

Understanding methanol dissociative adsorption and oxidation on amorphous oxide films

Journal:	Faraday Discussions
Manuscript ID	FD-ART-11-2021-000109.R1
Article Type:	Paper
Date Submitted by the Author:	12-Dec-2021
Complete List of Authors:	Padavala, Sri Krishna Murthy; Oregon State University, School of Chemical, Biological, and Environmental Engineering Artyushkova, Kateryna; Physical Electronics Inc Boettcher, Shannon; University of Oregon, Department of Chemistry & Biochemistry and the Materials Science Institute Nemšák, Slavomír; Lawrence Berkeley National Laboratory, Advanced Light Source Stoerzinger, Kelsey; Oregon State University, School of Chemical, Biological, and Environmental Engineering; Pacific Northwest National Laboratory, Physical and Computational Sciences Directorate

1	1. Title
2	Understanding methanol dissociative adsorption and oxidation on amorphous oxide films
3	
4	2. Authors
5	Sri Krishna Murthy Padavala, ¹ Kateryna Artyushkova, ² Shannon W. Boettcher, ³ Slavomir
6	Nemsak, ⁴ Kelsey A. Stoerzinger ^{1,5,*}
7	
8	¹ School of Chemical, Biological and Environmental Engineering, Oregon State University,
9	Corvallis, Oregon 97331, USA
10	² Physical Electronics Inc. Chanhassen MN, 55317 USA
11	³ Department of Chemistry & Biochemistry and the Materials Science Institute, University of
12	Oregon, Eugene, Oregon 97403, USA
13	⁴ Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley
14	CA 94720, USA
15	⁵ Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory,
16	Richland, Washington 99354, USA
17	*kelsey.stoerzinger@oregonstate.edu
18	
19	3. Abstract
20	Interactions between a transition metal (oxide) catalyst and a support can tailor the number and

- 21 nature of active sites, for instance in the methanol oxidation reaction. We here use ambient
- 22 pressure X-ray photoelectron spectroscopy (AP-XPS) to identify and compare the surface

23	adsorbates that form on amorphous metal oxide films that maximize such interactions.
24	Considering $Al_{(1-x)}M_xO_y$ (M=Fe or Mn) films at a range of methanol:oxygen gas ratios and
25	temperatures, we find that the redox-active transition metal site (characterized by methoxy
26	formation) dominates dissociative methanol adsorption, while basic oxygen sites (characterized
27	by carbonate formation) play a lesser role. Product detection, however, indicates complete
28	oxidation to carbon dioxide and water with partial oxidation products (dimethyl ether)
29	comprising a minor species. Comparing the intensity of methoxy and hydroxyl features at a fixed
30	XPS chemical shift suggests methanol deprotonation during adsorption in oxygen rich conditions
31	for high transition metal content. However, increasing methanol partial pressure and lower metal
32	site density may promote oxygen vacancy formation and the dehydroxylation pathway,
33	supported by a nominal reduction in the oxidation state of iron sites. These findings illustrate that
34	AP-XPS and mass spectrometry together are powerful tools in understanding metal-support
35	interactions, quantifying and probing the nature of catalytic active sites, and considering the link
36	between electronic structure of materials and their catalytic activity.

38 **4. Introduction**

Methanol (CH₃OH) is a versatile and flexible chemical that can be used both as a fuel source and chemical feedstock^{1, 2}. CH₃OH oxidation involves a series of oxidation and dehydration reactions³ with numerous potential products depending on the reaction pathway. For example, partial oxidation of CH₃OH can yield formaldehyde (CH₂O), dehydration and C-O coupling produces dimethyl ether (CH₃)₂O, and complete oxidation yields water (H₂O) and carbon dioxide (CO₂). The methanol oxidation reaction (MOR) can be used as a probe to quantify the density of active sites on oxide surfaces^{4, 5}, and due to its diverse potential products

and pathways, help ascertain the nature of these active sites⁴. Considering a broad range of metal oxides, CH_2O is formed on redox-active sites, $(CH_3)_2O$ is formed on Brønsted acid sites, and CO_2 is formed on basic sites⁴.

49 The MOR has been studied on transition metals (e.g. V, Cu, Mn, Fe, Mo, Pd, Au) and their oxides with and without supports⁶⁻¹³. Supports not only disperse the catalyst as small 50 51 particles with high surface area, but also can modify the activity of the catalyst and influence its selectivity towards the different products of MOR. Considering the common support material of 52 γ -alumina, previous reports have shown that this material alone will oxidize CH₃OH to (CH₃)₂O 53 in oxygen rich environments at temperatures <275 °C, above which carbon monoxide (CO) 54 begins to form. By incorporating manganese and iron oxide catalysts onto γ -alumina supports, 55 56 (CH₃)₂O remained the primary oxidation product but formed at lower temperatures, and above 200 °C complete oxidation to CO₂ dominated¹⁴. As oxide supports can carry their own activity 57 towards MOR, the activity of and product distribution from supported catalysts thus depends on 58 the catalyst loading.9 59

In order to maximize effects localized to the catalyst-support interface, the interface 60 61 density can be increased by dispersion of small catalyst nanoparticles. The extension of this is the incorporation of transition metals into a support host directly, thus maximizing electronic 62 63 interactions and potential dual-active site effects. Herein, we prepare amorphous metal oxides (AMOs) by embedding the transition metal ion into the support, resulting in uniform interaction 64 65 between "support" and "catalyst" metal centers over the surface of AMOs. Such AMOs find use in many fields ranging from electronics to heterogeneous catalysis¹⁵⁻¹⁷. The electronic structure 66 of these materials can be tailored for a given application, influencing for example their 67 corrosion-resistance properties¹⁸ and electrochemical activity¹⁹. 68

Alumina's acid/base characteristics, which maximize dispersion of transition metal 69 (oxides) on supports, facilitate the incorporation of a wide range of transition metal cations at 70 high concentrations in AMOs¹⁷. The addition of iron (Fe) and manganese (Mn), here model 71 catalyst centers for the MOR, leads to new filled electronic states in alumina-based AMOs at the 72 top of the valence band²⁰. In our previous work, we investigated the influence of these new 73 electronic states on the surface acidity, basicity, and the hydroxylation behavior in a humid 74 environment²¹. In the current work, we study the influence of these new electronic states on the 75 surface reactivity towards CH₃OH. 76

77 We have used ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to investigate CH₃OH oxidation on Al_(1-x) M_xO_y (M = Fe, Mn) AMO films across temperatures and 78 methanol:oxygen gas ratios. For the compositions considered here, Fe and Mn are fully dispersed 79 without evidence of phase segregation and the formation of transition metal oxide clusters¹⁷. The 80 nominal oxidation state of Fe and Mn in the films is +3, and the basicity of the films increases 81 with Fe content. Both methoxy (here referred to as OCH₃) and carbonate (here termed CO₃) 82 species are observed on the surface, where the increase in OCH₃ coverage with increase in 83 transition metal content suggests that transition metal sites are active for CH₃OH oxidation. The 84 $Al_{(1-x)}Fe_xO_y$ and $Al_{(1-x)}Mn_xO_y$ oxide films studied here had fewer basic sites (characterized by 85 CO₃ formation) compared to acidic and redox-active sites (characterized by OCH₃ formation). 86 Consideration of OCH₃ and hydroxyl (here termed OH) features in the O 1s and C 1s core levels 87 suggests that the chemical shift for and/or intensity of OH varies with the methanol:oxygen gas 88 ratio and AMO composition. 89

90

91 **5.** Experimental

Thin-film preparation

Faraday Discussions

93	Precursor solutions were prepared by mixing different ratios of 1 M aqueous solutions of
94	transition metal nitrate salts, $Mn(NO_3)_2$ and $Fe(NO_3)_3$ and 1 M aqueous solution of
95	$Al(NO_3)_x(OH)_{3-x}$ clusters, prepared by bulk electrolysis using a procedure from the literature and
96	described previously ¹⁷ . The solution was spun coat onto a polished Si(100) substrate previously
97	coated with Ti and Ir by electron-beam evaporation to mitigate charging, and annealed at 450°C
98	for 30 min ²⁰ . The thin films obtained were atomically smooth with a root-mean-square roughness
99	$(R_{rms}) < 1$ nm as determined by atomic force microscopy. The films are referred to by their metal
100	ratios, i.e. a film with 80% Al and 20% Fe is called as Al8Fe2.
101	AP-XPS
102	AP-XPS was performed at the beamline 9.3.2 at the Advanced Light Source ²² . Films were placed
103	atop a BN heating element on a sample holder containing no Pt, and grounded through a
104	thermocouple pressed onto the film surface and electrically isolated from the holder with a
105	ceramic. Films were cleaned by UV ozone prior to loading into the sample chamber, and cleaned
106	<i>in-situ</i> by heating to 300 °C in an atmosphere of 100 - 150 mTorr of O ₂ . Following cleaning,
107	films were then cooled to room temperature under 100 mTorr O2. Films were characterized at
108	room temperature and during a temperature ramp for 10:100, 50:100, and 100:50 mTorr
109	methanol:oxygen gas. Figure S1 shows example survey spectra collected at 690 eV for 50 mTorr
110	CH ₃ OH and 100 mTorr oxygen at 25 °C for the Al8Fe2 and Al4Fe6 films depicting the expected
111	features. The incident photon energy was calibrated at room temperature by cross-referencing O
112	1s (690 eV, 750 eV) and Al 2p (490 eV, 350 eV) core levels in duplicate films previously
113	calibrated to the Au 4f (84 eV) of an auxiliary reference ²¹ , where the resultant O 1s and Al 2p
114	binding energy (BE) is dependent on composition as discussed in section 6.2. Subsequent

measurements at elevated temperatures were calibrated to the Al 2p core level as an internal
standard. The spectra were fit with CasaXPS using a Shirley-type background subtraction. The
identified features were fit using a line shape with 70% Gaussian and 30% Lorentzian character
with average fitted values shown in Table S1 and S2. The OH+OCH₃ feature in the O 1s core
level was constrained at 1.65 eV above the bulk O 1s BE based on previous measurements made
for duplicate films in water²¹, unless stated otherwise.

121

122 6. Results and Discussion

- 123 6.1 Feature Identification
- We first describe the features observed in each core level, considering the example case of 50
- mTorr CH₃OH and 100 mTorr oxygen at room temperature.
- 126

Figure 1: (a) O 1s and (b) C 1s for Al8Fe2 in 50 mTorr of CH₃OH and 100 mTorr of oxygen at
a) (a) O 1s probed at an incident photon energy (IPE) of 690 eV (shallow inelastic mean free
path (IMFP) ~5.8 Å²³, solid line) and 750 eV (deep IMFP ~6.6 Å²³, dashed line). Features at the
surface (OH+OCH₃) are less intense when probed with a greater IPE. b) C 1s core level (490 eV
IPE) depicting the different features observed.

132

133 **O 1s core level**: For the oxygen core level, four distinct features, shown in Figure 1a), were 134 observed across all samples and conditions. Depth profiling established that the feature at \sim 531 135 eV is due to the bulk of the film, while the higher BE shoulder is due to adsorbates, with integrated intensity ratio of shoulder/bulk as 0.19 and 0.18 in Figure 1 probed at 690 eV (shallow 136 inelastic mean free path (IMFP) ~5.8 Å²³) and 750 eV (deep IMFP ~6.6 Å²³) incident photon 137 energy (IPE). This shoulder at 1.65 eV above the bulk is attributed in part to OH species based 138 on previous measurements of duplicate samples in water²¹. Any oxidized carbon species on the 139 140 surface will also have similar O 1s BEs, and are primarily attributed to OCH₃ species based on the C 1s spectra (Figure 1b). The relative sensitivity factor (RSF) for O 1s (690 eV) to the C 1s 141 (490 eV) was determined to be 1.08 by measuring gaseous CO₂. The features at ~535 eV⁶ and 142 \sim 538 eV⁶ are attributed to gas phase CH₃OH and oxygen, respectively, with their relative 143 intensities consistent with gas-phase partial pressures and experimentally measured O:C RSF. 144 145 Table S1 shows the average BEs and the full width half maximum (FWHM) of the features observed in the oxygen core level for the films across different methanol:oxygen gas ratios at 146 different temperatures. Example room temperature oxygen core level spectra in Figure S2 depict 147 the changes in feature BE and intensity with film composition and gas ratio. 148 C 1s core level: For the carbon core level, four distinct features at ~284.8 eV, ~286.1 eV, ~ 149

150	288.6 eV and ~292 eV were observed as shown in Figure 1 b). The feature at ~284.8 eV is
151	adventitious carbon $(CH_x)^{24}$. The feature at 286.1 eV is at BE consistent with C-O or C=O bonds,
152	potentially from a OCH ₃ species or CO ²⁵ . Although both can be intermediates in MOR, we
153	assign this feature to OCH ₃ as it is the predominant intermediate for the MOR on transition
154	metals ^{4, 7, 26} . The feature at 288.6 eV arises from CO_3^{27} and the feature at 292 eV from gas phase
155	CH ₃ OH. A small amount of K was observed on the Al4Fe6 sample (Figure S3); based on
156	tabulated cross sections, the abundance of K is ~10x lower than its 2p intensity ratio with C 1s at
157	490 eV. Table S2 shows the average BE and FWHM of the features observed in the carbon core
158	level for the films across different methanol:oxygen gas ratios at different temperatures. Example
159	room temperature carbon core level spectra in Figure S2 depict the changes in feature BE and
160	intensity with film composition and gas ratio.
161	Metal core levels: For Al8Fe2, four distinct features at ~74 eV, ~62 eV, ~66 eV and ~56 eV
162	were observed as shown in Figure S4. The feature at ~74 eV is assigned to the Al 2p core level
163	and that at \sim 56 eV to the Fe 3p core level, whose BE is referred to here as that from a single
164	Gaussian-Lorentzian feature. The features at ~62 eV and ~66 eV are assigned to the Ir 4f doublet
165	from the conductive substrate coating. Comparing across IPEs with varied mean free paths, the Ir
166	layer remains buried under the $Al_{(1-x)}M_xO_y$ film (Figure S5). A similar spectrum was obtained for
167	the Al4Fe6 film as well. For the sample with Mn content, a feature at \sim 47 eV was observed
168	(Figure S4) instead of ~56 eV, which is assigned to the Mn 3p.
169	
170	6.2 Electronic structure of the amorphous oxide films

We first consider the electronic structure of the Al8Fe2, Al4Fe6, and Al6Mn4 films bycomparing their metal and oxygen core levels, as well as the valence band (VB). In all films,

173	fitting of the Fe 3p and Mn 3p (Figure S6-7) core levels gives a nominal oxidation state of $+3^{20}$.
174	The oxidation state of the Fe 3p can be assessed using its FWHM (Figure S7) and BE (discussed
175	in detail in section 6.3.4). While the oxidation state of Fe 3p is predominantly $+3$ for the different
176	gas compositions and temperatures, small changes in oxidation state with gas composition and in
177	some cases temperature (consistent with VB spectra as shown in Figure S8) for Fe-containing
178	films are discussed in more detail in section 6.3.4. The VB edge, fit with a step down function
179	and noted at half height, is highest in BE-furthest from the Fermi level-for Al8Fe2 (Table 1
180	and Figure S9), but shifts approximately $\sim 1 \text{ eV}$ lower with increasing Fe content in Al4Fe6, and
181	is similar for Al6Mn4. For other methanol:oxygen gas ratios, the VB edge is similar for Al8Fe2
182	and Al6Mn4, but decreases with increase in Fe content in Al4Fe6 (Figure S9). The use of a
183	conductive Ir underlayer beneath the 5 nm AMO film, grounding of the AMO film surface
184	through the thermocouple, and presence of gas phase photoelectrons mitigate potential charging
185	effects. For example, the as measured BE of the bulk O 1s (750 and 690 eV IPE) and Al 2p (690,
186	490, and 350 eV IPE) of Al8Fe2 in 10:100 mTorr methanol:oxygen decreased only \sim 0.2 eV
187	upon heating from room temperature to 275 °C, suggesting minimal potential charging effects.

Core level	BE for Al8Fe2 (eV)	BE for Al4Fe6 (eV)	BE for Al6Mn4 (eV)
O 1s (bulk)	531.4	530.9	531.2
Al 2p	74.2	74	74.3
M 3p	56.1	55.7	48.8
VB edge	3.7	2.7	2.5

188Table 1: BE of the bulk O 1s, Al 2p, M 3p and VB edge for Al8Fe2, Al4Fe6 and Al6Mn4 films

189 for 50 mTorr of CH₃OH and 100 mTorr of oxygen at 25 $^{\circ}$ C.

190	Similarly, both the bulk O 1s feature and the Fe 3p shift to \sim 0.5 eV and \sim 0.4 eV lower
191	BE with increasing Fe content (Figure S9). This could include effects from a shift in the rigid
192	electronic structure (lesser charging) with Fe substitution, given the shift of VB edge towards the
193	Fermi level, however we note that at the same IPE, the VB edge shifts by 1 eV while the Al 2p
194	shifts by only 0.2 eV. Thus, a lower bulk O 1s BE may also indicate a greater basicity (electron
195	density) on O, though surprising given the more covalent nature of Fe-O versus Al-O bonds
196	based on electronegativity differences. In addition, the bulk O 1s feature shifts to lower BE for
197	more reducing methanol:oxygen gas ratios with increasing temperature (Figure S10).

198

199 6.3 Adsorbate formation and mechanistic implications

200 We next consider the surface speciation and its relation to AMO composition and electronic structure. On oxides, CH₃OH dissociatively adsorbs to form CH₃O groups either by 201 202 deprotonation at a metal site or dehydroxylation at an oxygen site. The metal site (M) is 203 considered redox-active $(O + M + CH_3OH \rightarrow CH_3O-M + H-O)$, whereas a surface O-H group can give up a proton (acidic character) to dehydrate CH₃OH in this process (H-O + CH₃OH \rightarrow 204 $CH_3-O + H_2O)^4$. OCH₃ groups can subsequently deprotonate to form CH₂O, or C-O coupling can 205 206 occur between a CH₃ group and CH₃O-M to form $(CH_3)_2O$. Adsorbed CO₃ is expected to form at 207 basic sites as a precursor to CO₂ desorption (O₂C- $O \rightarrow O + CO_2$). We consider the relative abundance of OCH₃ and CO₃ surface species as obtained by the fitting of the C 1s spectra for 208 different methanol:oxygen gas ratios (noted in mTorr) and temperature to understand the nature 209 of AMO active sites for MOR. 210

212 6.3.1 Formation of adsorbates across compositions and conditions

Changes in film composition can affect the formation of OCH₃ groups. The intensity of 213 214 the OCH₃ (C 1s) normalized to that of the bulk oxide (O 1s) is compared across Fe-containing 215 samples (Figure 2). If the intensity of bulk O is not attenuated appreciably by other species, such as adventitious carbon, this ratio is proportional to elemental coverage²⁸. As expected with an 216 217 increase in thermal energy, the OCH₃/bulk ratio decreases with increase in temperature. We note, however that the steeper decrease for Al4Fe6 for temperatures > 150 °C is commensurate with 218 observed conversion to CO₂ and H₂O (Figure S11). The OCH₃ coverage is greater for Al4Fe6 219 compared to Al8Fe2 for all methanol:oxygen gas ratios, indicating that Fe is active for OCH₃ 220 formation. While the OCH₃/bulk ratio at room temperature increases with the partial pressure of 221 CH₃OH in the chamber, indicating sub-monolaver concentration on the surface, this increase is 222 smallest on Al8Fe2 (and negligible comparing 50:100 and 100:50 methanol:oxygen gas ratios), 223 further confirming the role of Fe in OCH₃ formation. The drop in OCH₃/bulk ratio with 224 225 increasing temperature is larger for Al4Fe6 (77% for 50:100 methanol:oxygen gas ratio) than Al8Fe2 (46%) which may indicate that while substitution of more acidic Fe for Al increases the 226 number of sites for OCH₃ formation, it also reduces the strength of their binding or facilitates 227 228 their oxidative removal.

229

Figure 2: Ratio of OCH₃ (C1s) to the bulk (O1s) with temperature for a) Al8Fe2 and Al4Fe6 for
50:100 and 100:50 methanol:oxygen gas ratios and b) Al4Fe6 for different gas ratios, where the
OCH₃ coverage increases with CH₃OH partial pressure in the reactant gas. In the above figure,
10:100, 50:100 and 100:50 denote the pressures of methanol:oxygen in mTorr.

To assess the coverage of CO_3 (expected at basic sites as a precursor to CO_2 desorption), its intensity is calculated relative to the bulk. The CO_3 /bulk ratio is comparable on both Fecontaining films (Figure 3 and Figure S12). The shift in bulk O 1s to lower BE from Al8Fe2 to Al4Fe6 is consistent with an increase in basicity of the O²⁻ sites upon incorporation of Fe³⁺ into the Al³⁺-oxide host (Table 1, Figure S9). The comparable CO_3 /bulk ratio for these two films may thus suggest basic sites are not the primary contributor to CH₃OH oxidation under these conditions, assessed more in the following section. The CO₃/bulk ratio decreases with

- temperature for all film compositions (Figure S12). Generally, the amount of CO₃ on the surface
- also decreases with decreasing partial pressure of oxygen as shown in Figure 3, as would be
- expected given its production from complete CH₃OH oxidation at a stoichiometric 3:2
- 245 methanol:oxygen ratio. A notable exception is Al4Fe6 in 100:50 mTorr methanol:oxygen, which

has greater CO_3 coverage compared to 50:100 mTorr methanol:oxygen.

247

Figure 3: Ratio of the CO₃ (C1s) to bulk (O1s) for a) Al8Fe2 and Al4Fe6 for 10 mTorr of
CH₃OH and 100 mTorr of oxygen with temperature and b) Al8Fe2 and Al4Fe6 at 175 °C for
noted methanol:oxygen gas pressures [mTorr].

252

6.3.2 Nature of active site

To better understand the nature of the active site and pathway for CH_3OH oxidation, we consider the relative coverage of CO_3 and OCH_3 species (Figure 4). The CO_3/OCH_3 ratio is similar (0.3-0.4) across films in 10:100 mTorr of methanol:oxygen. 257 The CO₃/OCH₃ ratio tells the ratio of the number of basic (CO₃ forming) to acidic and redox-active (OCH₃ forming) sites. For all films considered here, the number of basic sites is 258 more than two times lower than the total number of acidic and redox-active sites. The CO₃/OCH₃ 259 ratio decreases with increase in CH₃OH partial pressure indicating that the formation of CO₃ 260 (completely oxidized product) decreases as oxygen partial pressure is decreased, also evident 261 from considering the CO₃/bulk oxide ratio (Figure 3, S12). For amorphous Al4Fe6, we observe 262 complete oxidation products of CO₂ and H₂O with a mass spectrometer for both 10:100 and 263 50:100 methanol:oxygen ratios (Figure S10) starting at 150 °C, but not (CH₃)₂O at any 264 temperatures. For amorphous Al6Mn4 in 50:100 methanol:oxygen, CO₂ and H₂O are produced 265 starting at 200 °C, with small amounts of (CH₃)₂O at lower temperatures (Figure S11), although 266 267 we note that the quantification of evolved gases in the spectrometer is not calibrated. More notable complete oxidation products on Al4Fe6, compared to Al6Mn4, is consistent with both 268 269 the lower CO_3/OCH_3 ratio (Figure 4) and the concurrent greater reduction in adsorbed OCH₃ as 270 temperature is increased (Figure 2).

- 271
- 272

273

274

275

276

Page 15 of 22

279

Faraday Discussions

Figure 4: Average ratio of CO₃ (C 1s) to OCH₃ (C1s) species taken across temperatures for the

280	Al8Fe2, Al4Fe6 and Al6Mn4 films. The relative abundance of CO ₃ decreases with increasing the
281	CH ₃ OH partial pressure in the reactant gas. In the above figure, 10:100, 50:100 and 100:50
282	denote the pressure of methanol:oxygen in mTorr.
283	
284	6.3.3 Mode of methanol dissociation on the films
285	We next examine the intensity ratio of the OCH ₃ and OH features to ascertain the mode
286	of CH ₃ OH activation on the surface. In the O 1s, these features cannot be distinguished and are
287	fit as a single peak. In the C 1s, a distinct OCH ₃ feature is fit. As the experimentally measured
288	RSF of O:C is close to 1, taking the ratio of the OH+OCH ₃ feature in the O 1s (fit at a chemical
289	shift of 1.65 eV from the bulk) to the OCH ₃ feature in the C 1s (approximately 1.6 eV relative to
290	adventitious carbon), here referred to as the O:C ratio (Figure 5), readily approximates the
291	abundance ratio of these adsorbates, provided they are observable at the fit chemical shift. We
292	note that the lower abundance of CO ₃ on the surface, which is similar across samples and
293	conditions, is not fit in the O 1s and would result in a roughly consistent offset to this ratio.
294	CH ₃ OH has been previously proposed ⁵ to adsorb dissociatively by forming surface OCH ₃ groups
295	with the oxygen atom bonding to the metal site (CH_3O-M) and the proton from the alcoholic
296	group bonding to a nearby lattice oxygen site forming O-H on the surface. An O:C ratio greater
297	than 1 is consistent with both OCH ₃ and OH groups giving rise to distinct XPS chemical shifts in
298	the O 1s. The reduction in O:C ratio with increasing CH ₃ OH partial pressure for Al4Fe6 suggests

some O species may not give rise to distinct chemical shifts (or a smaller shift poorly fit in the

300 fixed binding energy offset employed here), or the removal of OH groups (probably as H_2O)

from the surface, with lattice oxygen replenished by O_2 gas. The value of the fit O:C ratio is

302 greater when the BE of the O 1s OH+OCH₃ feature floats freely, however the ratio for Al4Fe6 remains higher than that for Al8Fe2 at low CH₃OH partial pressure and comparable under 303 reducing conditions (Figure S13). Al8Fe2 maintains comparable O:C ratio with CH₃OH partial 304 pressure, however the Al6Mn4 O:C ratio decreases with increase in methanol partial pressure, 305 just as for Al4Fe6, with relaxed fit. 306 307 OH+OCH₃ (O 1s)/OCH₃ (C 1s) 308 2 309

310

311

312

Figure 5: Average across temperatures for the ratio of OH+OCH₃ feature (O 1s) to OCH₃ feature 313 (C 1s) for different methanol:oxygen gas pressures for the Al8Fe2, Al4Fe6 and Al6Mn4 films. 314 In the above figure, 10:100, 50:100 and 100:50 denote the pressure of methanol:oxygen in 315 mTorr. 316

Al4Fe6

Al6Mn4

Al8Fe2

317 The higher O:C ratio for Al4Fe6 at low CH₃OH pressures may indicate that the increased basicity of O sites upon Fe incorporation result in robust O 1s XPS chemical shifts at low OCH₃ 318 319 coverage but less so as Fe sites become saturated. This is consistent with Al8Fe2, with constant 320 OCH₃ coverage indicating site saturation, having a low O:C ratio regardless of CH₃OH partial 321 pressure.

323 **6.3.4 Changes in Fe electronic structure**

To further assess the role of transition metal in activating CH₃OH, we consider potential 324 325 changes in Fe valence. The BE of Fe 3p remains similar with temperature but decreases with 326 increase in CH₃OH partial pressure in the reactant gas (Figure 6 and Figure S9). Considering the negligible change in OCH₃ coverage with increase in partial pressure of CH₃OH for Al8Fe2, 327 328 suggesting saturation of active sites, this decrease may result from the formation of oxygen vacancies under more reducing conditions. Oxygen vacancies may similarly contribute to the 329 observed Fe 3p shift to lower BE in Al4Fe6, however the increase in OCH₃ coverage on Al4Fe6 330 331 with CH₃OH pressure might also result in Fe reduction. In contrast to other conditions, the Fe 3p BE of Al8Fe2 in a 100:50 methanol:oxygen gas ratio decreases with increasing temperature, 332 commensurate with a new feature below the VB edge consistent with the presence of Fe²⁺ 333 (Figure S8). Observable reduction of Fe in Al8Fe2, but not Al4Fe6, might arise from a larger 334 proportion of the Fe sites (presumed saturated with OCH₃ species on Al8Fe2) driving CH₃OH 335 (partial) oxidation with increasing temperature. 336

methanol:oxygen gas ratios. In the above figure, 10:100, 50:100 and 100:50 denote the pressureof methanol:oxygen in mTorr.

337

338

342 7. Discussion

In this study, we have incorporated transition metals (Fe, Mn) into an amorphous Al oxide host as a model of highly dispersed catalyst/support for the MOR. Cations with d^5 (Fe³⁺) and d^4 (Mn³⁺) electronic configuration add new electronic states at top of the VB edge and within the bandgap of alumina^{17, 20}. Further, the average coordination number of the Fe³⁺ and Mn³⁺ in the films considered is similar to that of alumina, ~4.5, indicating dispersed substitution for Al within the amorphous host without phase segregation. In these films, the interaction between "catalyst" (Fe, Mn ions) and "support" (Al oxide) is extended uniformly across the surface, as

350	evidenced by the shift in VB maximum and bulk oxygen BE towards the Fermi level with Fe
351	content (Figure S7). However, this increase in oxygen basicity did not translate to increased
352	coverage of CO ₃ on the surface under MOR conditions, suggesting that oxygen sites do not
353	dominate CH ₃ OH activation. With low metal content, the coverage of OCH ₃ was independent of
354	CH ₃ OH partial pressure, suggesting saturation of active sites. In contrast, OCH ₃ coverage
355	increased with CH ₃ OH partial pressure at higher metal content, consistent with CH ₃ OH
356	activation primarily occurring at these redox-active sites whose oxidation state lowered with
357	OCH ₃ adsorption.
358	Previous reports have incorporated manganese and iron oxide catalysts onto γ -alumina
359	supports, which lowered the temperature of MOR compared to the support alone in an
360	approximately 10:100 methanol:oxygen ratio ¹⁴ . At low temperatures, (CH ₃) ₂ O was the primary
361	oxidation product, while complete oxidation to CO ₂ dominated above 200 °C. For AMO films,
362	despite the greater coverage of OCH ₃ compared to CO ₃ species, little to no (CH ₃) ₂ O is observed
363	on Al4Fe6, with small amounts forming at temperatures as low as ~50 °C on Al6Mn4.
364	Formation of (CH ₃) ₂ O requires C-O coupling between two adjacent (O)CH ₃ groups, which may
365	be limited by the dispersion of active transition metal sites in the solid-substitution amorphous
366	films considered here. In contrast, complete oxidation to CO_2 and H_2O is observed at 150 °C—
367	lower in AMOs than discrete supported catalysts by 50 °Cindicating that dispersing metal sites
368	in amorphous oxide hosts is a promising route to maximize support effects in MOR.
369	

370 8. Conclusions

We have employed AP-XPS to study the role of transition metal and its concentration on 371 the dissociative adsorption and oxidation of methanol on amorphous $Al_x M_{(1-x)}O_y$ films, where 372 M=Fe or Mn. Alumina's acid/base characteristics, which maximize dispersion of transition metal 373 (oxides) on supports, facilitate their incorporation at high concentrations in AMOs. We here find 374 that this dispersion in an amorphous framework reduces the temperature of complete methanol 375 oxidation compared to supported MO_x/Al_2O_3 systems in literature and promotes complete 376 oxidation over C-O coupling. The transition metal site (Fe, Mn) was redox-active, leading to the 377 formation of OCH₃ groups whose coverage increases with transition metal content, indicating 378 that the transition metal sites are active for the MOR. By comparison, the basic O²⁻ sites formed 379 adsorbed CO_3 species with roughly comparable coverages across samples and conditions, present 380 at roughly half the concentration of OCH₃ groups. Oxygen vacancy formation is supported by 381 slight reductions in Fe valence (though remaining primarily +3) with increase in methanol partial 382 pressure for the AMO films. These findings illustrate the nature of active sites for the MOR on 383 AMO films and suggest dispersion of transition metals within an amorphous matrix offers new 384 handles to tailor activity and selectivity in oxidation reactions. 385

386

387 Acknowledgements:

388 Acknowledgment is made to the donors of The American Chemical Society Petroleum Research

389 Fund for partial support of this work. K.A.S. acknowledges support from Oregon State

390 University as a Callahan Faculty Scholar. Film deposition was supported by the NSF CCI, The

391 Center for Sustainable Materials Chemistry (CHE-1606982). This research used resources of the

392 Advanced Light Source, which is a DOE Office of Science User Facility under contract no. DE-

393 AC02-05CH11231.

394		
395	Refer	ences
396	1.	G. laquaniello, G. Centi, A. Salladini and E. Palo, in <i>Methanol</i> , eds. A. Basile and F. Dalena,
397		Elsevier, 2018, DOI: <u>https://doi.org/10.1016/B978-0-444-63903-5.00022-4</u> , pp. 595-612.
398	2.	WC. Liu, J. Baek and G. A. Somorjai, Topics in Catalysis, 2018, 61, 530-541.
399	3.	J. M. Tatibouët, Applied Catalysis A: General, 1997, 148 , 213-252.
400	4.	M. Badlani and I. E. Wachs, Catalysis Letters, 2001, 75, 137-149.
401	5.	L. J. Burcham, L. E. Briand and I. E. Wachs, <i>Langmuir</i> , 2001, 17 , 6164-6174.
402	6.	H. Bluhm, M. Hävecker, A. Knop-Gericke, E. Kleimenov, R. Schlögl, D. Teschner, V. I. Bukhtiyarov,
403		D. F. Ogletree and M. Salmeron, The Journal of Physical Chemistry B, 2004, 108, 14340-14347.
404	7.	M. Bowker, E. K. Gibson, I. P. Silverwood and C. Brookes, Faraday Discussions, 2016, 188, 387-
405		398.
406	8.	J. Döbler, M. Pritzsche and J. Sauer, Journal of the American Chemical Society, 2005, 127, 10861-
407		10868.
408	9.	H. Hu and I. E. Wachs, The Journal of Physical Chemistry, 1995, 99 , 10911-10922.
409	10.	K. Kähler, M. C. Holz, M. Rohe, A. C. van Veen and M. Muhler, <i>Journal of Catalysis</i> , 2013, 299 ,
410		
411	11.	I. Kropp, J. Paier and J. Sauer, <i>Journal of the American Chemical Society</i> , 2014, 136 , 14616-
412	10	14625.
413	12.	S. ON, Y. K. KIM, C. H. Jung, W. H. Don and J. Y. Park, <i>Chemical Communications</i> , 2018, 54 , 8174-
414 115	12	01/7. x Zhang X Chan X Liu and M Gua Water Air & Sail Pollution 2020 221 277
415	15. 17	X. Zhang, X. Chen, T. Liu and M. Guo, Water, An, & Son Ponation, 2020, 251, 277.
410	14.	29 1136-1142
418	15.	HJ. Freund and G. Pacchioni. <i>Chemical Society Reviews</i> . 2008. 37 . 2224-2242.
419	16.	B. R. Goldsmith, B. Peters, J. K. Johnson, B. C. Gates and S. L. Scott, ACS Catalysis, 2017, 7, 7543-
420		7557.
421	17.	M. G. Kast, E. A. Cochran, L. J. Enman, G. Mitchson, J. Ditto, C. Siefe, P. N. Plassmeyer, A. L.
422		Greenaway, D. C. Johnson, C. J. Page and S. W. Boettcher, Journal of the American Chemical
423		Society, 2016, 138 , 16800-16808.
424	18.	M. Aykol and K. A. Persson, ACS Applied Materials & Interfaces, 2018, 10, 3039-3045.
425	19.	C. Zhang, R. D. Fagan, R. D. L. Smith, S. A. Moore, C. P. Berlinguette and S. Trudel, Journal of
426		Materials Chemistry A, 2015, 3 , 756-761.
427	20.	L. J. Enman, M. G. Kast, E. A. Cochran, E. Pledger, M. B. Stevens and S. W. Boettcher, The Journal
428		of Physical Chemistry C, 2018, 122 , 13691-13704.
429	21.	K. A. Stoerzinger, L. J. Enman, E. A. Cochran, J. T. Diulus, R. T. Frederick, K. Artyushkova, E. J.
430		Crumlin, G. S. Herman and S. W. Boettcher, The Journal of Physical Chemistry C, 2019, 123,
431		27048-27054.
432	22.	M. E. Grass, P. G. Karlsson, F. Aksoy, M. Lundqvist, B. Wannberg, B. S. Mun, Z. Hussain and Z. Liu,
433	• -	Review of Scientific Instruments, 2010, 81 , 053106.
434	23.	A. Akkerman, T. Boutboul, A. Breskin, R. Chechik, A. Gibrekhterman and Y. Lifshitz, <i>physica</i>
435		status solidi (b), 1996, 198 , 769-784.
436	24.	E. R. Mysak, J. D. Smith, P. D. Ashby, J. T. Newberg, K. R. Wilson and H. Bluhm, <i>Physical</i>
437	25	Cnemistry Cnemical Physics, 2011, 13 , 7554-7564.
438	25.	A. S. DUKE, K. P. Gainenage, S. A. Tenney, S. C. Ammal, A. Heyden, P. Sutter and D. A. Chen, <i>The</i>
439		Journal of Physical Chemistry C, 2015, 119 , 23082-23093.

- 440 26. C. Cao and K. L. Hohn, *Applied Catalysis A: General*, 2009, **354**, 26-32.
- 441 27. D. J. Miller, M. C. Biesinger and N. S. McIntyre, *Surface and Interface Analysis*, 2002, **33**, 299442 305.
- 443 28. E. McCafferty and J. P. Wightman, *Surface and Interface Analysis*, 1998, **26**, 549-564.