglutination assay. (a) Schematic drawing and lens-free microscopic images of particle 
clusters inside both the control and test channels at different time points. (b) Inline holograms of the control and test channels at different time 
points. The processed minimum amplitude projection and particle localization results are also shown for each channel.
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if the CRP concentration is below or above 10 μg/mL. Its input vector 
is composed of time-averaged , ,  and  with a 𝐴𝑡(𝑡) 𝐴𝑐(𝑡) 𝑛𝑡(𝑡) 𝑛𝑐(𝑡)
window size of 1, 1, 5 and 10, respectively. A cross-entropy loss 
function (L1) is used to calculate the error gradients used in the 
training phase:

𝐿1 =  
1
𝑁

𝑁

∑
i = 1

― (𝑦𝑖log (𝑝𝑖) + (1 ― 𝑦𝑖)log (1 ― 𝑝𝑖))#(1)

where  is a binary indicator (the ground truth label), representing 𝑦𝑖

if the measured CRP concentration is above 10 μg/mL or not, for each 
measurement , in a training batch of N different measurements.  𝑖 𝑝𝑖

indicates the probability whether the CRP concentration is higher 
than 10μg/mL or not for a given measurement . It is calculated using 𝑖
the output values of the network  as𝑶 = [𝑂1, 𝑂2]

𝑝 =
exp (𝑂1)

exp (𝑂1) + exp (𝑂2)#(2)

The quantification network (Supplementary Fig. S2b), on the other 
hand, contains two fully-connected hidden layers with 32 and 8 
neurons separately, and one output layer with a single neuron (Q), 
outputting the predicted CRP concentration within the hs-CRP range. 
The time-averaging window sizes for , ,  and  are 𝐴𝑡(𝑡) 𝐴𝑐(𝑡) 𝑛𝑡(𝑡) 𝑛𝑐(𝑡)
equal to 30, 30, 1 and 30, respectively. A mean-square-error loss 
function (L2) is applied for the training of the quantification network, 
defined as:

𝐿2 =
1
𝑁

𝑁

∑
𝑖 = 1

(𝑄𝑖 ― 𝐶𝑖)2#(3)

In Eq. (3),  is the value of the single output neuron, representing 𝑄𝑖

the predicted CRP concentration, and  is the ground truth 𝐶𝑖

concentration measured by the gold standard instrument for each 
measurement .𝑖

     The hyper-parameters of both neural networks (e.g., the 
number of neurons and sliding window sizes for , , 𝐴𝑡(𝑡) 𝐴𝑐(𝑡) 𝑛𝑡

 and ) are optimized through a greedy search. For each (𝑡) 𝑛𝑐(𝑡)
parameter search, the candidates were selected from a 
predefined list. For example, in the search list for the 
quantification network, the number of neurons for the first 
(second) hidden layer included 32, 64, 128 and 256 (8, 16, 32 
and 64) as selection options. Similarly, for the classification 
network, the number of neurons for the hidden layer (only one) 
included 128, 256, 1024 and 2048. For the sliding window size, 
the search list included 1, 5, 10, 15 and 30. For each point of the 

greedy search, the corresponding neural network was trained 
for 5 times with 500 epochs in each training, using the Adam 
optimizer46 with a learning rate of 10-4. The validation loss was 
then averaged to find the best candidate. After this 
optimization of all the hyper-parameters, both the classification 
and quantification networks were trained using the Adam 
optimizer for 1,000 epochs. At the beginning, the learning rate 
was set to 10-4. The validation loss was calculated after every 
epoch of training and a learning rate scheduler was adopted to 
monitor the validation loss so that the learning rate was 
reduced by a factor of two if there was no improvement in 100 
consecutive epochs of training. The training, validation and 
testing datasets of the classification network had 96, 49 and 44 
different measurements, respectively, and the quantification 
network was trained with training, validation and testing 
datasets composed of 71, 31 and 33 different measurements, 
respectively. The networks were composed using Pytorch and 
trained on a desktop computer (Origin PC Corp., FL, US) using a 
CPU only. The typical training time for classification and 
quantification networks is ~30 sec and ~60 sec, respectively. For 
blind inference, the classification and quantification neural 
networks on average took less than 0.1ms per test using a 
desktop computer with 64 GB memory and i9-7900X CPU (Intel 
corp., CA, US).

Results 
Quantitative particle agglutination assay and portable holographic 
reader
A lateral flow particle agglutination assay was developed to 
quantitatively measure the CRP concentration of serum samples by 
monitoring the particle agglutination reaction between CRP and 
antibody coated latex particles. The assay was composed of a 
custom-designed, low-cost dual-channel capillary lateral flow device 
to host the antigen-antibody interactions (Figs. 1(b) and (c)) and a 
mobile lens-free microscope to monitor and quantify the 
agglutination process (Figs. 1(d) and (e)). The operation principles of 
the lateral flow particle agglutination assay are depicted in Fig 2. Two 
microliters of human serum sample under test is mixed with test 
beads (antibody-coated latex micro-particles) and control beads 
(CRP saturated particles) separately (see the Materials and Methods 
section for details), i.e. 4µL of serum sample is consumed per test. 
Without any incubation, the mixtures are directly loaded into the test 
and control channels of the dual-channel capillary lateral flow device. 
The device is custom-designed and fabricated using low-cost sheet 
materials, with a total material cost of 1.79 cents per chip, which can 
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be further reduced through mass-production and economies of scale 
(Supplementary Fig. S1). 

     A sheet-tape-sheet sandwich structure was manually 
assembled to form the test and control channels. An absorption 
membrane was inserted at the outlet of each channel. Water 
evaporation on the membrane provides the driving force for 
continuous flow. The diffusion of both CRP and latex particles in the 
laminar flow enabled the antigen-antibody reaction in the test 
channel, resulting in agglutinated particle clusters with their size 
varying as a function of the test time and the CRP concentration in 
serum (Fig 2(a)). In the control channel, however, given that the 

antibodies have already been saturated with CRP (by design), only 
non-specific agglutination between latex particles and unknown 
proteins in serum can happen (Supplementary Fig. S3)47. The 
incorporation of the control channel in our sensor design provided 
us a self-calibration tool for mitigating potential false positive 
agglutination.

     During the total assay time (3 min), time-lapsed inline 
holograms were acquired using a mobile lens-free microscope at 1 
frame/sec. The captured holograms (Fig 2(b)) were automatically 
processed and for each frame, the locations of the test and control 
channels were digitally cropped out. Given the existence of a large 

Fig. 3. Image processing pipeline. For each holographic frame, the test and control channels are automatically cropped out. A multi-height 
digital back-propagation algorithm is applied to both channels. The extracted features are input into two shallow neural networks to determine 
the CRP concentration of the serum sample.
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number of particles whose diameter is close to the illumination 
wavelength, the liquid mixtures in both channels are highly 
scattering. To localize and measure the forming particle clusters, a 
multi-height back-propagation algorithm was applied to each 
channel and the total particle number as well as the total particle 
area were extracted (Fig. 3(a); see the Materials and Methods section 
for details). Time series of these features were utilized to determine 
the CRP concentration of the serum sample using two sequentially 
collaborating, trained neural networks (Fig. 3(b)), i.e., a classification 
network and a concentration quantification network, respectively. 
Both of these neural networks are shallow with a low number of 
trainable parameters, to ensure rapid inference speed and avoid 
overfitting (see the Materials and Methods section and 
Supplementary Fig. S2).

Quantification of CRP concentration using deep learning

88 human serum samples were collected from different patients with 
various CRP concentrations. 144 different measurements were 
conducted on these clinical samples (duplicate measurements were 
conducted on 56 samples). Given that only three out of 88 serum 
samples had CRP concentrations higher than 10µg/mL, additional 
acute inflammation samples were created by spiking CRP into clinical 
samples to achieve a concentration of >10µg/mL. For this purpose, 
three clinical samples with original CRP concentrations lower than 
0.2µg/mL were spiked to achieve five different CRP concentrations 
(20, 50, 100, 200 and 500µg/mL), forming 15 additional samples to 
represent a concentration range of >10µg/mL. A total of 45 
measurements were performed on these CRP-spiked, additional 
samples (triplicate measurements on each sample). Therefore, the 
total number of CRP measurements that we have made with our 
sensor platform is 144 + 45 = 189.       

     Conventional particle agglutination assays suffer from false-
negative diagnosis of high concentration cases due to the saturation 
of antibody’s binding sites by excessive antigens, also as known as 
the hook effect48. The impact of the hook effect can also be clearly 
seen in our raw measurements. The total cluster size measured at 
the end of the assay time in the test channel of the serum samples 
with different CRP concentrations is illustrated in Fig 4(a). The cluster 
size increased with increasing concentration of CRP, until it reached 
a maximum at around 10µg/mL. Further increases of CRP 
concentration saturated the antibody’s binding sites and reduced the 
cluster size (Fig 4(a)). To overcome the hook effect and accurately 
identify the unknown CRP concentration over a large dynamic range 
of CRP concentrations, two different neural networks were designed 
to work sequentially (Fig 3(b)). The first one, i.e., the classification 
network, was designed to distinguish if a sample has a CRP 
concentration higher than 10µg/mL or not. The network was trained 
(and validated) using 96 (49) different measurements out of all 189 
measurements, covering CRP concentrations ranging from 0 to 
500µg/mL. 44 measurements from 23 different patients that were 
not used in the training and validation datasets were used to form 
the testing dataset (see Materials and Methods section for details). 
The second network, i.e., the quantification network, was designed 
to quantitatively determine the hs-CRP concentration in the sample 

(covering 0-10µg/mL). With the help of the classification network, 
the quantification network and its inference task were simplified, 
avoiding potential overfitting. The network was trained using the 
same measurement dataset separation reported earlier, but 
eliminating all the measurements on samples with a CRP 
concentration that is higher than 10µg/mL. As a result, the training, 
validation and testing sets of the quantification network contained 
71, 33 and 31 different measurements, respectively. 

      The decision-making performance of this two-network based 
computational sensing system is depicted in Fig. 4(b). For hs-CRP, the 
predicted concentration by our device is plotted with respect to the 
corresponding ground truth concentration measured for each 
sample at UCLA Health System. The dashed line indicates a perfect 
prediction, i.e., y = x. For samples with high CRP concentration 
(>10µg/mL), the confidence level of the classification result is also 
presented in the same plot. These results reveal that the 
classification network successfully separated all the samples in the 
blind testing dataset based on their concentration (acute 
inflammation vs. hs-CRP), overcoming the hook effect48. With 31 
blind tests quantified in the hs-CRP range, the R2 value was found to 
be 0.912 with respect to the y = x line, demonstrating the inference 
success of the quantification neural network.   

To further highlight the capabilities of this neural network-
based inference of the target analyte concentration, in Fig. 4 we 
report our measurement results (duplicate measurements marked 
with green dots) on a clinical sample with 0.7µg/mL of CRP measured 
by the gold standard instrument. At the end of the assay time (180 
sec), the total particle area in the test channel provided a strong 
false-positive signal (green dots in Fig. 4(a)), which can occur 
frequently in clinical testing due to unknown proteins present in 
patient serum2. Even for these challenging tests that would normally 
result in a false positive, our quantification neural network 
successfully inferred the CRP concentration in these duplicate 
measurements as indicated with the green dots in Fig. 4(b), avoiding 
a false cardiovascular risk factor classification, which exemplifies the 
inference power of our imaging-based particle agglutination assay. 

Discussions 
In this work, the antibody-antigen interaction is assisted by the 
laminar flow inside the dual-channel capillary lateral flow device. The 
flow rate is a key parameter to guarantee the stable reactivity of the 
assay. The size of the absorption membrane and the external 
humidity are critical factors in determining the flow rate inside the 
capillary channel. The membrane size we used in this work was 
optimized by evaluating the assay’s reactivity under different flow 
rates and different humidity conditions (see Supplementary Fig. S4). 
Through these optimization experiments, we selected a membrane 
of size of 16mm2 which resulted in an average flow rate of 
1.45±0.3µL/min. In addition, we confirmed that the selected 
membrane operates stably at all the tested humidity levels (10-50%) 
except for 70%, through the corresponding comparisons of the 
reactivity and humidity evaluation results. Several studies were 
reported in the literature to overcome the hook effect in sensor 
response by using advanced assay designs49–52. Compared to 
conventional particle agglutination assays, our platform provides 
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kinetic information of the agglutination process, which is essential in 
overcoming the hook effect. Although being similar at the end of the 
entire assay time, the total particle/cluster area in the test channel 
for serum samples with low and very high CRP concentrations 
present different dynamic patterns as a function of time, tracked 
with our time-lapse holographic imaging system (Supplementary Fig. 
S5). Agglutination gradually occurred in low CRP samples, showing a 
slow increase in particle cluster area as a function of time. On the 
other hand, very high concentration CRP samples quickly saturated 
the binding sites of the antibodies on the latex particles in the first 
few seconds of the assay, and the imaged particle area stayed stable 
in the remaining assay time. 

It is important to emphasize that the neural network models are 
essential for the success of this work. The raw measurements of the 
total particle area and total particle number in both the test and 
control channels are not easy to understand or interpret; see for 
example Supplementary Fig. S6. To better illustrate the importance 
of the neural networks employed in this work, we used the same data 
as input into an L1-norm regularization algorithm (i.e., least absolute 
shrinkage and selection operator, LASSO53) to perform the same 
analyte classification and quantification tasks using human serum 
samples. On the blind testing dataset, the classification LASSO scored 
an accuracy of 82.61% and the quantification LASSO achieved an R2 
value of 0.3741; this poor inference performance of LASSO further 
emphasizes the necessity and advantages of using neural networks 
in our computational sensing platform.

 In terms of digital processing of these spatial-temporal changes 
within the test channel, the particle localization algorithm that we 
employed significantly simplified the neural network structure. 
Although the raw acquired holograms were noisy, after the particles 
were localized using the multi-height back-propagation of each 
hologram, a shallow neural network architecture with a small 
number of neurons and trainable parameters was sufficient to 
quantify and classify the CRP concentration of serum samples over a 
large dynamic range. This shallow network architecture also 
shortened the inference time through each one of the networks: on 
average it took less than 0.1 ms per CRP test to have an output from 

the classification and quantification neural networks. With batch 
processing of multiple tests in parallel, this inference time can be 
further reduced.

Conclusions
We demonstrated a rapid, simple, and cost-effective particle 
agglutination assay for point-of-care testing by using a custom-
designed capillary lateral flow device and a mobile lens-free 
microscope. The agglutination of particles was captured, as a 
function of time, by a mobile lens-free microscope and digitally 
processed by two different neural networks for classification and 
quantification of the CRP concentration of the serum sample under 
test. This deep learning-assisted sensor has a low material cost (1.79 
cents/test) and requires a small sample volume (4µL of serum per 
test), presenting a promising platform for various point-of-care 
sensing applications.
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