Dalton Transactions

Gd³⁺-activated narrowband ultraviolet-B persistent luminescence through persistent energy transfer

Journal:	Dalton Transactions
Manuscript ID	DT-ART-01-2021-000120.R1
Article Type:	Paper
Date Submitted by the Author:	15-Feb-2021
Complete List of Authors:	Wang, Xianli; University of Georgia, College of Engineering Chen, Yafei; King Fahd University of Petroleum & Minerals Kner, Peter ; University of Georgia , College of Engineering Pan, Zhengwei; King Fahd University of Petroleum & Minerals, Center for Integrative Petroleum Research

SCHOLARONE[™] Manuscripts

ARTICLE

Received 00th January 2021, Accepted 00th January 2021

DOI: 10.1039/x0xx00000x

Gd³⁺-activated narrowband ultraviolet-B persistent luminescence through persistent energy transfer[†]

Xianli Wang,^{a‡} Yafei Chen,^{b‡} Peter A. Kner^a and Zhengwei Pan^{*b}

This work reports the realization of Gd³⁺ persistent luminescence in the narrowband ultraviolet-B (NB-UVB; 310–313 nm) through persistent energy transfer from a sensitizer of Pr³⁺, Pb²⁺ or Bi³⁺. We propose a general design concept to develop Gd³⁺-activated NB-UVB persistent phosphors from Pr³⁺, Pb²⁺ or Bi³⁺-activated ultraviolet-C (200–280 nm) or ultraviolet-B (280–315 nm) persistent phosphors, leading to the discovery of ten Gd³⁺ NB-UVB persistent phosphors such as Sr₃Gd₂Si₆O₁₈:Pr³⁺, Sr₃Gd₂Si₆O₁₈:Pb²⁺ and Y₂GdAl₂Ga₃O₁₂:Bi³⁺ as well as five ultraviolet-B persistent phosphors such as Y₃Al₂Ga₃O₁₂:Pr³⁺, Sr₃Y₂Si₆O₁₈:Pb²⁺ and Y₃Al₂Ga₃O₁₂:Bi³⁺. The persistent energy transfer from the sensitizers to Gd³⁺ is very efficient and the Gd³⁺ NB-UVB afterglow can last for more than 10 hours. This study expands the persistent phosphors may act as self-sustained glowing NB-UVB radiation sources for dermatological therapy.

Introduction

Ultraviolet-B (UVB) spectral band refers to the spectrum of light in the range of 280–315 nm. UVB light in the natural solar spectrum has been used for centuries in the treatment of various skin disorders such as psoriasis and vitiligo.^{1,2} Action spectrum studies of UVB wavelengths for psoriasis carried out in the late 1970s revealed that it is the narrowband UVB (NB-UVB; 310–313 nm) emission that is most effective for phototherapy.^{3–5} These findings quickly led to the development and use of artificial NB-UVB light sources for dermatological therapy.^{6–10} Currently, phototherapy based on Philips TL-01 NB-UVB fluorescent tubes is the treatment of choice for various skin disorders which affect millions of people around the world.^{11,12}

In developing phosphors for NB-UVB fluorescent tubes, Gd^{3+} is consistently used as the emitter,^{13–17} because the Gd^{3+} $^{6}P_{7/2} \rightarrow ^{8}S_{7/2}$ emission transition gives efficient line emission at 311 nm, which is within the action spectrum of phototherapy. However, due to the forbidden nature of the transitions within the Gd^{3+} $4f^{7}$ configuration, Gd^{3+} has very poor optical absorption of 200–300 nm excitation light. To make the Gd^{3+} -activated phosphors "excitable" by the shortwavelength UV light, a sensitizer is needed. The role of the sensitizer is to absorb the excitation energy and to transfer it to Gd^{3+} .

Accordingly, the emitting levels of the sensitizer should be resonant with the excited states (*i.e.*, ${}^{6}I_{J}$ or ${}^{6}P_{J}$ states) of Gd³⁺. The available sensitizers for Gd³⁺ photoluminescence include Pr³⁺ (*e.g.*, Y₂GdAl₅O₁₂:Pr³⁺, GdBO₃:Pr³⁺, LaPO₄:Pr³⁺,Gd³⁺),¹³⁻¹⁶ Pb²⁺ (*e.g.*, GdBO₃:Pb²⁺),¹⁷ Bi³⁺ (*e.g.*, LaB₃O₆:Bi³⁺,Gd³⁺; the phosphor used in the Philips TL-01 fluorescent tubes),⁶ and Ce³⁺ (*e.g.*, GdMgB₅O₁₀:Ce³⁺).¹⁸ Among these sensitizers, the ${}^{6}I_{J}$ or ${}^{6}P_{J}$ excited states of Gd³⁺ overlap with the 4f5d emitting level of Pr³⁺, the ³P₁ emitting level of Pb²⁺, the ³P₁ emitting level of Ce³⁺.

The Gd³⁺-activated NB-UVB phosphors developed by far are photoluminescent, where continuous external excitation is needed. Here, we report the design and fabrication of a new type of Gd³⁺activated NB-UVB phosphors, *i.e.*, Gd³⁺-activated NB-UVB persistent phosphors, which can emit Gd³⁺ 311 nm persistent luminescence (also called afterglow) without the need of constant external excitation. For a persistent phosphor to work, the host should contain appropriate energy traps that can capture and store the excitation energy (in the form of electrons through the excitation of the activator) during the excitation and, after the excitation is ceased, gradually release the trapped electrons to the activator to produce persistent luminescence.^{19,20} For Gd³⁺, however, since it has a stabilized 4f7 configuration, it has no tendency to be oxidized or reduced in a phosphor. Consequently, there is no electron transfer between Gd³⁺ and the trapping states, and therefore Gd³⁺ cannot directly play the role of persistent luminescence emitting center in a persistent phosphor.²¹ Since Pr³⁺, Pb²⁺, Bi³⁺ and Ce³⁺ are efficient steady-state sensitizers for Gd3+ photoluminescence in some hosts,^{6,13–18} we propose to expand their use as persistent sensitizers to persistently transfer energy to Gd³⁺ to produce Gd³⁺ NB-UVB persistent luminescence (note that persistent energy transfer strategy was previously used to design and fabricate visible- and infrared-emitting persistent phosphors).²²⁻²⁴ Taking Pr³⁺ as the persistent sensitizer, this persistent energy transfer process can be illustrated by the schematic Pr³⁺–Gd³⁺ energy transfer diagram in Fig.

^{a.} College of Engineering, University of Georgia, Athens, GA 30602, USA.

 ^{b.} Centre for Integrative Petroleum Research, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, KSA.
 [‡] These authors contributed equally to this work.

^{*} E-mail: zhengwei.pan@gmail.com

 $^{^{\}dagger}$ Electronic Supplementary Information (ESI) available: XRD patterns of NB-UVB persistent phosphors $Sr_3Gd_2Si_6O_{18}:Pr^{3\ast}$, $Sr_3Gd_2Si_6O_{18}:Pb^{2\ast}$, $Y_2GdAl_2Ga_3O_{12}:Pr^{3\ast}$ and $Y_2GdAl_2Ga_3O_{12}:Bi^{3\ast}$, persistent luminescence properties of NB-UVB persistent phosphors $Ca_{1.8}Gd_{0.2}Al_2Si_0O_{12}:Pr^{3\ast}$, $Lu_{1.8}Gd_{0.2}SiO_{5}:Pr^{3\ast}$, $Ca_{2.8}Gd_{0.2}Al_2Si_3O_{12}:Pr^{3\ast}$, $LiY_{0.8}Gd_{0.2}SiO_{4}:Pr^{3\ast}$, $Sr_3Y_{2-x}Gd_xSi_6O_{18}:Pb^{2\ast}$, $Lu_2GdAl_2Ga_3O_{12}:Pr^{3\ast}$ and $Lu_2GdAl_2Ga_3O_{12}:Bi^{3\ast}$, persistent luminescence properties of UVB persistent phosphors Lu_3Al_2Ga_3O_{12}:Pr^{3\ast} and $Lu_3Al_2Ga_3O_{12}:Pr^{3\ast}$ and $Lu_3Al_3O_{2}Ga_3O_{12}:Pr^{3\ast}$ and $Lu_3Al_3O_{2}SiO_{3}:Pr^{3\ast}$ and $Lu_3Al_3O_{3}:Pr^{3\ast}$ and Lu_3Al_3O

Fig. 1 Schematic representation of persistent energy transfer from Pr^{3+} to Gd^{3+} in a NB-UVB persistent phosphor. Under high-energy UV light (*e.g.*, 254 nm light) excitation, Pr^{3+} ions absorb the excitation energy which is then stored (in the form of electrons) in the energy traps in the material. After the excitation is ceased, the captured energy is thermally released to the Pr^{3+} 4f5d emitting level, which is then persistently transferred to the Gd^{3+} 6l, levels or $^{6}P_{1}$ levels, subsequently producing persistent emission at 311 nm via the Gd^{3+} $^{6}P_{7/2} \rightarrow ^{8}S_{7/2}$ emission transition. Straight-line arrows and curved-line arrows represent optical transitions and electron transfer processes, respectively.

1. Besides the sensitizer function, Pr^{3+} should also function as a persistent luminescence activator. However, instead of giving out its own persistent emission in the ultraviolet-C (UVC; 200–280 nm) or the UVB via the Pr^{3+} 4f5d \rightarrow ${}^{3}H_{4,5}$ emission transitions, the energy released to the Pr^{3+} 4f5d emitting state from the trapping states is continuously and efficiently transferred to the Gd^{3+} ${}^{6}I_{J}$ levels (~35,700–37,000 cm⁻¹, corresponding to ~280–270 nm) or the lower-energy ${}^{6}P_{J}$ levels (~31,700–33,200 cm⁻¹, corresponding to ~315–301 nm), subsequently producing Gd^{3+} persistent luminescence at 311 nm via the Gd^{3+} ${}^{6}P_{7/2} \rightarrow {}^{8}S_{7/2}$ emission transition. Therefore, we propose that a Gd^{3+} -activated, Pr^{3+} -sensitized NB-UVB persistent phosphor can be designed upon a Pr^{3+} -activated UVC persistent phosphor. This design principle is also valid for other sensitizers of Gd^{3+} .

Recently, we developed five types of Pr³⁺-activated, silicatebased UVC persistent phosphors that emit long-time persistent luminescence peaking at 265–270 nm.²⁵ These Pr³⁺-activated UVC persistent phosphors provide us an ideal platform to test the Pr³⁺ to Gd³⁺ persistent energy transfer and our concept of designing Gd³⁺activated NB-UVB persistent phosphors. Here we use one type of UVC persistent phosphor, the cyclosilicate structured Sr₃Y₂Si₆O₁₈:Pr³⁺, as the benchmark material to demonstrate the design of a Gd³⁺activated, Pr³⁺-sensitized NB-UVB persistent phosphor, *i.e.*, Sr₃Gd₂Si₆O₁₈:Pr³⁺. To further demonstrate the universality of the design concept, we also specially developed five first-ever Pr³⁺-, Pb²⁺and Bi³⁺-activated UVB persistent phosphors, represented by $\begin{array}{l} Y_{3}Al_{2}Ga_{3}O_{12}{:}Pr^{3+},\ Sr_{3}Y_{2}Si_{6}O_{18}{:}Pb^{2+}\ and\ Y_{3}Al_{2}Ga_{3}O_{12}{:}Bi^{3+},\ respectively,\\ and used them to fabricate Gd^{3+}\ NB-UVB persistent phosphors\\ Y_{2}GdAl_{2}Ga_{3}O_{12}{:}Pr^{3+},\ Sr_{3}Gd_{2}Si_{6}O_{18}{:}Pb^{2+}\ and\ Y_{2}GdAl_{2}Ga_{3}O_{12}{:}Bi^{3+}. \ In\\ these\ NB-UVB\ persistent\ phosphors,\ the\ persistent\ energy\ transfer\\ from\ the\ sensitizers\ to\ Gd^{3+}\ is\ very\ efficient\ and\ the\ Gd^{3+}\ NB-UVB\\ afterglow\ can\ last\ for\ more\ than\ 10\ h. \end{array}$

Experimental

Materials synthesis

All the phosphors discussed in this work were fabricated using a solid-state reaction method. Taking the synthesis of Sr₃Gd₂Sl₆O₁₈:Pr³⁺ phosphor as an example, stoichiometric amounts of SrCO₃, Gd₂O₃, SiO₂ and Pr₆O₁₁ powders (Pr³⁺ content, 1 atom%) were ground to form a homogeneous fine powder. The mixed powder was prefired at 900 °C in air for 2 h. The prefired powder was ground again and was then pressed into 15-mm-diameter discs using a hydraulic press. The disc samples were then sintered at 1250 °C in air for 2 h to form solid ceramic discs.

Characterization of crystal structures

The X-ray diffraction patterns (XRD) of some phosphors were recorded using a PANalytical X'Pert PRO powder X-ray diffractometer with Cu K α 1 radiation (λ = 1.5406 Å).

Spectroscopic measurements

The steady-state photoluminescence properties of the phosphors were recorded using a McPherson spectrometer, which comprises of a McPherson Model 234/302 excitation monochromator and a McPherson Model 2035 emission monochromator. The persistent luminescence properties were measured using a Horiba FluoroLog-3 spectrofluorometer equipped with a R928P photomultiplier tube. An Ocean Optics QEPRO spectrometer was also used to record the persistent luminescence emission spectra. In decay-related measurements, a 254 nm mercury lamp was used to charge the samples.

Results and discussion

We firstly discuss the Sr₃Gd₂Si₆O₁₈:Pr³⁺ NB-UVB persistent phosphor developed from the Sr₃Y₂Si₆O₁₈:Pr³⁺ UVC persistent phosphor. The as-synthesized Sr₃Gd₂Si₆O₁₈:Pr³⁺ compound has the cyclosilicate structure, which shares the same structure as the benchmark compound Sr₃Y₂Si₆O₁₈ (ICDD 00-065-0204)²⁶ (Fig. S1a, ESI⁺). In the Sr₃Gd₂Si₆O₁₈:Pr³⁺ phosphor, Pr³⁺ ions occupy the Sr/Gd sites with eightfold coordination.²⁵ Figure 2a shows the normalized photoluminescence excitation and emission spectra of Sr₃Gd₂Si₆O₁₈:Pr³⁺, Sr₃Y₂Si₆O₁₈:Pr³⁺ and Sr₃Gd₂Si₆O₁₈ phosphors. The spectra of the Gd³⁺-free Sr₃Y₂Si₆O₁₈:Pr³⁺ phosphor and the Pr³⁺-free Sr₃Gd₂Si₆O₁₈ phosphor are presented to emphasize the sensitizer role of Pr³⁺ in the Sr₃Gd₂Si₆O₁₈:Pr³⁺ phosphor. Under excitation at 249 nm, the Sr₃Y₂Si₆O₁₈:Pr³⁺ phosphor exhibits a strong emission band peaking at ~266 nm and a weak shoulder band peaking at ~308 nm (the blue dash line curve), which can be attributed to the Pr³⁺ 4f5d Journal Name

Fig. 2 $Sr_3Gd_2Si_6O_{18}$: Pr^{3+} NB-UVB persistent phosphor developed from $Sr_3Y_2Si_6O_{18}$: Pr^{3+} UVC persistent phosphor. (a) Normalized photoluminescence excitation and emission spectra of $Sr_3Gd_2Si_6O_{18}$: Pr^{3+} NB-UVB persistent phosphor, $Sr_3Y_2Si_6O_{18}$: Pr^{3+} UVC persistent phosphor and Pr^{3+} -free $Sr_3Gd_2Si_6O_{18}$: Pr^{3+} NB-UVB persistent phosphor, $Sr_3Y_2Si_6O_{18}$: Pr^{3+} UVC persistent phosphor and Pr^{3+} -free $Sr_3Gd_2Si_6O_{18}$: Pr^{3+} bosphor. The emission spectra are acquired under 249 nm light excitation and the excitation spectra are obtained by monitoring the 266 nm emission for the $Sr_3Y_2Si_6O_{18}$: Pr^{3+} phosphor. The inset is the enlargement of the Gd^{3+} photoluminescence in $Sr_3Gd_2Si_6O_{18}$: Pr^{3+} phosphor and $Sr_3Gd_2Si_6O_{18}$: Pr^{3+} phosphor and $Sr_3Gd_2Si_6O_{18}$ host monitored at 311 nm after irradiation by a 254 nm lamp for 5 min. The inset shows the persistent luminescence emission spectrum of $Sr_3Gd_2Si_6O_{18}$: Pr^{3+} phosphor recorded at 10 min decay.

→ ³H_{4,5} and 4f5d → ⁴H₆,³F₂ emission transitions, respectively. No apparent Pr³⁺ 4f² → 4f² intraconfigurational emission transitions in the visible region are observed. The excitation spectrum monitored at 266 nm emission has a strong broad band peaking at ~249 nm (the magenta dot-dash line curve), which is originated from the Pr³⁺ ³H₄ → 4f5d excitation transition. The spectral results show that the Sr₃Y₂Si₆O₁₈:Pr³⁺ phosphor is a good UVC photoluminescent material.

When the Y^{3+} ions in the $Sr_3Y_2Si_6O_{18}$: Pr^{3+} phosphor are substituted by Gd³⁺ ions, the resulting Sr₃Gd₂Si₆O₁₈:Pr³⁺ material becomes a pure NB-UVB phosphor. Under excitation at 249 nm, the material exhibits a strong, narrow emission band at 311 nm originating from the $Gd^{3+} {}^6P_{7/2} \rightarrow {}^8S_{7/2}$ emission transition (the red solid line curve). No Pr^{3+} 4f5d \rightarrow $^{3}H_{4,5}$ and 4f5d \rightarrow $^{4}H_{6},{}^{3}F_{2}$ emission transitions appear in the emission spectrum. The excitation spectrum monitored at the Gd³⁺ 311 nm emission consists of two excitation bands: one strong broad band peaking at 247 nm and one small narrow band peaking at 275 nm (the black solid line curve), which can be, respectively, attributed to the $Pr^{3+3}H_4 \rightarrow 4f5d$ and $Gd^{3+8}S_{7/2}$ \rightarrow ⁶I₁ excitation transitions. The photoluminescence results clearly show the occurrence of highly efficient energy transfer from Pr³⁺ to Gd³⁺ in the Sr₃Gd₂Si₆O₁₈:Pr³⁺ phosphor. This efficient energy transfer is well reflected in the photoluminescence excitation and emission spectra of the two phosphors. For instance, the complete spectral overlap of the Gd $^{3+}$ $^8S_{7/2}$ \rightarrow 6I_J excitation band of Sr_3Gd_2Si_6O_{18}:Pr ^{3+} and the Pr^{3+} 4f5d \rightarrow $^{3}H_{4,5}$ emission band of $Sr_{3}Y_{2}Si_{6}O_{18}$: Pr^{3+} , the appearance of the $Pr^{3+3}H_4 \rightarrow 4f5d$ excitation band in the excitation spectrum of Sr₃Gd₂Si₆O₁₈:Pr³⁺ by monitoring the Gd³⁺ emission, the

appearance of the Gd³⁺ $^{6}P_{7/2} \rightarrow ^{8}S_{7/2}$ emission transition in the emission spectrum of $Sr_{3}Gd_{2}Si_{6}O_{18}$:Pr³⁺ by exciting the Pr³⁺ excitation band, as well as the absence of the Pr³⁺ 4f5d $\rightarrow ^{3}H_{4,5}$ UVC emission transitions when exciting the Pr³⁺ excitation band in Sr_{3}Gd_{2}Si_{6}O_{18}:Pr³⁺, all suggest the occurrence of efficient energy transfer from the Pr³⁺ 4f5d emitting state to the Gd³⁺ ⁶I_J levels in the Sr_{3}Gd_{2}Si_{6}O_{18}:Pr³⁺ phosphor. Moreover, the sensitizer role of Pr³⁺ in the Sr_{3}Gd_{2}Si_{6}O_{18}:Pr³⁺ phosphor is further underlined by the very weak Gd³⁺ photoluminescence in the Pr³⁺-free Sr_{3}Gd_{2}Si_{6}O_{18} phosphor (inset of Fig. 2a), where the Gd³⁺ photoluminescence emission intensity is about three orders of magnitude lower than that of Sr₃Gd_{2}Si_{6}O_{18}:Pr³⁺ phosphor.

In addition to the steady-state Pr^{3+} to Gd^{3+} energy transfer in photoluminescence, efficient persistent energy transfer from Pr^{3+} to Gd^{3+} also occurs after the excitation is ceased, demonstrating that the $Sr_3Gd_2Si_6O_{18}$: Pr^{3+} phosphor has the NB-UVB persistent luminescence capability. Figure 2b shows the persistent luminescence decay curve of $Sr_3Gd_2Si_6O_{18}$: Pr^{3+} phosphor monitored at 311 nm after charged by a 254 nm lamp. The data were recorded as a function of the persistent luminescence intensity versus time and the recording lasted for 12 h. The persistent luminescence intensity decreases quickly in the first one hour and slowly afterward. After 12 h decay, the intensity is still over one order of magnitude higher than the background signal. The inset in Fig. 2b shows the persistent luminescence emission spectrum in Fig. 2a, only the characteristic Gd^{3+} line emission appears in the persistent

Dalton Transactions

Fig. 3 Y_2 GdAl₂Ga₃O₁₂:Pr³⁺ NB-UVB persistent phosphor developed from Y_3 Al₂Ga₃O₁₂:Pr³⁺ UVB persistent phosphor. (a) Normalized photoluminescence excitation and emission spectra of Y_2 GdAl₂Ga₃O₁₂:Pr³⁺ and Y_3 Al₂Ga₃O₁₂:Pr³⁺ phosphors at room temperature. The emission spectra are acquired under 283 nm light excitation and the excitation spectra are obtained by monitoring the 307 nm emission for the Y_3 Al₂Ga₃O₁₂:Pr³⁺ phosphor and the 311 nm emission for the Y_2 GdAl₂Ga₃O₁₂:Pr³⁺ phosphor. (b) Persistent luminescence decay curves of Y_3 Al₂Ga₃O₁₂:Pr³⁺ phosphor monitored at 307 nm and Y_2 GdAl₂Ga₃O₁₂:Pr³⁺ phosphor monitored at 311 nm after irradiation by a 254 nm lamp for 5 min. The inset shows the persistent luminescence emission spectrum of Y_2 GdAl₂Ga₃O₁₂:Pr³⁺ phosphor recorded at 10 min decay.

luminescence emission spectrum. In stark contrast, no Gd^{3+} persistent luminescence signal is detected in the Pr^{3+} -free $Sr_3Gd_2Si_6O_{18}$ phosphor (Fig. 2b), which strongly reflects the indispensable role of sensitizer Pr^{3+} in producing the Gd^{3+} persistent luminescence in the $Sr_3Gd_2Si_6O_{18}$: Pr^{3+} phosphor.

The above design method is general and can be used to fabricate more other Gd³⁺-activated, Pr³⁺-sensitized NB-UVB persistent phosphors based on existing Pr³⁺-activated UVC persistent phosphors. By incorporating certain amount of Gd³⁺ ions into four other types of Pr³⁺-activated, silicate-based UVC persistent phosphors in ref. 25, represented by the melilite structured Ca₂Al₂SiO₇:Pr³⁺, oxyorthosilicate structured Lu₂SiO₅:Pr³⁺, garnet structured Ca₃Al₂Si₃O₁₂:Pr³⁺ and orthosilicate structured LiYSiO₄:Pr³⁺, we, respectively, obtained NB-UVB persistent phosphors of Ca_{1.8}Gd_{0.2}Al₂SiO₇:Pr³⁺, Lu_{1.8}Gd_{0.2}SiO₅:Pr³⁺, Ca_{2.8}Gd_{0.2}Al₂Si₃O₁₂:Pr³⁺ and LiY_{0.8}Gd_{0.2}SiO₄:Pr³⁺ (Fig. S2, ESI⁺).

For the Gd³⁺ NB-UVB persistent phosphors developed from Pr³⁺activated UVC persistent phosphors, the persistent energy transfer is from the Pr³⁺ 4f5d emitting state to the Gd³⁺ ⁶I₃ energy levels. Equally important as this energy transfer route, according to Fig. 1, is persistent energy transfer from the Pr³⁺ 4f5d emitting state to the lower energy ⁶P_J levels of Gd³⁺. This, however, requires the Pr³⁺activated benchmark phosphor to emit in the UVB region with the Pr³⁺ 4f5d emitting state overlapping with the Gd³⁺ ⁶P_J levels. To test this idea, we first developed a Pr³⁺-activated UVB persistent phosphor Y₃Al₂Ga₃O₁₂:Pr³⁺, and then substituted one-third of its Y³⁺ ions with Gd³⁺ ions, forming a garnet-structured Y₂GdAl₂Ga₃O₁₂:Pr³⁺ phosphor, which has the same structure as the benchmark compound Y₃Al₂Ga₃O₁₂ (ICDD 04-007-4274)²⁷ (Fig. S1b, ESI⁺). Figure 3a shows the normalized photoluminescence excitation and emission spectra of Y₃Al₂Ga₃O₁₂:Pr³⁺ and Y₂GdAl₂Ga₃O₁₂:Pr³⁺ phosphors. Under excitation at 283 nm, the Y₃Al₂Ga₃O₁₂:Pr³⁺ phosphor exhibits a broadband emission from Pr³⁺ peaking at ~307 nm originating from the $Pr^{3\star}\,4f5d\rightarrow{}^{3}H_{4,5}$ emission transitions (the blue dash line curve). This UVB emission band indicates that the energy of the Pr³⁺ 4f5d emitting state in the Y₃Al₂Ga₃O₁₂:Pr³⁺ phosphor matches that of the Gd³⁺ ⁶P₁ levels; therefore, energy transfer from the Pr^{3+} 4f5d emitting state to the Gd^{3+} 6P_J levels is likely to occur in the Y2GdAl2Ga3O12:Pr3+ phosphor. Indeed, under excitation at 283 nm, the Pr^{3+} 4f5d \rightarrow $^{3}H_{4,5}$ emission transition in the $Y_2GdAl_2Ga_3O_{12}$: Pr³⁺ phosphor gives way to the Gd³⁺ $^6P_{7/2} \rightarrow {}^8S_{7/2}$ emission transition, resulting in strong Gd³⁺ emission at 311 nm (the red solid line curve). The energy transfer from the Pr³⁺ 4f5d emitting state to the Gd^{3+ 6}P₁ levels is further verified by the excitation spectra. The excitation spectrum of the Y₂GdAl₂Ga₃O₁₂:Pr³⁺ phosphor monitored at the Gd³⁺ 311 nm emission (the black solid line curve) is identical to that of Y₃Al₂Ga₃O₁₂:Pr³⁺ phosphor monitored at the Pr³⁺ 307 nm emission (the magenta dot-dash line curve); both consist of one strong broad band peaking at 283 nm and one small band peaking at ~244 nm, which correspond to a transition from the ³H₄ ground state to the lowest 4f5d state of Pr³⁺ (labeled as 4f5d₁) and a transition from the ³H₄ state to a higher 4f5d state of Pr³⁺ (labeled as Journal Name

Fig. 4 Persistent luminescence decay curves of Gd^{3+} NB-UVB persistent phosphors developed from Pb^{2+} - and Bi^{3+} -activated UVB persistent phosphors. (a) $Sr_3Y_2Si_6O_{18}:Pb^{2+}$ UVB persistent phosphor. (b) $Sr_3Gd_2Si_6O_{18}:Pb^{2+}$ NB-UVB persistent phosphor. (c) $Y_3Al_2Ga_3O_{12}:Bi^{3+}$ UVB persistent phosphor. (d) $Y_2GdAl_2Ga_3O_{12}:Bi^{3+}$ NB-UVB persistent phosphors were pre-irradiated by a 254 nm lamp for 5 min. The inset in each figure shows the persistent luminescence emission spectrum recorded at 10 min decay.

4f5d₂), respectively.²⁸ After the excitation is ceased, the $Y_3Al_2Ga_3O_{12}$:Pr³⁺ phosphor exhibits long-lasting Pr³⁺ persistent luminescence in the UVB (at ~307 nm), while for the $Y_2GdAl_2Ga_3O_{12}$:Pr³⁺ phosphor, as expected, the energy released to the Pr³⁺ 4f5d emitting state from the trapping states is continuously and efficiently transferred to the Gd³⁺ ⁶P_J levels, producing Gd³⁺ persistent luminescence in the NB-UVB (Fig. 3b).

In above discussion, we used Pr³⁺/Gd³⁺ energy transfer ion pair to demonstrate the design of Gd³⁺-activated, Pr³⁺-sensitized NB-UVB persistent phosphors. In addition to Pr³⁺, our design principle is also valid for other sensitizers of Gd³⁺, provided that these sensitizers activated UVC or UVB persistent phosphors are available. As a test, we developed a Pb²⁺-activated UVB persistent phosphor Sr₃Y₂Si₆O₁₈:Pb²⁺, which exhibits a broadband persistent luminescence peaking at 299 nm (attributed to the Pb²⁺ ³P₁ \rightarrow ¹S₀ emission transition) for longer than 12 h (Fig. 4a). The ³P₁ emitting level of Pb²⁺ in the Sr₃Y₂Si₆O₁₈:Pb²⁺ phosphor overlaps with the ⁶P_J levels of Gd³⁺; therefore, when the Y³⁺ ions in the Sr₃Y₂Si₆O₁₈:Pb²⁺ phosphor are substituted by Gd³⁺ ions, the resulting Sr₃Gd₂Si₆O₁₈:Pb²⁺ material (see crystal structure in Fig. S1a, ESI⁺) becomes an excellent Gd³⁺ NB-UVB persistent phosphor with an afterglow time of more than 12 h (Fig. 4b). Another material is the Bi³⁺-sensitized Y₂GdAl₂Ga₃O₁₂:Bi³⁺ NB-UVB persistent phosphor (see crystal structure in Fig. S1b, ESI⁺) developed from a Bi³⁺-activated UVB persistent phosphor Y₃Al₂Ga₃O₁₂:Bi³⁺. After charged by a 254 nm lamp, the Y₃Al₂Ga₃O₁₂:Bi³⁺ phosphor emits Bi³⁺ broadband persistent luminescence peaking at ~308 nm (attributed to the Bi³⁺ ³P₁ \rightarrow ¹S₀ emission transition) (Fig. 4c), while the Y₂GdAl₂Ga₃O₁₂:Bi³⁺ phosphor exhibits long-time Gd³⁺ 311 nm persistent luminescence due to the efficient persistent energy transfer from the ³P₁ emitting level of Bi³⁺ to the ⁶P_J levels of Gd³⁺ (Fig. 4d).

ARTICLE

Above we have demonstrated the design and fabrication of eight Gd³⁺ NB-UVB persistent phosphors. It is worth noting that our extensive synthesis work reveals that the Gd³⁺ content in the abovementioned NB-UVB persistent phosphors can be tuned over a great range. For instance, the general chemical formula of the Gd3+containing NB-UVB persistent phosphors developed from the Sr₃Y₂Si₆O₁₈:Pb²⁺ UVB persistent phosphor can be written as Sr₃Y₂₋ $_x$ Gd $_x$ Si₆O₁₈:Pb²⁺, where x can vary from 0.1 to 2.0 (when x = 2.0, the resulting material is the $Sr_3Gd_2Si_6O_{18}$:Pb²⁺ phosphor in Fig. 4b), and these Gd³⁺ persistent phosphors exhibit comparable persistent luminescence performance (Fig. S3, ESI⁺). Moreover, our synthesis work also showed that some ions in some hosts can be substituted by other ions of the same group. For instance, the Y³⁺ ions in the $Y_3Al_2Ga_3O_{12}$ host can be substituted by Lu^{3+} ions to form $Lu_3Al_2Ga_3O_{12}$ host; therefore, more UVB and NB-UVB persistent phosphors can be fabricated such as the UVB persistent phosphors Lu₃Al₂Ga₃O₁₂:Pr³⁺ (Fig. S4a, ESI⁺) and Lu₃Al₂Ga₃O₁₂:Bi³⁺ (Fig. S5a, ESI⁺) and the NB-UVB persistent phosphors Lu₂GdAl₂Ga₃O₁₂:Pr³⁺ (Fig. S4b, ESI⁺) and Lu₂GdAl₂Ga₃O₁₂:Bi³⁺ (Fig. S5b, ESI⁺). Finally, our design concept is expected to lead to the discovery of more Gd^{3+} NB-UVB persistent phosphors sensitized by not only $Pr^{3+},\,Pb^{2+}$ and $Bi^{3+},\,but$ also Ce^{3+} (note: we have not identified Ce³⁺-activated UVC or UVB persistent phosphors; moreover, we have not found the hosts for the Pb²⁺ and Bi³⁺ UVC persistent luminescence).

Conclusions

We have proposed and tested a design concept to develop Gd³⁺activated NB-UVB persistent phosphors from the Pr³⁺-, Pb²⁺- or Bi³⁺activated UVC or UVB persistent phosphors. Guided by this design concept, we have fabricated ten Gd³⁺ NB-UVB persistent phosphors including Pr³⁺-sensitized Sr₃Gd₂Si₆O₁₈:Pr³⁺, Ca_{1.8}Gd_{0.2}Al₂SiO₇:Pr³⁺, ${\sf Lu}_{1.8}{\sf Gd}_{0.2}{\sf SiO}_5:{\sf Pr}^{3+}, \qquad {\sf Ca}_{2.8}{\sf Gd}_{0.2}{\sf Al}_2{\sf Si}_3{\sf O}_{12}:{\sf Pr}^{3+}, \qquad {\sf LiY}_{0.8}{\sf Gd}_{0.2}{\sf SiO}_4:{\sf Pr}^{3+},$ $\label{eq:constraint} Y_2 GdAl_2 Ga_3 O_{12} : Pr^{3+} \quad \text{and} \quad Lu_2 GdAl_2 Ga_3 O_{12} : Pr^{3+}, \quad Pb^{2+} \text{-sensitized}$ $Sr_3Gd_2Si_6O_{18}$: Pb²⁺, and Bi³⁺-sensitized Y₂GdAl₂Ga₃O₁₂: Bi³⁺ and Lu₂GdAl₂Ga₃O₁₂:Bi³⁺. Moreover, we have also developed five firstever Pr³⁺-, Pb²⁺- and Bi³⁺-activated persistent phosphors emitting in the UVB region including $Y_3Al_2Ga_3O_{12}$: Pr^{3+} , $Lu_3Al_2Ga_3O_{12}$: Pr^{3+} , Sr₃Y₂Si₆O₁₈:Pb²⁺, Y₃Al₂Ga₃O₁₂:Bi³⁺ and Lu₃Al₂Ga₃O₁₂:Bi³⁺. Therefore, this study expands the persistent luminescence research to the NB-UVB as well as the broader UVB spectral regions. The realization of Gd³⁺ NB-UVB persistent luminescence can potentially revolutionize the way the NB-UVB light is used. For instance, the Gd³⁺ NB-UVB persistent phosphors may be used as self-sustained glowing NB-UVB radiation sources for phototherapy, as illustrated by the conceptual NB-UVB Band-Aid phototherapy in Fig. S6 (ESI⁺).

Author Contributions

Zhengwei Pan: Conceptualization, Methodology, Funding acquisition, Supervision, Writing-Reviewing and Editing. **Peter Kner:** Funding acquisition, Supervision, Writing-Reviewing and Editing. **Xianli Wang:** Investigation, Data Curation, Writing - Original Draft. **Yafei Chen:** Investigation, Data Curation, Writing-Reviewing and Editing.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work is supported by the US National Science Foundation (DMR-1705707) and the College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals. We thank McPherson, Inc. (Chelmsford, MA, USA) for helping measure the photoluminescence excitation and emission spectra.

Notes and references

- 1 H. E. Alderson, Arch. Dermatol. Syphilol., 1923, 8, 78.
- 2 J. A. Parrish, H. A. D. White, T. Kingsbury, M. Zahar and T. B. Fitzpatrick, *Arch. Dermatol.*, 1977, **113**, 1529.
- 3 T. Fischer, Acta Derm. Venereol., 1976, 56, 473.
- 4 T. Fischer, Acta Derm. Venereol., 1977, 57, 345.
- 5 J. A. Parrish and K. F. Jaenicke, *J. Invest. Dermatol.*, 1981, **76**, 359.
- 6 H. van Weelden, H. B. De la Faille, E. Young and J. C. van der Leun, *Br. J. Dermatol.*, 1988, **119**, 11.
- 7 C. Green, J. Ferguson, T. Lakshmipathi and B. E. Johnson, *Br. J. Dermatol.*, 1988, **119**, 691.
- 8 W. Westerhof and L. Nieuweboer-Krobotova, *Arch. Dermatol.*, 1997, **13**, 1525.
- 9 I. B. Walters, L. H. Burack, T. R. Coven, P. Gilleaudeau and J. G. Krueger, J. Am. Acad. Dermatol., 1999, **40**, 893.
- 10 J. M. Kist and A. S. van Voorhees, Adv. Dermatol., 2005, 21, 235.
- 11 M. D. Njoo, J. D. Bos and W. Westerhof, J. Am. Acad. Dermatol., 2000, **42**, 245.
- 12 K. A. Haykal, J. P. DesGroseilliers and J. Cutan. *Med. Surg.*, 2006, **10**, 234.
- 13 A. J. de Vries and G. Blasse, Mater. Res. Bull., 1986, 21, 683.
- 14 A. M. Srivastava, M. T. Sooieraj, S. K. Ruan and E. Banks, *Mater. Res. Bull.*, 1986, **21**, 1455.
- 15 A. J. de Vries and G. Blasse, Mater. Res. Bull., 1987, 22, 1141.
- 16 T. Jüstel, W. Mayr and P. J. Schmidt, U.S. Patent 8173230, 2012.
- 17 H. S. Kiliaan and G. Blasse, J. Electrochem. Soc., 1989, 136, 562.
- 18 M. Leskelä, M. Saakee and G. Blasse, *Mater. Res. Bull.*, 1984, 19, 151.
- 19 T. Matsuzawa, Y. Aoki, N. Takeuchi and Y. Murayama, J. Electrochem. Soc., 1996, **143**, 2670.
- 20 Z. W. Pan, Y. Y. Lu and F. Liu, Nat. Mater., 2012, 11, 58.
- 21 Y. Li, M. Gecevicius and J. R. Qiu, *Chem. Soc. Rev.*, 2016, **45**, 2090.
- 22 D. Jia, R. S. Meltzer and W. M. Yen, Appl. Phys. Lett., 2002, 80, 1535.
- 23 N. Y. Yu, F. Liu, X. F. Li and Z. W. Pan, Appl. Phys. Lett., 2009, 95, 231110.
- 24 J. Xu and S. Tanabe, J. Lumin., 2019, 205, 581.
- 25 X. L. Wang, Y. F. Chen, F. Liu and Z. W. Pan, *Nat. Commun.*, 2020, **11**, 2040.

Journal Name

- A. P. TyutyunnikIvan, I. Leonidov, L. L. SuratIvan, F. Berger and
 V. G. Zubkov, J. Solid State Chem., 2013, 197, 447.
- 27 C. B. Zheng, P. X. Xiong, M. Y. Peng and H. L. Liu, J. Mater. Chem. C, 2020, 8, 13668.
- 28 E. Mihóková, V. Babin, K. Bartosiewicz, L. S. Schulman, V. Čuba,
 M. Kučera and M. Nikl, *Opt. Mater.*, 2015, 40, 127.