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Energy-, time-, and labor-saving synthesis of α-
ketiminophosphonates: Machine-learning-assisted simultaneous 
multiparameter screening for electrochemical oxidation 
Masaru Kondoa,d, Akimasa Sugizakia, Md. Imrul Khalida, H. D. P. Wathsalaa, Kazunori Ishikawab, 
Satoshi Harab, Takayuki Takaai b, Takashi Washio*b,c, Shinobu Takizawa*a,c, Hiroaki Sasai*a,c  

A highly efficient synthesis of α-ketiminophosphonates has been established for the electrochemical oxidation of α-amino 
phosphonates with the utilization of machine-learning-assisted simultaneous multiparameter screening. After brief 
experimental screening, the Bayesian optimization with the experimental data (up to 12 entries) could rapidly predict the 
optimal conditions for the synthesis of α-ketiminophosphonates and sulfonyl ketimines with aryl and alkyl groups. The 
obtained α-ketiminophosphonates could be converted into highly functionalized α-amino acid analogues with a 
tetrasubstituted carbon center.

Introduction 

Imines are attractive synthetic intermediates because an addition of 
various nucleophiles to the imines produces highly functionalized 
amines.1 Among them, α-iminophosphonates2 are important 
precursors for the synthesis of α-amino phosphoric acid motifs that 
can function as isosteric or bioisosteric analogues of the 
corresponding amino acids, exhibiting biological properties such as 
antimicrobial,3 antioxidant,4 and anticancer activities.5 The 
condensation reaction of α-ketophosphonates with amines, and 
chemical oxidation of α-amino phosphonates are well-known 
approaches for the synthesis of α-ketiminophosphonates.6 Arbuzov 
reaction7 and aza-Wittig reaction8 has also provided α-
ketiminophosphonates (Fig. 1a). However, these reactions have 
some potential drawbacks such as the requirement for excess 
amount of reagents (e.g., oxidants such as trichloroisocyanuric acid 
(TCCA), MnO2, and nucleophiles such as phosphites) and reflux 
conditions. In contrast, the electrochemical oxidative 
dehydrogenation processes have many advantages. They can 
decrease the amount of an external oxidant, resulting in lower or no 
chemical waste derived from the oxidant. In addition, their oxidative 
transformation can be conducted under mild reaction conditions.9 
Recently, Zeng and Ruan independently presented the 
electrochemical oxidative C-H phosphorylation of aldimine 
derivatives such as quinoxalin-2(1H)-ones10 and hydrazones11 for the 

first time.12 However, the selective oxidation of amine derivatives to 
the corresponding ketimines is still a challenging task because of 
their ready over-oxidation.13 Several methodologies for the 
optimization of an electrochemical reaction have been developed to 
accelerate the optimization14 (e.g. design of experiments,14a-e 
statistical methods,14f,g and multivariate linear regression analysis14h-

k). Herein, we report a facile electrochemical synthesis of α-
ketiminophosphonates with machine-learning (ML)-assisted 
reaction conditions screening based on Bayesian optimization (BO) 
strategy (Fig. 1b). Notable advantages of our approach Notable 
advantages of our approach include (i) external oxidant free 
synthesis of α-ketiminophosphonates under air and mild conditions; 
(ii) saving energy, time, and labor for the reaction optimization; (iii) 
a broad substrate scope, affording various sulfonyl ketimines bearing 
phosphonyl, aryl, and alkyl groups. 

Fig. 1. Synthesis of α–ketiminophosphonate: (a) Previously reported 
methods; (b) electrochemical approach with machine-learning (ML)-assisted 
screening 
 
To improve the efficiency of reaction optimization, automated15 and 
computational16 approaches have been attracting increasing interest 
in the field of organic synthesis. Recently, our group demonstrated 
that a Gaussian process regression (GPR) as ML accelerates the 
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multiparameter screening of an enantioselective organocatalyzed 
domino reaction under flow-reaction conditions.17 Because the 
established method was limited to two-parameter screening to 
minimize the number of experiments and visualize a regression 
model, our interest shifted to BO as an ML-approach to evaluate 
more than two-dimensional parameters. BO is a powerful 
probabilistic method to determine the maximum (or the minimum) 
of a black-box objective function based on the Bayesian approach 
using a dataset collected in the previous sampling and ML-modeling 
iteration.18 BO can not only search around a probable maximum 
(exploitation), but also escape from a local maximum (or the 
minimum) by searching a value of unexplored black-box object 
function (exploration).19 Furthermore, BO estimates the next 
parameters to search based on the Gaussian process modelling of a 
collected experimental dataset and the maximization of the 
acquisition function.20 Then, the estimated parameters are evaluated 
by performing a practical experiment, subsequently the newly 
obtained dataset is reapplied to the above-mentioned ML process 
again. Finally, the appropriate reaction parameters affording a good 
result are predicted through the iteration of the ML estimation and 
experimental evaluation. Owing to its utility and versatility, BO has 
been applied to various research fields such as material sciences,21 
drug discovery,22 and theoretical chemistry.16c,23 To the best of our 
knowledge, this is the first report on BO-assisted rapid 
multiparameter screening for electrochemical syntheses. 

Result and Discussion 

Initially, a brief reaction conditions screening with α–amino 
phosphonate 1a as a prototypical substrate was conducted for the 
following fundamental conditions (electrode: Pt electrode for the 

anode and cathode, solvent: CH3CN, electrolyte: LiClO4) (see 
Supplementary Table S1).24 To accomplish multiple numeric 
parameter screening and optimization of the electrochemical 
oxidation reaction conditions, we carried out five reactions to screen 
five parameters: current (1–5 mA), concentrations of 1a (5–20 mM) 
and LiClO4 (0.05–0.2 M), temperature (25–60 °C), reaction time (60–
180 min) (Table 1, entries 1–5). After estimating five different 
reaction conditions and the resulting yields (entries 1–5), BO was 
used to propose the reaction conditions (current: 4 mA, 
concentration of 1a: 11 mM, and LiClO4: 0.22 M, temperature: 50 °C, 
reaction time: 130 min) for the next investigation (entry 6).25 Using 
the BO-suggested parameters, the desired product 2a was obtained 
in 60% yield. On the basis of the six datasets (entries 1–6), the 
conditions to produce 2a in 66% yield were proposed based on the 
exploitation (entry 7). The exploitation and exploration on BO were 
repeatedly conducted (entries 8–11). Finally, we performed 12 
reactions to determine the appropriate reaction conditions (entry 12, 

aReaction conditions: Undivided cell, Pt anode, Pt cathode, 1a (0.0702 mmol), 
LiClO4 (1.14 mmol), CH3CN (6 mL), 120 min, constant current = 3 mA, 45 °C, 
under air. Isolated yield. 
Scheme 1. Substrate scope for electrochemical oxidation of sulfonamides 1a. 
 

Table 1. BO-assisted multiparameter screening for suitable reaction 
conditions for electrochemical oxidation using 1aa 

current (mA)
Pt Pt

1a (mM)

LiClO4
 (M), CH

3CN, temp., time

2a

NH
S

O
O

O

P
OiPrO
OiPr

N
S

O
O

O

P
OiPrO
OiPr

 

entry 
current 

(mA) 
1a 

(mM) 
LiClO4 

(M) 
Temp. 
(°C ) 

Time 
(min) 

NMR 
yield (%)b 

1 1 10 0.05 60 180 8 

2 2 20 0.2 25 60 16 

3 3 10 0.1 40 120 65 

4 4 15 0.1 40 60 38 

5 5 5 0.05 25 120 26 

6 4 11 0.22 50 130 60 

7 3 11 0.13 45 120 66 

8 1 18 0.05 45 120 3 

9 3 9.7 0.12 45 120 65 

10 5 10 0.21 45 120 41 

11 2 10 0.06 45 120 50 

12 3 10.4 0.19 45 120 72 (71)c 
aReaction conditions: Undivided cell, Pt anode, Pt cathode, 1a, LiClO4, 
CH3CN (6 mL), under air. b1,3,5-Trimethoxybenzene was used as an 
internal standard. cIsolated yield 
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current: 3 mA, concentration of 1a: 10.4 mM, and LiClO4: 0.19 M, 
temperature: 45 °C, reaction time: 120 min) to increase the isolated 
yield of 2a to 71% (current efficiency  = 40%).26 

After estimating the optimal conditions, we investigated the 
substrate scope of the electrochemical oxidation reaction of 1 
(Scheme 1). The electrochemical oxidation of 5-, 6-, 7-, and 8-
methylated substrates 1b–1e afforded the corresponding products 
2b–2e in 61–95% yields (38-59% current efficiency). Both electron-
rich and electron-deficient substrates 1f and 1g, respectively, could 
be used, affording the α-ketiminophosphonates (2f: 75% yield; 2g: 
56 % yield). α-Amino phosphonates 1h and 1i with sterically bulky 
substituents such as tert-butyl and phenyl groups were smoothly 

converted into the desired imines 2h and 2i in 98% and 73% yields, 
respectively. Substrate 1j, derived from diethyl phosphonate, was 
also tolerated under these conditions (2j: 79% yield). When the non- 
and methyl-substituted 5-membered cyclic compounds 1k and 1l 
were used, the desired products 2k and 2l were obtained in 62% and 
72% yields, respectively. To further extend the substrate generality, 
we evaluated sulfonamides 1m–1p bearing aryl and alkyl groups 
instead of phosphonyl group.27 6-Membered sulfonamide 1m was 
suitable for this transformation, affording the desired product 2m in 
87% yield. The electrochemical reaction with 5-memberd substrates 
1n–1p, including aliphatic substrates, provided the corresponding 
products 2n–2p in 58–94% yields. 
Although most of substrates 1 were successfully converted into the 
desired ketimines 2 (Scheme 1), the yields of some products (2b, 2g, 
2k, and 2o) still remained low (56–62%) because of the formation of 
a small amount of by-products.13 Thus, to determine suitable 
reaction conditions to improve the chemical yields, we performed 
the BO-assisted multiple parameter rescreening using substrate 1o 
as a model substrate (Table 2 and Supplementary Table S3). The 
experimental dataset (Table 2, entries 1–5) was collected under the 
same reaction conditions as those listed in Table 1 (entries 1–5). To 
our delight, when BO (exploitation and exploration) and 
experimental evaluation were performed twice, the isolated yield of 

product 2o was improved to 66% (current efficiency = 42%) (Table 2, 
entry 7) from 58% (Scheme 1). The newly established reaction 
conditions (Table 2, entry 7) could increase yields of 2b (from 61% to 
85%), 2g (from 56% to 75%), and 2k (from 62% to 71 %) as shown in 
Scheme 2.  

aReaction conditions: Undivided cell, Pt anode, Pt cathode, 1a (0.0684 mmol), 
LiClO4 (1.32 mmol), CH3CN (6 mL), 120 min, constant current = 3 mA, 40 °C, 
under air. Isolated yield. In parentheses, isolated yields are shown under the 
optimal conditions established in Table 1. 
Scheme 2. Electrochemical oxidation of the substrates 1b, 1g, and 1k under 
newly established reaction conditions listed in Table 2a. 
 
When the electrochemical oxidation of 1o was carried out in one-
gram scale at a higher current (20 mA) and longer reaction time (16 
h), the desired product 2o was obtained in 53% yield (current 
efficiency = 39%) (Scheme 3). 

Scheme 3. Electrochemical synthesis of 2o using one gram of 1o 
 
To demonstrate the utility of the obtained α-ketiminophosphonates 
2, a no-metal-catalyzed synthesis of highly functionalized α-amino 
phosphonates was performed (Scheme 4, Supplementary Table 
S4).2b,28 Among the carbon–carbon bond-forming reactions studied, 
we found that the aza-Morita-Baylis-Hillman reaction29 and aza-
Henry reaction30 of 2k afforded the corresponding α-amino acid 
analogues 3ka and 3kb with a tetrasubstituted carbon center in 69% 
and quantitative yields, respectively. Enantioenriched products 3 
(3ka: 70% ee, 3kb: 24% ee) were also obtained when β-ICD was 
utilized as a chiral organocatalyst.31 

 

Scheme 4. No-metal-catalyzed synthesis of highly functionalized α-amino 
phosphonates 3 

Table 2. BO-assisted multiple parameter rescreening for suitable reaction 
conditions for electrochemical oxidation using 1oa 

current (mA)
Pt Pt

1o (mM)

LiClO4
 (M), CH

3CN, temp., time

2o

NH
S

nBu

OO

N
S

nBu

OO

 

entry 
current 

(mA) 
1o 

(mM) 
LiClO4 

(M) 
Temp. 
(°C ) 

Time 
(min) 

NMR yield 
(%)b 

1 1 10 0.05 60 180 46 

2 2 20 0.2 25 60 22 

3 3 10 0.1 40 120 62 

4 4 15 0.1 40 60 53 

5 5 5 0.05 25 120 14 

6 4 10 0.12 60 180 29 

7 3 11.7 0.22 40 120 67 (66)c 
aReaction conditions: Undivided cell, Pt anode, Pt cathode, 1o, LiClO4, 
CH3CN (6 mL), under air. b1,3,5-Trimethoxybenzene was used as an 
internal standard.  cIsolated yield. 
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Scheme 5. A plausible reaction mechanism of electrochemical oxidation of 
sulfonamide 1 
 
A plausible reaction mechanism is proposed as illustrated in Scheme 
5. Initially, the radical cation intermediate 4 was generated through 
the anodic oxidation of 1. Subsequently, deprotonation of 4 provides 
the radical intermediate 5, which can be oxidized to the cation 
intermediate 6. Finally, the desired product 2 is obtained by the 
deprotonation of 6. At the cathode, the proton is reduced to 
molecular hydrogen. Cyclic voltammetry (CV) analysis of 1n was 
carried out to gain further insights into the proposed reaction 
mechanism (see Supplementary Fig. S2).32 Two oxidation peaks (2.1 
V and 2.4 V would indicate the first anodic oxidation from 1n to 4n 
and the second reaction from 5n to 6n, respectively (electrolyte: 
LiClO4, vs. Ag/AgNO3) (see Supplementary Fig. S2A).33 

Conclusions 
We demonstrated a highly efficient, metal- and chemical oxidant-
free electrolytic dehydrogenative synthesis of cyclic sulfonyl 
ketimines bearing phosphonyl, aryl, or alkyl groups. The BO and 
experimental assessment using positive and negative results were 
successfully combined to accomplish the simultaneous 
multiparameter screening. In addition to the minimized chemical 
waste, the present approach saves time and energy, and also 
simplifies many practical aspects. Further practical applications of BO 
in organic synthesis and the application of 2 in fine chemical 
synthesis are underway in our laboratory and the results will be 
reported in due course. After preparation of this manuscript, a paper 
by Doyle and co-workers was published, in which the first BO-
assisted reaction optimization for the transformation of alcohols 
such as Mitsunobu reaction and deoxyfluorination.34 
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