

Quadrupole and Multi-Collector ICP-MS Analysis of 226Ra in Brain from a Radium Dial Painter

Journal:	Journal of Analytical Atomic Spectrometry
Manuscript ID	JA-ART-11-2021-000393.R2
Article Type:	Paper
Date Submitted by the Author:	11-May-2022
Complete List of Authors:	Wegge, Dana ; University of Missouri, Chemistry Tolmachev, Sergei; Washington State University, United States Transuranium and Uranium Registries, College of Pharmacy and Pharmaceutical Sciences Brockman, John; University of Missouri, Chemistry

SCHOLARONE[™] Manuscripts

Quadrupole and Multi-Collector ICP-MS Analysis of ²²⁶Ra in Brain from a

Radium Dial Painter

- 4 D. L. Arbova^a, S. Y. Tolmachev^{b,}, J. D. Brockman^{a,c}
- ⁵ ^a Department of Chemistry, University of Missouri, Columbia, MO 65211, United States
- 6 ^b United States Transuranium and Uranium Registries,
- 7 College of Pharmacy and Pharmaceutical Sciences, Washington State University, Richland, WA
- 8 99354, United States
- ⁹ ^c Research Reactor, University of Missouri, Columbia, MO 65211, United States
- 10 z* denotes corresponding author do not see *

12 Abstract

Two ICP-MS methods were developed to measure the radiotoxic isotope ²²⁶Ra in brain tissues
from a radium dial painter worker. The first method was a direct analysis of acid digested
samples using quadrupole ICP-MS. The instrumental LOD of ²²⁶Ra was 0.1 ng/kg. Polyatomic
interferences at m/z 226 were investigated and Pb was identified form a polyatomic interferent
in an in-house sample prepared from bovine brain, with a 226/208 formation ratio of 4 × 10⁻⁸.
The quadrupole ICP-MS method was also used to measure levels of beryllium, strontium, and

Journal of Analytical Atomic Spectrometry

19 uranium. A second method was developed that included cation-exchange chromatography to 20 separate ²²⁶Ra followed by analysis with sector field MC-ICP-MS. The instrumental LOD for the 21 cation exchange method with MC-ICP-MS detection was 0.5 pg/kg (19 mBq/kg). The measured 22 concentrations of ²²⁶Ra in different brain regions ranged from 0.09 – 0.72 ng/kg (3.3 – 27 Bq/kg) 23 and radium was non-uniformly distributed in the brain.

25 Introduction

Radium is a radioactive alkaline earth metal produced through the natural radioactive decay chains. Among the radium isotopes, ²²⁶Ra has the longest half-life of 1600 ± 7 years.¹ The ²²⁶Ra decay chain produces 4 alpha particles and 4 beta particles before terminating at ²⁰⁶Pb. Internal exposure to ²²⁶Ra and its progeny are a human health concern due to effects of high linear energy transfer (LET) ionizing radiation.² Human exposure to radium occurs through consumption of food and water. The concentration of ²²⁶Ra in natural waters ranges from 0.14 -0.55 pg/L (0.5 - 20 mBq/L).³ Combustion of coal releases ²²⁶Ra with concentrations in fly ash ranging from 1.21 – 65.6 ng/kg (44.3 – 2400 Bq/kg).⁴ Plants uptake ²²⁶Ra through root and foliar processes.³ Animals are exposed through ingestion of food and water.³ The health effects of ²²⁶Ra exposure have been studied using data from the United States Radium Dial Workers cohort.⁵ The watch dial painters, who were predominantly women, applied a luminescent mixture of 226 RaSO₄ and ZnS onto watch dials and other instruments. Prior to 1926, it was common practice for the dial painters to "tip" or "point" the paintbrush using their lips leading to ingestion of radium.⁶ The ingested ²²⁶Ra primarily accumulated in

41 bone and the watch dial painters had an increased risk of developing osteomyelitis,

Page 3 of 22

1

2	
3	42
4 5	
5 6	43
/ 8	44
9 10	
11	45
12 13 14	46
15 16	47
17 18	48
20 21	49
22 23	50
24 25 26	51
27 28	52
29 30	53
31 32 33	54
34 35	55
36 37	56
38 39	50
40 41	57
42 43	58
44 45 46	59
40 47 48	60
49 50	61
51 52	62
53	
54 55	
56	
57 59	
50 59	

60

42 osteosarcomas, and head carcinomas of the mastoid and paranasal sinus.^{7,8} The watch dial 43 painter's studies were used in the development of a radium biokinetic model published by the 44 International Commission on Radiological Protection (ICRP).⁹ 45 ²²³RaCl₂ is currently being used for the treatment of osteosarcoma. In one case study, a patient treated for osteosarcoma with ²²³RaCl₂ was observed to have shrunken metastasis in 46 47 the cerebellum brain region.¹⁰ This observation suggests that radium could be transported 48 across the intact blood brain barrier (BBB), potentially by calcium transporters.^{11–14} Although in 49 this case it is unclear if the BBB integrity was compromised by cerebellar metastases or 50 radiation damage. Adverse neurological effects associated with exposure to ²²⁶Ra and other high LET emitters are currently under investigation in the Million Person Study (MPS).¹⁵ The 51 52 neurological effects of high-LET radiation is also of interest for estimating risk associated with

exposure to high-LET galactic cosmic radiation (GCR) during manned space flights.^{16,17} Direct

measurement of ²²⁶Ra in neurological tissue samples from the watch dial painter cohort would

provide additional evidence that radium can cross the blood brain barrier and provide data for

²²⁶Ra can be measured by radiometric and mass spectrometry methods.¹⁸ Radiometric
 techniques include alpha spectroscopy, liquid scintillation counting, and emanation counting.
 Alpha spectroscopy requires a thin, plated source of ²²⁶Ra to minimize self-absorption and 48 hour count times. An alpha spectroscopy method that used cation exchange chromatography
 with selective complex formation followed by electrodeposition reported detection ²²⁶Ra
 detection limits of 0.014 pg/L (0.5 mBq/L) in urine samples and 0.014 pg (mBq) in bone biopsy

development of a radium biokinetic model with a brain compartment.

3 4	63	samples. ^{19,20} Many studies have reported low radium recoveries if radium separation from
5 6 7	64	other alkaline-earth metals was incomplete or the extractant ligands were not removed. ^{20–22}
7 8 9	65	Another radiometric method that can be used to measure the alpha emissions of ²²⁶ Ra and
10 11	66	its decay products ²²² Rn, ²¹⁸ Po, and ²¹⁴ Po is liquid scintillation counting (LSC). The detection
12 13 14	67	limits for LSC are 0.008 – 0.04 pg/L (0.3 – 1.4 mBq/L). $^{23-27}$ A limitation of this method is the 3-
15 16	68	week delay time necessary to allow for ingrowth of the ²²⁶ Ra decay products. ²⁶ Historically,
17 18 19	69	²²⁶ Ra has been measured using the emanation method which was developed in the 1920's and
20 21	70	first used to measure ²²⁶ Ra in blood, serum, and autopsy bone samples in the United States
22 23	71	Radium Dial Workers cohort studies. ^{28,29} In this method ²²⁶ Ra is co-precipitated with barium
24 25 26	72	sulfate and the ²²² Rn daughter is allowed to equilibrate over 5 days, captured, and then
27 28	73	counted using a scintillation cell. Detection limits for the emanation method range from 0.02 –
29 30 31	74	0.08 pCi/L (0.1 - 3 mBq/kg). ³⁰
32 33	75	Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a sensitive
34 35 36	76	method to measure ²²⁶ Ra in surface and drinking water, sediments, environmental samples,
37 38	77	and urine. ^{31–34} Polyatomic interferences formed from ²⁰⁹ Bi ¹⁷ O ⁺ , ²⁰⁹ Bi ¹⁶ O ¹ H ⁺ , ¹⁹⁹ Hg ²⁷ Al ⁺ ,
39 40	78	²⁰² Hg ²⁴ Mg ⁺ , ²⁰⁸ Pb ¹⁸ O ⁺ , ²⁰⁸ Pb ¹⁷ O ¹ H ⁺ , ²⁰⁸ Pb ¹⁶ O ¹ H ₂ ⁺ , ¹⁹⁴ Pt ¹⁶ O ₂ ⁺ , ⁸⁶ Sr ¹⁴⁰ Ce ⁺ , ⁸⁷ Sr ¹³⁹ La ⁺ , ⁸⁸ Sr ¹³⁸ Ba ⁺ ,
41 42 43	79	²⁰³ Tl ²³ Na ⁺ , ¹⁸⁶ W ⁴⁰ Ar ⁺ , and ¹⁸⁶ W ⁴⁰ Ca ⁺ potentially interfere with direct measurement of ²²⁶ Ra. ³⁵
44 45	80	ICP-MS analysis with He collision gas has been demonstrated to minimize polyatomic
46 47 48	81	interferences in environmental samples. ³⁵ Polyatomic interferences can also be reduced by
49 50	82	separating ²²⁶ Ra from the matrix and isobaric interferences cation exchange
51 52 53	83	chromatography. ^{36–40} A study by Dalencourt <i>et al</i> . reported an instrumental LOD of 0.530 pg/L
54 55 56		
57 58 59		4

3 4	84	(19 mBq/kg) for ²²⁶ Ra in environmental samples. ³¹ By introducing cation exchange separation
5 6 7	85	for removing interferences, the authors reported a method LOD of 0.01 pg/L (0.37 mBq/kg). 31
7 8 9	86	An advantage of ICP-MS is its multi-element capability. Beryllium and uranium
10 11	87	exposures occur at nuclear laboratories working on weapons production. ^{41,42} Beryllium
12 13 14	88	workers are at risk for developing berylliosis. ⁴³ The radionuclide ⁹⁰ Sr is a fission product that is
15 16	89	released during nuclear accidents. ⁴⁴ Exposure to ⁹⁰ Sr has been a concern at Chernobyl and
17 18 10	90	Fukushima. ⁴⁵ Strontium is expected to have similar chemistry to radium since they are both
20 21	91	alkaline earth metals.
22 23	92	The objective of this work was to develop a mass spectrometry method to measure
24 25 26	93	²²⁶ Ra in human brain tissue samples. We evaluated two ICP-MS methods used to measure ²²⁶ Ra
27 28	94	in brain tissue samples from a watch dial painter. Preliminary results examining the ²²⁶ Ra levels
29 30 31	95	in brain measured by ICP-Q-MS were discussed by Martinez et al. and Boice et al. ^{46,47} The multi-
32 33	96	element detection capabilities of ICP-MS enabled the potential for the simultaneous
34 35 36	97	measurement of beryllium, strontium, and uranium.
37 38	98	
39 40 41	99	Experimental
41 42 43	100	Case description
44 45	101	In the 1920's, this individual worked as a radium dial painter for almost 7 years and died
40 47 48	102	6 decades later at the age of 86 yr. ⁴⁸ Selected tissue samples were collected at the time of the
49 50	103	autopsy. In 1973, the ²²⁶ Ra skeletal dose based on ICRP 20 was estimated at 5047 cG, a
51 52 53	104	systemic deposition of ^{226}Ra at 261.7 μg (9.683 MBq), and a total body content of ^{226}Ra at 1.077
54 55	105	μg (0.03985 MBq) . ⁵
56 57 58		-
59 60		5

1				
2	106			
4	100			
5 6 7	107	Materials, Reagents, and Instru	imentation	
, 8 9	108	The water used in this st	udy was 18 M Ω produced by a Milli-Q water purification	
10 11 12	109	system. Trace metal grade certi	fied HCl and HNO_3 were purchased from Fischer Scientific, and	
12 13 14	110	L(+)-ascorbic acid was purchase	d from Acros Organics. The thorium standard for ICP-MS was	
15 16 17	111	purchased from High Purity Sta	ndards. Cation exchange column chromatography was	
17 18 19	112	conducted using analytical grad	e AG 50W-X8 (200-400 mesh) from BioRad. The ²²⁶ Ra standard	
20 21	113	reference material SRM 4976A	(69.0 pg/L, 2524 mBq/L) was purchased from NIST and used to	
22 23 24	114	prepare spike solutions for the s	standard addition calibration. Spikes of beryllium, strontium,	
25 26	115	and uranium were prepared fro	m commercial standards (High-Purity Standards). Glassware	
27 28 29	116	used in the dry ashing procedure was washed with 10% nitric acid prior to use. Polypropylene		
30 31	117	tubes used during the analysis were precleared using dilute nitric acid.		
32 33 34	118	Two instruments were u	sed in this study. A Perkin Elmer NexION 300X ICP-MS	
35 36	119	quadrupole instrument (ICP-Q-I	MS) and a Nu Plasma II Multi Collector (MC) ICP-MS sector field	
37 38 30	120	instrument. The ICP-Q-MS setti	ngs are described in Table 1 and the MC-ICP-MS instrument	
40 41	121	settings are described in Table 2	2. The detector block of the Nu-Plasma II was set up to analyze	
42 43	122	²³² Th on a faraday cup (L2) and ²	²²⁶ Ra on an ion counter (IC2).	
44 45 46	123			
47 48	124	Table 1. Instrument settings for	NexION 300X ICP-Q-MS	
49 50		RF power, W	1600	
51		Plasma gas, L/min	18	
52		Carrier gas, L/min	1.06	
53		Cones	Nickel	
54 55		Nebulizer	Quartz	
56		Spray chamber	Elemental Scientific PFA cyclonic spray chamber (7 mm baffle)	
57 58 59			6	

2			
3		Acquisition mode	Standard mode
4		Isotones	⁹ Be ⁸⁶ Sr ¹¹⁵ In ¹³⁸ Ba ¹³⁹ Ia ¹⁴⁰ Ce ¹⁴⁶ Nd ¹⁸⁶ W ²⁰⁰ Hg ²⁰² Hg
5		19010909	203TI 208Dh 209pi 226Po 232Th 238U
6			
/		Integration time, ms	500
ð O		Replicates	5
9 10	125		
11			
12	126	Table 2. Instrument settings	for Nu Plasma II MC-ICP-MS
13		5	
14		RE nower W	1300
15		Deflected neuron M/	1500
16		Reflected power, w	0
17		Neb, PSI	33.5
18		Auxiliary gas, L/min	0.8
19		Coolant, L/min	13
20		Cones	Nickel
21		Nebulizer	Quartz
22		Spray chamber	Nu desolvation nebulizer (DSN-100)
25 24			226pa 232Th
2 4 25		isotopes	
26		Integration time, ms	30
27		Replicates	25
28	127		
29			
30	128	Sample Preparation	
31	-		
32	120	In 1997 outonsy tiss	us sample collection from radium dial painters was transforred
33	12)	iii 1992, autopsy tiss	de sample conection nonn radium dial painters was transferred
34	120		
35	130	from Argonne National Labo	bratory to the National Radiation Biology Tissue Repository (NHRTR)
30 27			
38	131	at the United States Transur	anium and Uranium Registries (USTUR). ⁵ At the NHRTR/USTUR,
39			
40	132	tissue samples were stored	frozen or formalin-fixed. The weight of formalin-fixed brain tissue
41	-	·····	
42	122	from this individual was 440	a. The brain was discosted into E regions: corebrum white matter
43	155	110111 this individual was 449	g. The brain was dissected into 5 regions. Cerebrain white matter,
44			
45	134	cerebrum gray matter, corp	us collosum, cerebellum, and brainstem. Samples were dry-ashed
46			
47	135	at 500 °C for 4 days, followe	d by microwave acid digestion for 20 min with reverse aqua regia at
48			
49 50	136	200 °C The samples were e	vanorated and brought up in 4M HCl for storage. The USTUR
50 51	150	200 C. The sumples were e	
52	127	man ideal 15 met an males fra	n and stars a clution. The 15 mL complexies subdivided into 5
53	13/	provided 15 mL samples fro	m each storage solution. The 15 mL sample was subdivided into 5
54			
55	138	mL samples that were evapo	prated to dryness and dissolved in 3 mL of 3% HCl with indium and
56			
57			
58			7
59			
60			

Page 8 of 22

> thorium internal standards. Table 3 lists the starting sample masses, the storage masses, and

representative final dilution factors for each tissue type. Reagent (4M HCl) and method

(bovine brain tissue) blanks were prepared using the same procedure. Two subsamples of each

tissue type were directly analyzed by ICP-Q-MS.

Table 3. The dissected tissue mass, storage mass, and representative dilution factors for the brain tissue samples.

Tissue	Dissected Mass (g)	Storage Solution Mass	Dilution Factor
		(g)	
Cerebrum White Matter	147.71	262.56	1.07
Cerebrum Gray Matter	164.6	262.74	0.96
Corpus Collosum	31.64	131.75	2.50
Cerebellum	87.72	132.2	0.90
Brainstem	17.33	132.14	4.57

Radium Separation

The ²²⁶Ra in the third subsample was separated from the matrix using a cation exchange chromatography method adapted from Maxwell *et al.* ³⁹ The sample was evaporated and the residue was redissolved in 20 mL of 1.5 M HCl and 3 mL of 1.5 M ascorbic acid. The ascorbic acid addition was present to reduce iron to Fe²⁺ to minimize its retention on the column. Approximately 5 g of AG 50W-X8 resin was mixed with an equal amount of 18 M Ω H₂O and packed into a column. The gravity column was equilibrated by rinsing with 20 mL of 1.5 M HCl and then the sample was added. The resin was then rinsed with 30 mL of 3 M HCl to elute the matrix and the cations Ca, Pb, and Bi.^{37–39} The ²²⁶Ra was eluted from the column with 25 mL of

- 8 M HNO₃. The ²²⁶Ra fraction was evaporated and the residue redissolved in 3 mL of 3% HCl
 - with 1 mg/kg thorium internal standard. The recovery was determined by spiking a method

5 6 7	156	with 1 mg	g/kg thorium internal	tandard. The recovery was determine	ed by spiking a method
7 8 9 10		E	Equilibrate Column: 20 ml of 1.5 M HCl		
11 12 13 14		W-X8	Sample + 20 mL of 1.5 M HCl + 0.2 M Ascorbic Acid		
15 16 17		g of AG 50	Rinse: 30 mL of 3 M HCl		
18 19 20 21			Elute: 25 mL of 8 M HNO ₃		
22 23 24		E	vaporate and dissolve in mL of 3% HCl		
25	157	blank witl	h 10 pg of ²²⁶ Ra.		
26 27 28	158				
29 30 31	159	Figure 1.	Chemical separation	rocedure for ²²⁶ Ra determination in b	rain
32 33	160				
34 35 36	161	ICP-MS N	leasurement		
37 38	162	Рс	otential polyatomic in	erference for ²²⁶ Ra were investigated	(Table 4). For each
39 40	163	potential	interference, the prir	ary, expected elements concentratior	in human brain tissue ^{35,49}
41 42 43	164	and the c	orresponding level in	he digestate are presented.	
44 45	165				
46 47 48	166	Table 4. P	Potential interference	investigated for ²²⁶ Ra in tissues evalu	ated using ICP-Q-MS. ^{35,49}
49 50 51	167	Elements	listed as N/A do not	ave a reported range in brain tissue.	
52		Primary	Polyatomic	Estimated concentration	
53 54 55 56		element	interference	(mg/kg) in	
57 58 59				9	

3
4
5
6
7
8
a
10
10
11
12
13
14
15
16
17
18
10
עו 20
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
36
20
3/
38
39
40
41
42
43
44
15
45 46
40
4/
48
49
50
51
52
53
57
54 57
55
56
57
58
59
60

1 2

			brain tissue, digestate [*]
Bi		²⁰⁹ Bi ¹⁷ O ⁺	Bi: 0.01, 0.011
		²⁰⁹ Bi ¹⁶ O ¹ H ⁺	
Hg		¹⁹⁹ Hg ²⁷ Al ⁺	Hg: 3, 3.3
		202 Hg 24 Mg $^{+}$	Al: 20, 22
			Mg: 100, 110
Pb		²⁰⁸ Pb ¹⁸ O ⁺	Pb: 1.6, 1.8
		²⁰⁸ Pb ¹⁷ O ¹ H ⁺	
		$^{208}Pb^{16}O^{1}H_{2}^{+}$	
Pt		$^{194}\text{Pt}^{16}\text{O}_{2}^{+}$	Pt: N/A
Sr		⁸⁶ Sr ¹⁴⁰ Ce ⁺	Sr: 5, 5.5
		⁸⁷ Sr ¹³⁹ La ⁺	Ce: N/A
		⁸⁸ Sr ¹³⁸ Ba ⁺	La: 0.001, 0.0011
			Ba: 2, 2
ΤI		²⁰³ Tl ²³ Na ⁺	TI: <0.001, 0.001
			Na: 1,750, 1750
W		¹⁸⁶ W ⁴⁰ Ar ⁺	W: N/A
		¹⁸⁶ W ⁴⁰ Ca ⁺	Ca: 6,000, 6,600
	* The	digestate concent	ration is based on a DF of 0.9, see Table 3.
	The st	andards addition	method reported by Ellison and Thompson ⁵⁰ was used to
qua	ntify ²²⁶ Ra	a, ⁹ Be, ⁸⁶ Sr, and ²³⁸	U. The concentration in the unknown (T) is determined using
the	following	equation:	

1 ว		
2 3 4 5	172	$T = C \frac{r_T}{r_{T+C} - r_T}$
6 7	173	where C is the concentration in the spike, r_{T} is the response of unknown concentration, and r_{T+C}
8 9 10	174	is the response of unknown of concentration + spike. Each 3 mL sample was analyzed,
10 11 12	175	consuming 2 1.2 mL of solution, and then spiked with the standard solution to approximately
13 14	176	five times the signal in the original sample. The samples were bracketed by instrument blanks
15 16 17	177	to minimize carryover. The instrument LOD for ICP-Q-MS was determined from analysis of 35
18 19	178	instrument blanks and calculated as 3 times the standard deviation of the concentration in the
20 21 22	179	instrumental blank. The instrument LOD for the MC-ICP-MS was measured using 20 replicate
23 24	180	acid blanks and calculated as 3 times the standard deviation of the concentration in the
25 26 27	181	instrumental blank.
28 29	182	
30 31 32	183	Statistical Analysis
33 34	184	The uncertainty in the concentration was determined using the guidelines for
35 36 27	185	uncertainty in measurement (GUM) using the GUM workbench (Metrodata GmbH version 2.4)
37 38 39	186	and reported at the 1σ level (68% confidence level, coverage factor k=1). The association of Be
40 41	187	and Sr with ²²⁶ Ra was investigated using Spearman's rank-order correlation (Prism GraphPad).
42 43 44	188	
45 46	189	Results and discussion
47 48 49	190	None of the concentrations tested in Table 4 leads to a significant measurable signal at
50 51	191	m/z of 226 using an ICP-Q-MS. The two ICP-MS method for ²²⁶ Ra determination in brain tissue
52 53 54	192	appear to be free of polyatomic interference. The brain tissue digestate samples were
55 56		
57 58 59 60		11

subsequently analyzed in STD mode without any collision gas to maximize the instrumentsensitivity.

The ICP-Q-MS instrument produced a signal of 62 ± 7 cps for a 1000 pg/kg 226 Ra solution. The subsequent instrument blank had a measured signal of ~ 0.6 cps at m/z = 226 and a signal to blank ratio of 100. The instrument blank demonstrated that the washout conditions were acceptable. The instrumental LOD for ²²⁶Ra was 80 pg/kg (2930 mBq/kg). The instrumental LODs for ⁹Be, ⁸⁶Sr, and ²³⁸U were 30 ng/kg, 200 ng/kg, and 200 ng/kg, respectively. The method blanks prepared from the bovine brain had an apparent ²²⁶Ra concentration of 300 pg/kg (1.1 \times 10⁵ mBq/kg). Investigation found that the bovine brain contained 2500 times more lead than the expected range in human brain. Potential lead-based polyatomic interferences, reported in Table 3, are ${}^{208}Pb{}^{18}O^+$, ${}^{208}Pb{}^{17}O^1H^+$, and ${}^{208}Pb{}^{16}O^1H_2^+$. An acid matched, single element lead standard was prepared, and the observed 226/208 formation ratio was 4×10^{-8} . The bovine brain sample was spiked with twice the measured lead level and a corresponding increase at m/z = 226 was observed. Both the instrument blanks prepared onsite, and acid blanks prepared by the USTUR did not contain lead. The bovine brain sample could not be used as a method blank because of the high lead levels. Lead levels should be monitored when measuring ²²⁶Ra using ICP-MS levels. A correction based on the 226/208 formation ratio was applied to the bovine brain sample which lowered the ²²⁶Ra concentration below the instrumental LOD. It is unclear why the bovine brain contained high levels of lead. There are several limitations to the direct solution analysis with ICP-Q-MS. In the unseparated brain samples, the signal from the thorium internal standard was suppressed 4-fold relative to the acid matched ²²⁶Ra external standard. The signal suppression is attributed to

Page 13 of 22

3 4	215	the high matrix levels of the samples, dilution factors reported in Table 3. The standard
5 6 7	216	addition method is used to minimize the matrix effect; however, the signal suppression still
7 8 9	217	reduced the sensitivity for ²²⁶ Ra. Another consideration is that unknown polyatomic isobars
10 11	218	could still be present in the high matrix samples. Increasing the dilution by a factor of 3-5 could
12 13 14	219	potentially lead to a reduction in the matrix effect and an increase in sensitivity. Matrix
15 16	220	reduction could also be improved through separation of ²²⁶ Ra prior to ICP-Q-MS.
17 18	221	The ²²⁶ Ra level was also measured by MC-ICP-MS following cation exchange
19 20 21	222	chromatography. The separation recovery factor measured from the matrix blank spiked with
22 23	223	10 pg of 226 Ra was 98% ± 2%. A 1000 pg/kg solution of 226 Ra produced a signal of 2.5 $ imes$ 10 ⁻⁴ mV
24 25 26	224	on the ion counter detector. The washout in the subsequent acid blank produced a ²²⁶ Ra signal
20 27 28	225	of 10 ⁻⁷ mV and a signal to blank ratio of 2500, 25 times higher than the ICP-Q-MS
29 30	226	measurements. The instrumental LOD of ²²⁶ Ra using the MC-ICP-MS was 0.5 pg/kg (19
31 32 33	227	mBq/kg). This value was 160 times lower than the direct analysis method using the ICP-Q-MS
34 35	228	and similar to LODs reported in the literature, see Table 5. The method LOD for MC-ICP-MS
36 37 38	229	analysis of ²²⁶ Ra ranged from 0.5 to 2 pg/kg (0.02 – 0.07 mBq/kg) depending on the dilution
39 40	230	factor, see Table 3.
41 42	231	Table 5. Comparison of mass spectrometric methods for ²²⁶ Ra analysis

Table 5. Comparison of mass spectrometric methods for ²²⁶Ra analysis.

Author	Sample Type	Detection Instrumental LOD	
		Method	pg/kg
This work	Brain tissue	ICP-Q-MS	80
This work	Brain tissue	MC-ICP-MS	0.55
Copia <i>et al.</i> ⁴⁰	Groundwater	SF-ICP-MS	0.090

Larivière <i>et al.</i> ⁵¹	Well water	SF-ICP-MS	15
Benkhedda <i>et al.</i> ⁵²	Natural waters	ICP-MS	3.0
Tsai <i>et al</i> . ⁵³	Geothermal water, sediment	ICP-MS	560
Dalencourt et al. ³¹	Environmental	ICP-MS	0.53
Yaala <i>et al.</i> 35	Sediment	ICP-MS	0.10

 The measured tissue concentrations of ²²⁶Ra, ⁹Be, ⁸⁶Sr, and ²³⁸U measured in the five regions of the brain by ICP-Q-MS and MC-ICP-MS are reported in Table 6. The ²²⁶Ra levels reported for ICP-Q-MS were corrected for the ²⁰⁸Pb based interferences. The correction accounted for less than 1% of the ²²⁶Ra level in the samples. The ²²⁶Ra results for the direct ICP-Q-MS method and the MC-ICP-MS agree within the uncertainty of the measurements. The high uncertainties for the ²²⁶Ra measurements by ICP-Q-MS measurements are due to the proximity of the ²²⁶Ra levels to the LOD. The agreement between methods suggests that polyatomic species did not significantly interfere with the direct measurement of ²²⁶Ra using the ICP-Q-MS. The improvement in sensitivity from the MC-ICP-MS method originated from increased instrument sensitivity and from separation of the ²²⁶Ra from the matrix. The sensitivity of the ICP-Q-MS method would also have been improved by removal of the matrix.
 Table 6. Mass concentrations (above) and activity concentrations (below) with uncertainties (1)
 standard deviation) of ²²⁶Ra, ⁹Be, ⁸⁶Sr, and ²³⁸U in various brain regions measured by MC-ICP-MS and ICP-Q-MS.

	Sample MC-ICP-M			IC	P-Q-MS	
		²²⁶ Ra ng/kg	²²⁶ Ra ng/kg	⁹ Be, µg/kg	⁸⁶ Sr, mg/kg	²³⁸ U, µg/kg
		²²⁶ Ra mBq/kg	²²⁶ Ra mBq/kg			
	Cerebral white matter	0.72 ± 0.04	0.52 ± 0.24	0.54 ± 0.04	0.163 ± 0.010	31 ± 1
		26 ± 1	19 ± 9			
	Cerebral gray matter	0.187 ± 0.006	0.2 ± 0.2	0.73 ± 0.05	0.156 ± 0.006	44 ± 3
		6.8 ± 0.2	6 ± 6			
	Corpus callosum	0.17 ± 0.01	<0.2	0.81 ± 0.06	0.137 ± 0.005	31 ± 1
		6.2 ± 0.4	<7			
	Cerebellum	0.13 ± 0.03	0.19 ± 0.17	0.46 ± 0.04	0.100 ± 0.004	34 ± 1
		4.8 ± 0.1	7 ± 6			
	Brainstem	0.090 ± 0.003	<0.4	0.50 ±0.05	0.115 ± 0.004	35 ± 1
		3.3 ± 0.1	<15			
248						
249	The total co	ncentration of ²	²⁶ Ra in the diss	ected fixed brai	in sample, 0.35 n	g/kg (18
250	mBa/ka) was datar	mined from a w	eighted averag	e of the segme	nts measured usi	ng the MC-
230	indy kg) was deter		eighteu avei ag	e of the segmen	its measured usi	ing the MC-
251	ICP-MS method. TI	ne total mass of	²²⁶ Ra in the 44	9 g brain was 0.	16 ng (5700 mBc). The ²²⁶ R
252	mass in the brain tl	nerefore accoun	its for 0.014% c	of the total body	v content of ²²⁶ Ra	. The ²²⁶ Ra
253	levels were uniforn	nly distributed a	mong cerebral	gray matter, co	rpus collosum, a	nd
254	cerebellum. The ²²⁶	Ra concentratio	on was elevated	in cerebral wh	ite matter and re	duced in th
255	hrainstem (Table 6) denicted in Fig	oure 7			
235			5010 2.			

A Spearman's rank order correlation was used to assess the relation between ²²⁶Ra and ⁹Be as well as ²²⁶Ra and ⁸⁶Sr. The correlation between ²²⁶Ra and ⁹Be was not significant, r(3) =0.50, p = 0.39. The correlation between ²²⁶Ra and ⁸⁶Sr was significant, r(3) = 0.90, p = 0.037. Because strontium is also the analogue of calcium, the correlation suggests that radium and strontium could enter the brain using the calcium transport systems. In this study, a single brain was analyzed for ²²⁶Ra. Establishment of a general ²²⁶Ra distribution in the brain would require analysis of additional samples.

Strontium has been previously measured in human brains from individuals without a
neurological disease with a range of 0.020 – 0.224 mg/kg (dry weight).⁵⁴ These results compare
well with the present work which had a mean Sr concentration of 0.134 mg/kg. A study by
Meehan *et al.* measured the concentration of beryllium via fluorimetric determination in

various human organs finding an average of 0.08 mg/kg ash weight (1×10^{-3} mg/kg fresh weight) in brain.⁵⁵ The results presented in this work are on the low end of the literature value. In a study using neutron activation analysis to measure uranium in brain, the mean value was $< 8 \times 10^{-3}$ mg/kg.⁵⁴ Kathren and Tolmachev examined the uranium content in brain tissue of three individuals using alpha spectrometry with the following results: 2.3×10^{-4} mg/kg, $1.8 \times$ 10^{-4} mg/kg, and 7.7 \times 10^{-4} mg/kg.⁵⁶ The values measured in this study are at the high-end of the results published in literature.

One limitation of this study that the undissected brain was stored in formalin solution for years. Formalin preservation can result in contamination or leaching of the analyte from tissue.⁵⁷ In work by Gellein *et al.*, the concentration of strontium was measured in the formalin solution containing fixed human brain tissue stored over long periods of time.⁵⁸ The strontium concentration in the formalin solution increased by a factor of 59 over long term storage compared to fresh formalin solution. However, it was unclear if formalin leached strontium from the brain only or from the brain and the glass storage container. A study by Bush et al., reported that fresh biological tissue stored in formalin for 12 months resulted in decreases in the tissue concentration of magnesium and manganese but not calcium.⁵⁹ It is therefore unclear from the literature if the long term storage in formalin resulted in decreased ²²⁶Ra levels in the brain. Unfortunately, samples of the formalin storage solution were not available for this work.

Conclusions

3 4	289	The ICP-MS based method for quantification of ²²⁶ Ra, along with beryllium, strontium,
5 6 7	290	and uranium, in human brain was developed. The combination of analyte separation from
, 8 9	291	tissue matrix and MC-ICP-MS analysis improved the sensitivity of the method by reducing
10 11	292	matrix effects and possible isobaric interferences compared to direct ICP-Q-MS analysis. The
12 13 14	293	LOD of the ICP-Q-MS was approximately 160 times higher than the LOD of the MC-ICP-MS
15 16	294	method. The ²²⁶ Ra analysis method presented is an alternative method to radiometric methods,
17 18 19	295	which require long counting times with limited sample throughput. The obtained results of
20 21	296	²²⁶ Ra concentrations in human brain regions could be used to support the further development
22 23	297	of biokinetic models for radiation dose assessment to the brain after 226 Ra intake. 16 The
24 25 26	298	method could be applied to analyze radium in brain tissue samples collected from other watch
27 28	299	dial painters or in other autopsy samples. This study found that ²²⁶ Ra was uniformly distributed
29 30 31	300	among cerebral gray matter, corpus collosum, and cerebellum tissue (0.19 – 0.13 ng/kg or 6.8 –
32 33	301	4.8 mBq/kg). The ²²⁶ Ra concentration in cerebral white matter (0.72 ng/kg or 26 mBq/kg) was
34 35 36	302	elevated compared to other regions and it was mildly reduced in the brainstem (0.09 ng/kg or
37 38	303	3.3 mBq/kg). The concentrations of ²²⁶ Ra and strontium in brain tissues were correlated,
39 40 41	304	suggesting that they are transported across the BBB using the same transporters.
41 42 43	305	
44 45 46	306	
47 48	307	Acknowledgements
49 50 51	308	This paper was based on research conducted under a Fellowship grant to The Curators of the
52 53	309	University of Missouri (award #NRC-HQ-15-G-0036) from the Office of the Chief Human Capital
54 55 56	310	Officer of the Nuclear Regulatory Commission. The statements, findings, conclusions, and
57 58 59 60		18

2		
3	311	recommendations are those of the author(s) and do not necessarily reflect the view of the
4 5		
6	312	Outreach and Recruitment Branch or the US Nuclear Regulatory Commission.
/ 8	313	The USTUR is funded by U.S. Department of Energy Office of Demostic and International Health
9	515	The OSTOR is funded by 0.5. Department of Energy, Onice of Domestic and International Health
10 11	314	Studies (AU-13) under grant award DE-HS0000073 to College of Pharmacy and Pharmaceutical
12		
13 14	315	Sciences at Washington State University.
14	216	
16	316	
17	317	
19		
20 21		
22		
23		
24 25		
26		
27		
28 29		
30		
31 22		
32 33		
34		
35 36		
37		
38		
39 40		
41		
42		
43 44		
45		
46 47		
47 48		
49		
50 51		
52		
53		
54 55		
56		
57		
58 59		19
60		

References 1 V. Chisté and M. M. Bé, Table de Radionucleides, http://www.lnhb.fr/nuclides/Ra-226 tables.pdf. 2 R. J. Carter, C. M. Nickson, J. M. Thompson, A. Kacperek, M. A. Hill and J. L. Parsons, Int. J. Radiat. Oncol., Biol., Phys., 2018, 100, 776–784. 3 International Atomic Energy Agency, The Environmental Behaviour of Radium: Revised Edition. Technical reports series no. 476, Vienna, Austria, 2014. 4 C. Papastefanou, *Health Phys.*, 1996, **70**, 187–191. 5 R. E. Rowland, Radium in Humans: A Review of U.S. Studies, Argonne National Laboratory: Environmental Research Division, 1994. 6 H. S. Martland, P. Conlon and J. P. Knef, JAMA, J. Am. Med. Assoc., 1925, 85, 1769. 7 S. A. Fry, Radiat. Res., 1998, 150, S21–S29. 8 M. S. Littman, I. E. Kirsh and A. T. Kaene, AJR, Am. J. Roentgenol., 1978, 131, 773. 9 ICRP, 2017, Occupational Intakes of Radionuclides: Part 3. ICRP Publication 137. Ann. ICRP 46 (3/4), .10A. Bhowmik, R. Khan and M. Ghosh, BioMed Res. Int. 11R. Keep, L. Ulanski, J. Xiang, S. Ennis and A. Loris Betz, *Brain Res.*, 1999, **815**, 200–205. 12J. L. Albert, J. P. Boyle, J. A. Roberts, R. A. John Challiss, S. E. Gubby and M. R. Boarder, Br. J. Pharmacol., 1997, 122, 935-941. 13P. A. Revest, N. J. Abbott and J. I. Gillesie, Brain Res., 1991, 549, 159–161. 14E. Dömötör, N. J. Abbott and V. Adam-Vizi, J. Physiol., 1999, 515, 147–155. 15J. D. Boice, S. S. Cohen, M. T. Mumma and E. D. Ellis, Int. J. Radiat. Biol., 2022, 98, 537–550. 16R. W. Leggett, S. Y. Tolmachev and J. D. Boice, Int. J. Radiat. Biol., 2019, 1–13. 17F. C. Kiffer, K. Luitel, F. H. Tran, R. A. Patel, C. S. Guzman, I. Soler, R. Xiao, J. W. Shay, S. Yun and A. J. Eisch, Behavioural Brain Research, 2022, 419, 113677. 18International Atomic Energy Agency, Analytical Methodology for the Determination of Radium Isotopes in Environmental Samples. Analytical Quality in Nuclear Applications no. 19, Vienna, Austria, 2010. 19D. Karamanis, K. G. Ioannides and K. C. Stamoulis, Anal. Chim. Acta, 2006, 573–574, 319–327. 20M. Straub, P.-A. Pittet, G. Amzalag, F. Bochud, S. Baechler and P. Froidevaux, Anal. Chim. Acta, 2018, 1031, 178-184. 21N. E. Whitehead, R. G. Ditchburn, W. J. McCabe and R. Van Der Raaij, J. Radioanal. Nucl. Chem., 1992, 160, 477-485. 22 M. T. Crespo, Appl. Radiat. Isot., 2012, 70, 210–215. 23M. A. Ajemigbitse, F. S. Cannon and N. R. Warner, J. Environ. Radioact. 24 International Atomic Energy Agency, A Procedure for the Rapid Determination of 226Ra and 228Ra in Drinking Water by Liquid Scintillation Counting. Analytical Quality in Nuclear Applications no. 39, Vienna, Austria, 2014. 25W. C. Burnett and W. C. Tai, Anal. Chem., 1992, 64, 1691–1697. 26X. Hou and P. Roos, Anal Chim Acta, 2008, 608, 105–139. 27J.-A. Sanchez-Cabeza, Analyst, 1998, 123, 399–403. 28H. Lucas, J. Marshall and L. Barrer, Radiat. Res., 1970, 41, 637–645.

2		
3 ⊿	361	29A. F. Stehney and H. F. Lucas, in Proceedings of International Conference, United Nations,
5	362	Geneva, 1965, vol. 2, pp. 49–54.
6	363	30U.S. EPA, EMSL, Method 903.1: Radium-226 in Drinking Water Radon Emanation Technique,
7	364	EPA/600/4/80/032, 1980.
8	365	31C. Dalencourt, A. Michaud, A. Habibi, A. Leblanc and D. Lariviere, J. Anal. At. Spectrom., 2018,
9	366	6 , 1031–1040.
10	367	32 A. Abbasi. <i>Radiochim. Acta</i> . 2018. 10 . 819.
12	368	33S. G. Tims, G. J. Hancock, L. Wacker and L. K. Fifield, Nuclear Instruments and Methods in
13	369	Physics Research Section B: Beam Interactions with Materials and Atoms 2004 273–274
14	370	796
15	371	24 M Volno I A Olivaros and M T Murroll Anal Cham 1991 9 912
16	271	34A. W. Volpe, J. A. Olivares and W. T. Wurten, And. Chem., 1991, 8 , 915.
17	372	35 H. Yaala, R. Filler and O. Clarisse, J. Andi. Al. Spectrom., 2019, 34 , 1597–1605.
18	3/3	365. Maxwell, J. Radioanal. Nucl. Chem., 2006, 270 , 651–655.
20	374	37S. Maxwell, B. Culligan, R. Utsey, D. McAlister and E. Horwitz, J. Radioanal. Nucl. Chem.,
21	375	2013, 295 , 2181–2188.
22	376	38S. Maxwell, B. Culligan, J. Hutchison, R. Utsey and D. McAlister, J. Radioanal. Nucl. Chem.,
23	377	2014, 300 , 1159–1166.
24	378	39S. Maxwell and B. Culligan, <i>J. Radioanal. Nucl. Chem.</i> , 2012, 293 , 149–156.
25	379	40L. Copia, S. Nisi, W. Plastino, M. Ciarletti and P. Povinec, J. Anal. Sci. Technol.
26 27	380	41M. V. V. Dyke, J. W. Martyny, M. M. Mroz, L. J. Silveira, M. Strand, D. L. Cragle, W. G.
27	381	Tankersley, S. M. Wells, L. S. Newman and L. A. Maier, Occup. Environ. Med., 2011, 68, 842-
29	382	848.
30	383	42 A. B. Stefaniak, V. M. Weaver, M. Cadorette, L. G. Puckett, B. S. Schwartz, L. D. Wiggs, M. D.
31	384	Jankowski and P. N. Brevsse Annl. Occup. Environ. Hvg. 2003. 18, 708–715
32	385	43D Michaels and C Monforton Public Health Ren 2008 123 79–88
33	386	45 Schonfeld I. V. Krestining S. Enifanova, M. O. Degteva, A. V. Aklevev and D. I. Preston
34 35	287	Padiat Pac. 2012 170 192 190
36	200	AEA E Derroy M E Francen C L Diamond and B L Amota Toxicological profile for strentium
37	200	45A. F. Dorsey, M. E. Fransen, G. L. Diamonu anu R. J. Amata, <i>Toxicological profile for Scionciani</i> ,
38	200	Agency for Toxic Substances and Disease Registry, 2004.
39	390	46 N. Martinez, D. Jokisch, L. Dauer, K. Eckerman, R. Goans, J. Brockman, S. Tolmachev, M.
40	391	Avtandilashvili, M. T. Mumma, J. D. Boice and R. W. Leggett, Int. J. Radiat. Biol., 2022, 98,
41 42	392	750–768.
43	393	47J. D. Boice, B. Quinn, I. Al-Nabulsi, A. Ansari, P. K. Blake, S. R. Blattnig, E. A. Caffrey, S. S.
44	394	Cohen, A. P. Golden, K. D. Held, D. W. Jokisch, R. W. Leggett, M. T. Mumma, C. Samuels, J. E.
45	395	Till, S. Y. Tolmachev, R. C. Yoder, J. Y. Zhou and L. T. Dauer, Int. J. Radiat. Biol., 2022, 98, 795-
46	396	821.
47	397	48C. Miller, R. Hasterlik and A. Finkel, The Argonne Radium Studies: Summary of Fundamental
48	398	Data. ANL-7531; ACRH-106 Report, 1969.
49 50	399	49G. V. Iyengar, The Elemental Composition of Human Tissues and Body Fluids, Verlag Chemie,
51	400	Wenheim, New York, 1978.
52	401	50S. Ellison and M. Thompson, <i>Anglyst</i> , 2008, 8 , 992–997.
53	402	51D Larivière V N Enov K M Reiber R L Cornett and R D Evans Anal Chim Acta 2005
54	402	E39 175_192
55	403 404	52K Benkhedda D Larivière S Scott and D Evans I Anal At Spectrum 2005 30 522 529
56 57	404	52 N. DEHMIEUUA, D. LAHVIELE, S. SCOLLAHU D. EVAIIS, J. AHUI. AL. SPECHUIH., 2005, 20 , 523–528.
58		21
59		21
60		

1		
2		
3 ⊿	405	53T. L. Tsai, C. C. Lin, T. Y. Wang, H. J. Wei and L. C. Men, <i>J. Radioanal. Nucl. Chem.</i> , 2010, 286 ,
5	406	145.
6	407	54P. Ramos, E. Pinto, A. Santos and A. Almeida, J. Trace Elem. Med. Biol.
7	408	55W. Meehan and L. Smythe, <i>Environ. Sci. Technol.</i> , 1967, 10 , 839–844.
8	409	56R. L. Kathren and S. Y. Tolmachev. <i>Health Phys.</i> , 2015, 109 , 187–197.
9	410	57M. Schrag, A. Dickson, A. Jiffry, D. Kirsch, H. V. Vinters and W. Kirsch, <i>BioMetals</i> , 2010, 23 .
10	411	1123–1127
11	/12	58K Gellein T. D. Elaten K. M. Erikson M. Aschner and T. Swersen <i>Biol Trace Elem Res</i>
12	412	2009 131 221 225
14	415	2000, 121, 221-223.
15	414	59V. J. Bush, T. P. Moyer, K. P. Batts and J. E. Parisi, <i>Clin. Chem.</i> , 1995, 41 , 284–295.
16	415	
17		
18		
19		
20 21		
21		
23		
24		
25		
26		
27		
28		
29 30		
31		
32		
33		
34		
35		
36		
3/ 38		
39		
40		
41		
42		
43		
44		
45 46		
47		
48		
49		
50		
51		
52 52		
53 54		
55		
56		
57		
58		22
59		