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Abstract: Ab initio molecular dynamics simulations combined with enhanced sampling 

techniques are becoming widespread methods to investigate chemical phenomena in catalytic 

systems. These techniques automatically include finite temperature effects, anharmonicity, and 

collective dynamics in their robust description of enthalpic and entropic contributions, which can 

have significant impact on reaction free energy landscapes. This contrasts with standard ab initio 

static approaches that are based on assessing reaction free energies from various coarse-grained 

descriptions of the reaction potential energy surface. Enhanced sampling ab initio molecular 

dynamics opens the way to first principles simulations of systems of increasing complexity like 

solid/liquid catalytic interfaces. In this work, we aim at guiding the reader through the basis of 

these techniques, summarizing their fundamental theoretical and practical aspects, and reviewing 

the relevant literature in the field. After a brief introduction to the problem, we will illustrate the 
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advantage of using molecular simulations to include finite temperature effects, examine the most 

common ab initio techniques currently in use, describe their application to solid state 

heterogeneous catalysts, and finally critically review the most popular enhanced sampling 

techniques used in computational catalysis.
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Introduction
Modeling the reactivity of heterogeneous catalytic systems is nontrivial and poses significant 

challenges1-7. At low temperature and coverage and for systems with well-defined catalytic sites 

ab initio static calculations deliver many important results allowing interpretation of experimental 

evidence8-19. However, such conditions are often largely ideal, as catalytic processes at realistic 

experimental conditions imply dealing with a much higher levels of complexity. Common catalytic 

production processes work at high temperatures and pressures where conditions are far from ideal. 

Moreover, modern heterogeneous catalytic systems are often characterized by complex interfaces 

between the solid catalyst and a substrate from the liquid phase (pure or in solution) at room 

temperature, confined environments, and soft mater scaffolds such as enzymes or liquid catalysts 

at elevated temperatures. In these scenarios, dynamic and entropic effects play a fundamental role 

in determining the reactivity of the systems and static ab initio methods face severe limitations in 

describing their activity.2 In this context, molecular dynamics (MD) simulations become a 

fundamental tool for modelling and describing catalytic chemical reactions at realistic 

experimental conditions.2, 20-30 

By integrating the classical equations of motions of the nuclei, MD simulations provide one 

the most accurate approaches to account for finite temperature effects, i.e., entropy. In MD 

simulations, the time evolution of a chemical system is propagated by integrating numerically 

Newton’s second principle of dynamics , where  is the potential energy function. For F = ―∇V V

sufficiently long MD trajectories one can estimate the Boltzmann distribution of a system at a 

given temperature and thus its free energy. In most of its successful applications, MD simulations 

rely on the definition of empirical classic potentials that parametrize forces arising from bond 

stretching, angles bends, torsions, electrostatic, and van der Waals interactions. For a broad variety 
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of systems ranging from biological molecules31 to materials32, these potentials have shown great 

capabilities and allow the exploration of the dynamics of systems exhibiting incredible complexity 

with unprecedented atomistic detail. However, by construction, these potentials do not allow bond 

breaking or formation, a feature that lies at the core of chemical reactivity, arising from the 

quantum mechanical electronic properties of the molecular system. 

In order to model the type of problems that deal with the electronic properties of molecular 

systems, one must solve the electronic Schrödinger equation. This produces energy and forces 

(potential) that allow one to describe the dynamics of a reaction according to its explicit electronic 

structure. This approach is termed ab initio molecular dynamics (AIMD).33-36 Unfortunately, this 

comes at a great expense in terms of computational cost, as the solution of the Schrödinger 

equation is usually performed iteratively and scales exponentially with the total number of 

electrons in the system. Density functional theory (DFT) has provided the computational chemistry 

community with an immensely versatile and efficient tool to reduce the computational cost of 

electronic structure calculations since its computational cost scales cubically with the total number 

of electrons in the systems (N3). This allows calculating up to several hundreds of atoms in the 

simulation unit cell with reasonable accuracy. Despite its lower computational cost compared to 

other more accurate quantum chemical methods, DFT still requires much more computational 

power than classical potentials, hindering significantly its use in MD simulations. The first 

example of a combination of DFT and MD simulations has been provided by the Car-Parrinello 

method35, where the solution of the electronic problem is handled by integrating the nuclei and 

electronic orbitals coupled equations of motions simultaneously, thus avoiding expensive iterative 

matrix diagonalizations. Subsequently, the increase of computational power and the enhanced 

performances of ab initio algorithms allowed the direct use of Born-Oppenheimer potentials to 
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propagate the dynamics (BOMD)36, 37. If the system's size is overwhelmingly large, one can use 

hybrid methods to calculate, under specific conditions, the total energy and potential of a system. 

In such cases, the reactive region is treated at the quantum mechanical level (QM) and the 

remainder is described by a classical molecular mechanics potential (MM). These approaches are 

commonly referred to as QM/MM methods38-40. These last two methods have become nowadays 

the most used approaches to ab initio molecular dynamics and are playing an increasingly 

significant role in computational catalysis. More recently, it has been shown how reactive force 

fields can be obtained ad hoc for specific systems by training deep neural networks or other 

machine learning schemes on ab initio data. Given the availability of efficient GPU41, 42 based 

architectures and algorithms, the applications of these methods are increasing in the simulation 

community, providing energy and gradients with ab initio accuracy at a cost comparable to 

classical force fields. 

Ab initio methods alone, however, are not sufficient to simulate reactive events in catalysis, 

particularly those with high free energy barriers⏤i.e., those that are rate limiting or rate controlling. 

It is well known that chemical reactions are activated processes. This means that relevant 

metastable states of a reaction (reactants, products, and intermediates) are separated by high free 

energy barriers. For this reason, the probability of transition between states is very low and these 

events are rare compared to low-energy or unactivated events. In the field of molecular simulations 

this is a well-known issue, commonly referred to as the “time-scale problem”.43-45 Typically, to 

ensure energy conservation in a MD simulation one needs to integrate the equations of motion 

with a time step on the order of fractions of femtoseconds. A chemical reaction usually takes place 

in a time scale that is orders of magnitude larger than 10-15 s. For example, for a reaction at 300 K 

with a free energy barrier of 75 kJ mol-1 the average escape time to reach the products state is 2 
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seconds. Covering this time span with a femtosecond time step several times to collect sufficient 

statistics on the event is simply intractable. 

To mitigate or circumvent this problem, several methods have been proposed to accelerate 

sampling of rare events. These are denoted enhanced sampling methods. Starting from the seminal 

work of Torrie and Valleau on non-Boltzmann sampling known as Umbrella sampling46, a plethora 

of methods appeared in the literature like parallel tempering,47, 48 hyperdynamics,49 transition path 

sampling,50 metadynamics,51 and many others52. These methods allow sampling of rare events, 

enabling control and investigation of reaction mechanisms and estimates of the free energy profiles 

of the reaction. What differentiates these approaches from more standard methods in quantum 

chemistry, e.g., the nudged elastic band (NEB) method53, is that they automatically include with 

great accuracy the entropic effects that are fundamental in processes like chemical catalysis. As 

such, there is no need to approximate the free energy of stationary and transition states using 

models like the rigid roto-translator/harmonic oscillator. In addition, the free energy, G (A can 

be decomposed into an enthalpic component, H= U + PV (energetic component, U), and an 

entropic component, S, thereby enabling one to understand temperature effects upon reaction 

barriers and rates.

Furthermore, as data science has evolved rapidly in recent years, data-driven methods such 

as machine learning (ML) and artificial neural networks (NN) have drawn more attention in a 

variety of fields such as materials science,54, 55 catalysis,56-58 and separations.59 Since conventional 

AIMD simulations have been challenged due to the multiscale complexity of catalytic reactions, 

their data-driven methods have helped scientists to improve computational modeling and better 

understanding fundamental insights of catalysis in AIMD simulations. Therefore, we also discuss 

the application of these methods in the aspects of improving AIMD for studying catalytic reactions. 
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Other applications of ML and NNs to static quantum calculations, computational screening, or 

pathway exploration in catalysis are beyond our scope and readers can refer to other resources.56, 

58, 60-64  

The overall purpose of this review is to discuss AIMD combined with enhanced sampling 

for the study of catalysis.  There is currently a rise in the number of studies in catalysis using these 

tools, and it is the feeling of the authors that it is highly appropriate to provide: (i) an overview of 

the most commonly encountered methods in the field, (ii) a discussion of the strengths, weaknesses 

and pitfalls of the various approaches, and (iii) a series of examples that demonstrate what one can 

learn from these types of studies. This article is a complement to the recent perspective article 

published by the authors in ACS Catalysis2 which emphasizes areas in catalysis where entropy and 

correlated dynamical motion necessitate a statical mechanics based approach which goes beyond 

the simulations based on static models (ex.  elevated temperatures, confined spaces and solid-

liquid interfaces).  In contrast, the current article focuses specifically on AIMD/enhanced sampling 

method and how they have been employed in catalysis. In this article we will review the 

fundamental theoretical and practical aspects of heterogeneous catalysis modeling using AIMD 

simulations for problems in catalysis as well as highlight some of the most recent developments 

and applications of enhanced sampling techniques to relevant problems in catalytic reactivity.

Entropy from unconstrained MD
Molecular dynamics offers the most accurate way to include finite temperature effects in modeling 

realistic systems at operando conditions. In recent years, ab initio molecular dynamics (AIMD) 

have also become one of commonly used tools to calculate free-energy changes and their 

deconvoluted enthalpic and entropic components in not only heterogeneously catalyzed systems,2, 

6, 26 but also in homogeneously catalyzed systems as well65-70. The changes in free energy can 
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quickly be estimated based on the distribution of states extracted from the AIMD trajectory 

through ΔG = −kBT ln(p/p0), where p and p0 represent the probabilities of being in the state of 

interest and the reference state, respectively. One of the more well-received approaches to 

accounting for anharmonicity is to employ the quasi-harmonic approximation (QHA) using AIMD 

data. Alternatively, enhanced sampling methodologies with constrained MD, such as 

metadynamics71-73 or the Blue-Moon approach,74-76 can be applied to calculate entropies with the 

relationships, ∆S = -d∆G/dT or ∆S = (∆U − ∆G)/T, using the free energy (∆G) and internal energy 

(∆U) obtained from the simulation as discussed in detail later. It is noteworthy that unconstrained 

AIMD only enables us to calculate ∆S of the end point states, i.e., initial and final states of 

elementary reactions, while the enhanced sampling methods furthermore allow us to determine ∆S 

of transition states. In the QHA approach,25, 26, 77 the vibrational density of states (VDOS) is 

obtained from the Fourier transform of the velocity autocorrelation function using extracted 

velocities from the equilibrated AIMD data, as follows:

𝐷(𝜔) = ∫
∞

―∞
𝑒 ―𝑖𝜔𝑡〈𝜐(t0) ∙ 𝜐(t0 + 𝑡)〉𝑑𝑡 (1)

where   represents the velocity and the angular brackets is defined as the statistical average over 𝜐

time. This equation allows us to properly describe the anharmonicity of systems at a given 

temperature.78, 79 The resulting VDOS, from eqn. (1), can further be employed to properly weight 

the harmonic partition function via:

𝑆𝑣𝑖𝑏 = 𝑘𝐵(3𝑁 ― 𝑛)
∞

∫
0

[ ℏ𝜔
2𝑘𝐵𝑇𝑐𝑜𝑡ℎ ( ℏ𝜔

2𝑘𝐵𝑇) ― 𝑙𝑛(2𝑠𝑖𝑛ℎ( ℏ𝜔
2𝑘𝐵𝑇))]𝐷(𝜔)𝑑𝜔 (2)

where N represents the number of atoms and (3N − n) is defined as the number of degrees of 

freedom in the system75. For gas-phase molecules, the translational and rotational modes are 
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projected out and are processed separately. Translational and rotational entropy from AIMD 

trajectories can then be calculated as follows:

𝑆𝑡𝑟𝑎𝑛𝑠 = 𝑘𝐵𝑙𝑛[(24𝜋𝑒𝑘𝐵𝑇

ℎ2 )3/2

𝜎𝑥𝜎𝑦𝜎𝑧] (3)

𝑆𝑟𝑜𝑡 = 𝑘𝐵𝑙𝑛(8𝜋2 𝐼𝐴𝐼𝐵𝐼𝐶

𝜎𝑠 [2𝜋𝑒𝑘𝐵𝑇

ℎ2 ]3/2) (4)

where e = exp(1) is the Euler number, kB is the Boltzmann constant, h represents the Planck 

constant, σx, σy, and σz are defined as the principal root-mean-square fluctuations of the center of 

molecular mass as obtained from an AIMD trajectory. IA, IB, and IC are defined as the average 

principal moments of inertia, and σs is the symmetry number. The overall scheme of QHA 

methodology is summarized in Figure 1. By employing QHA, we can not only define a separate 

enthalpy and entropy term (needed to extrapolate over a range of temperatures not just the one you 

computed at) but also decompose the entropy via projection methods to understand its origin. 

Figure 1. Overall scheme of adsorption free energies derivation based on the QHA. Reprinted with permission 
from Ref. [2]. Copyright 2020 American Chemical Society. 
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The computational determination of enthalpic and entropic contributions is a crucial step for 

understanding the detailed free energy landscape of complex catalyzed systems. Unlike enthalpic 

contributions to the free energy change which can be qualitatively predicted from the “0 K” DFT 

energy of a few well-defined minima on the potential energy surface, the entropic component 

cannot be directly deduced from static DFT calculations. Instead, the harmonic approximation (HA) 

is frequently applied for studying strongly bound adsorbates at low temperatures where the 

surface-adsorbate bonding are minimally perturbed. HA depends on the second-order derivative 

of the Born-Oppenheimer energy surface around the equilibrium. The resulting vibrational modes 

are associated with high vibrational frequencies, which are adequately described within the limits 

of HA. In contrast, the influence of anharmonicity as well as collective dynamics in catalytic 

systems leads to inaccuracy in calculating the entropic contribution using the standard HA 

approach alone.80 The atomic fluctuations, shifting away from equilibrated positions, induce atoms 

and molecules to access the anharmonic regions of the potential energy surface. Such effects 

become prominent for many adsorbates that are weakly bound, solvated, confined, or at high 

temperatures. Thus, the determination of entropy via anharmonic consideration is important to 

gain precise thermodynamic and kinetic perspectives of complex catalytic systems at finite 

temperatures.2  Table 1 and Figure 2 show calculated entropies of gas-phase ethanol at high 

temperatures using HA and QHA which are compared with absolute entropies obtained from 

NASA polynomials, evidencing the importance of anharmonic effect on entropy even for simple 

molecules25. Table 1 clearly shows strong overestimation of translational entropy but 

underestimation of vibrational entropy with HA leading to larger difference of entropy from NASA 

polynomials than QHA.  
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Table 1. Computed entropy terms (in J/mol/K) from standard approach and harmonic approximations to the vibrations 
(HA) and the quasi-harmonic approximation (QHA) compared with absolute entropies as obtained from NASA 
polynomials.25

QHA HA
T(K)

Strans Srot Svib Stot Strans Srot Svib Stot

NASA 
polynomials

% diff for
QHA(HA)

300 114 96 67 277 157 94 22 273 282 -1.8 (-3.2)

700 133 107 125 365 174 104 73 351 359 +1.6 (-2.2)

Figure 2. Computed entropies for gas-phase ethanol as a function of temperature using HA and QHA compared 
with those from NASA polynomials. Adapted with permission from Ref. [25]. Copyright 2016 American Chemical 
Society.

It is not surprising that multiple approaches have been developed to properly account for 

anharmonic effects and their influences on entropy.79, 81-83 For instance Campbell and Seller found 

an interesting relationship to derive the entropy of adsorbed molecules, including methanol and 

alkanes, based on their gas-phase entropy.84 The entropies of such molecules were calculated to 

be higher than those estimated by HA and can be better described by their gas-phase entropy, as 

shown below:

𝑆𝑜
𝑎𝑑𝑠(𝑇) = 0.70𝑆𝑜

𝑔𝑎𝑠(𝑇) ― 3.3𝑅 (5)
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where  represents the standard gas-phase entropy of the molecule,  is defined as 𝑆𝑜
𝑔𝑎𝑠(𝑇) 𝑆𝑜

𝑎𝑑𝑠(𝑇)

the standard entropy of adsorbates, and R is the molar gas constant. Campbell and Seller’s study 

indicates that even such relatively simple systems are affected by anharmonic motion that makes 

the standard HA approaches inadequate for estimating entropy and hence equilibrium constants 

and rate constants for reaction. These approaches are excellent but still rely on expansion about 

well-defined minmax on an energy surface and thus are appropriate for relatively simple systems 

(low coverage, anharmonic but no large deformations due to collective oscillations). It is 

fundamental at this stage of the discussion to point out that the ultimate goal of these calculations 

is to obtain free energy differences concerning adsorption and reactive activated process, whereas 

the absolute quantities can be used to merely observe the effect of different approximations on the 

estimation of such.

In our previous studies of 2D and 3D zeolitic systems, we were able to properly account for 

the anharmonic effect through the usage of QHA. Figure 3 shows a comparison of Gibbs free 

energies of adsorbed ethanol over 3D H-ZSM-5 computed with QHA and compared against HA 

and calorimetric measurements.25, 26 Here anharmonic effects are large and can lead to errors of 

several 10s of kJ/mol as compared with experiment as shown in Figure 3. The authors showed a 

good quantitative agreement between the experimental and theoretical adsorption energies of 

ethanol. We also showed that the change of entropy from first to second ethanol adsorption on H-

ZSM-5 cannot be reproduced with HA.25
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For low-coverage systems, QHA gives very compatible results with the more rigorous 

approach of Piccini and Sauer which more readily incorporates more accurate electronic structure 

calculations and explicitly accounts for quantum chemical anharmonicity and mode counting from 

Figure 3. Standard Gibbs free energy of ethanol adsorption obtained from HA and QHA compared with 
experiments and the most stable structures (at 0 K) of the adsorbed ethanol monomer and dimer on the Brønsted 
acid site of H-ZSM-5. Reprinted with permission from Ref. [25]. Copyright 2016 American Chemical Society.

Figure 4. Schematic comparison of the Piccini & Sauer method for thermal anharmonic correction85 and the QHA 
by Alexopoulos et al.25

Page 13 of 59 Catalysis Science & Technology



14

hybrid QM/QM methods.85 Compared to QHA, this approach accounts correctly for the unequal 

spacing of the vibrational quantum states. To be certain, QHA accurately estimates the anharmonic 

fundamental frequencies by integrating the velocity-velocity correlation functions in the time 

domain. However, when it comes to estimates of the thermodynamic functions from a statistical 

mechanics point of view, the thermal contribution of each normal mode is calculated using a 

harmonic model, where the spacing between vibrational states is equally spaced. Conversely, in 

terms of computing the thermodynamic functions, the approach proposed by Piccini and Sauer 

uses a numerical sum-over-the-states partition function for each anharmonic normal mode, which 

accounts for the uneven spacing (see Fig. 4 for this comparison). For each single normal mode, 

this represents a moderate contribution in terms of entropy, and for small systems, it is usually 

irrelevant. However, for condensed phase systems containing hundreds of atoms, each single 

anharmonic normal mode contribution can quickly sum up to a non-negligible quantity that may 

affect the estimation of the thermodynamic functions. Nonetheless, the method proposed by 

Piccini and Sauer relies on a static picture of the problem under study, where referenced molecular 

geometries (reactants, products, intermediates, and transition structures) represent well the 

fundamental thermodynamic states. For these reasons, such a method could be difficult to apply 

when collective molecular and thermal phenomena become relevant, like in the presence of a solid-

liquid interface or very high temperatures.

In extended or confined systems where adsorption phenomena are relevant, the effects of 

anharmonicity in the estimation of the entropic term are very large. QHA is able to capture these 

effects, especially in highly fluxional systems for which it is not possible to identify single 

reference structures. Such systems include those at high temperatures, solid-liquid interfaces, and 

porous materials such as zeolite or metal-organic framework (MOF). As previously mentioned, 
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the main limitations of the QHA method reside in the statistical mechanical treatment of the 

vibrations. Namely, these limitations are (i) all the modes are considered as harmonic fundamental 

frequencies and no corrections for overtones or combination bands are possible (in most cases, 

these contributions are often not very large when estimating entropy but may be more substantial 

for zero-point energies (ZPE), (ii) depending on the size of the system, rather long trajectories are 

needed to correctly extract the anharmonic contributions from the integration of the velocity-

velocity correlation function, (iii) nuclear quantum effects are accounted for at a semiclassical 

level and are included only in the ZPE, and (iv) QHA can only sample minima that are separated 

by small energy barriers.  

Dynamics on ab initio potentials
In catalytic processes where chemical bonds between atoms are broken or formed, we must 

account for explicit electronic contributions to the interaction between atoms to correctly predict 

their thermodynamics/kinetics. On this basis, methods based on electronic structure calculations 

are commonly used. Keep in mind that while reactive force fields (like ReaxFF86) have been used 

to simulate bond forming and bond breaking processes,87 they do have problems that can badly 

affect the accuracy of simulations such as their lack of transferability88, 89 and unreasonable charge 

distributions of structures that are far from equilibrium90. Semi-empirical methods like tight-

binding based approaches are also used by the catalysis community,91 but they also have significant 

limitations arising from the parametrization of their Hamiltonians92. First principles-based 

methods, largely based on gradient corrected DFT, are most widely used in computational catalysis. 

In this section, we will summarize in detail the two most common AIMD techniques for direct 

simulations of (classical) trajectories, namely, Born-Oppenheimer (BO) approximation36, 37 and 

(extended Lagrangian) Car-Parrinello (CP) molecular dynamics35. 
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BO molecular dynamics 
At the heart of electronic structure theory of a system consisting of N electrons and M nuclei is the 

Schrodinger equation

 (6)Hψtot(r,R;t) = iℏ
∂
∂tψtot(r,R;t)

where  is the reduced Planck constant, {r, R} are the electronic and nuclear coordinates ℏ

respectively, and H is the Hamiltonian operator given by

H

= ― ∑
i

ℏ2

2me
∇2

i ― ∑
I

ℏ2

2MI
∇2

I +  
1

4πε0(∑
i < j

e2

|ri ― rj|
― ∑

i,I

e2ZI

|ri ― RI|
+ ∑

I < J

e2ZIZJ

|RI ― RJ|) = ― ∑
I

ℏ2

2MI

∇2
I +

1
4πε0

∑
I < J

e2ZIZJ

|RI ― RJ|
+ Hel 

= ― ∑
I

ℏ2

2MI
∇2

I + VNN + Hel = TN + VNN + Hel

                                                                                                             (7)

where me is the electron mass;  is the vacuum permittivity; and MI and ZI are the mass and charge ε0

of nucleus I, respectively.  

Because of the significant mass difference between the electron and nuclei (the latter are 

almost 2000 times heavier than the former), we can assume that the electronic wavefunction 

responds instantaneously to the nuclear variation. The nuclei can be treated as “fixed” while the 

electrons move in their electrostatic field. The electronic wavefunction is then obtained by solving 

the following equation.  

 (8)Helψel(r,R) = Eel(R)ψel(r,R)

The time-independent electronic Schrodinger equation (8) is the major part of the BO 

approximation. It can be shown that by applying differentiation rules one can separate the 

dynamics of the nuclei and treat them at the classical level. In such a way, one obtains the classical 

equation of motion of nuclei:
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 (9)MIRI(t) = ― ∇I[VNN + Eel(R)]

Eqn (9) shows that nuclei move on an energy surface determined by the repulsion between nuclei 

and the BO potential energy surface determined by the quantum mechanical treatment of the 

electrons. In practice, different integration algorithms for the equations of motion, such as Verlet93 

or leapfrog94, are used to propagate the dynamics of the nuclei.  It is important to note, however, 

that the classical level treatment of nuclear motions fails to address the contribution of quantum 

effects in proton reactions as in some cases tunneling is significant.95-97  

To this end, we need to determine the BO potential energy surface. To do that, one can apply 

several electronic structure methods. BO AIMD, based on DFT, is probably the most widely used 

AIMD approach. The availability of DFT codes and the easy combination of a DFT code and a 

MD routine are amongst the reasons for this. Serval codes provide BOMD. The ONETEP98, FHI-

aims99, CP2K100, 101 CASTEP102 and VASP103 are amongst the most popular BOMD codes. 

CP molecular dynamics 
In BO MD, the electronic wavefunctions are obtained from the solution of the time-independent 

Schrodinger equation, the time evolution (dynamics) of the electrons is therefore not considered104. 

In CPMD, a “fictitious” dynamics for orbitals is introduced and incorporated in the form of the 

following extended Lagrangian:

(10)LCP = ∑
iμ〈ϕi|ϕi〉 + ∑I

R2
I

2MI
― [〈ψ|Hel|ψ〉 + VNN] + ∑

i,j ∧ ij(〈ψi|ψj〉 ― δij)

here  is the fictitious mass of the electrons, the notation  indicates the electronic wave function μ ψ

expanded in the { } orbital set. The orbitals are also subject to an orthogonality constraint, which ϕi

is ensured by a set of Lagrange multipliers . From the Euler-Lagrange equations, one can obtain ∧ ij

the equations of motion for the nuclei and orbitals 
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(11)MIRI = ―
∂

∂RI
(〈ψ|Hel|ψ〉 + VNN) + ∑i,j ∧ ij

∂
∂RI

〈ψi|ψj〉

(12)μϕi(t) = ―
δ

δϕ ∗
i

(〈ψ|Hel|ψ〉 + VNN) +  ∑j ∧ ijϕj

The last equation indicates that no explicit wavefunction optimization is required in CPMD. 

However, initial ground state wavefunctions are needed. This can be archived with DFT. As time 

elapses, the fictitious dynamics of electrons keeps the electron system close to its ground state.

As localized basis sets significantly add complexity to the implementation of the CP algorithm, 

plane-wave basis functions are usually used.105 CPMD106 and Quantum ESPRESSO107 are popular 

CPMD codes.

 Comparatively, the CPMD and BOMD approaches should give comparative results when 

both are conducted carefully. The relative choice between the two thus depends on the system 

under investigation. In general, the CPMD approach requires smaller time steps than BOMD but 

does not require any iterations of the SCF wavefunction and are fully time revisable unlike 

BOMD109. However, care must be chosen in determining the fictious electron mass as to not 

destroy the underlaying adiabatic decoupling of nucleic and fictious election degrees of freedom 

required for the CP approximation to work108, 110. Accounting for the errors in CPMD forces is not 

Figure 5. Samples of force components on D2O molecules based on a 21 fs segment of CPMD trajectory. The Car-
Parrinello force (green) and the Car-Parrinello force corrected with constant mass corrections at three points along 
the trajectory (blue) is compared against the ground-state force at the same ionic positions. Adapted from Ref. [108], 
with the permission of AIP Publishing
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a trivial task since they cannot be refined simply based on a constant correction to the masses of 

the ions, as shown in Figure 5.

Enhancing the sampling of catalytic reactions
As discussed above, MD is a very powerful tool for simulating several properties of many chemical 

systems. A catalytic reaction is activated processes that bring reactants to products (i.e., chemical 

reactions) that are of interest to chemistry—and heterogenous catalysis in particular. From a 

thermodynamic perspective, reactants, products, and intermediates of a reaction are local free 

energy minima separated by energy barriers. AIMD studies directly observe catalytic elementary 

steps occurred during simulation time when a study is not associated with a rate limiting step, or 

is not limited by surface kinetics, or strongly exothermic reactions with low energy barriers.  

However, energy barriers are high that are much larger than a Boltzmann factor, kBT. For this 

reason, the probability of observing a transition event is very low, and the process is associated 

with extremely long-time scales that are much larger than those reachable in MD. For a long time, 

this limitation has hindered the application of MD to problems of interest in chemistry and catalysis.

One strategy for circumventing this problem is the application of an external fictitious bias 

potential to the system in order to discourage the simulation from sampling already visited regions 

of phase space. The first example of this technique can be found in the landmark paper of Torrie 

and Valleau46 in which umbrella sampling (US) was introduced. There, the authors proposed to 

add an external bias along a designated collective variable (CV)—i.e., a function  of the s(R)

Cartesian atomic coordinates, , of the system—that describes the thermodynamic process of R

interest. A bond distance in a chemical bond breaking or a dihedral angle in a conformational 

isomerization are examples of CVs. In such a way, US achieves a non-Boltzmann sampling of the 

problem at a given temperature, as the bias potential that prevents the system from exploring 
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already visited regions of the free energy landscape modifies the probability distribution function, 

reducing the effective height of the barriers in the biased ensemble. 

Since the US method was introduced, a large variety of methods have been proposed to 

overcome limitations related to high free energy barriers in MD simulation and thereby permit the 

study of rare events (see, e.g., Ref. 52). Here, we will focus only on methods based on biasing 

along a CV to obtain a free energy profile since these methods are the most appropriate to high 

precision studies of specific chemical reactions. Namely, we will focus on two families of CV-

based methods: gradient-based ones, like the Blue-Moon ensemble method, and non-Boltzmann 

sampling, like US metadynamics (MetaD). The latter will be described in a bit more detail as it 

has become one of the most popular and widely applied methods in chemical simulations and also 

allows for the calculation of reaction rates. Other methods involving many replicas of the systems 

at different conditions like parallel tempering,47, 48 or free energy perturbation methods111, 112 are 

powerful tools as well but not the most commonly used in AIMD for studying chemical reactivity 

due to prohibitively large number of configurations required to converge the statistics.  

Collective variables for chemical reactions
Collective variables (CVs),  are functions of the atomic coordinates  and are meant to s = s(𝐑) 𝐑

describe the progress of a reaction from reactants to products. Ideally, the best collective variable 

is the reaction coordinate, i.e., the line that follows the minimum free energy path from reactants 

to products. In practice, this function is not known a priori, and its identification is completely 

non-trivial. Thus, approximations are made in terms of simpler chemical parameters such as bond 

lengths, angles, torsions, coordination numbers, taken alone or combined in lower dimensional 

forms, e.g., in linear or non-linear combinations. The fundamental requirement for a CV is to 

discriminate between the relevant states of a reaction and it must include all the slow degrees of 
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freedom that are relevant to the process. These are fundamental requirements to ensure proper 

sampling and, thus, convergence of the free energy estimation.

Typical examples can be found in organic SN2 reactions, where the distances between the 

central carbon atom and the leaving group, and the one between the carbon atom and the 

nucleophile discriminate well between reactants and products.113, 114 Often, complex chemical 

reactions involve several degrees of freedom and the use of these degrees of freedom as 

independent collective variables implies dealing with large multidimensional free energy surfaces. 

This comes with several disadvantages. First, the physical and chemical interpretation of the results 

is compromised since high dimensional surfaces are not easily readable and projection onto lower 

dimensions is needed. Second, from a technical point of view, the convergence rate and efficiency 

of most CV-based free energy methods drops dramatically when many degrees of freedom are 

treated independently (see, e.g., Ref. 71). A practical solution is to combine the most relevant CVs 

into low dimensional, possibly 1D, using, e.g., linear or non-linear combinations115. For simple 

reactions, chemical intuition can be used straightforwardly to determine the optimal coefficients 

of the combination. However, for systems of increasing complexity this may be a daunting task. 

Recently, it has been shown that low dimensional CVs in the form of simple linear combinations 

can be obtained through automating the concept of chemical intuition 116-118. Starting from the 

statistical information provided by the fluctuations of the system in the reference free energy basins, 

i.e., reactants and products, one can use simple classification rules and algorithms to obtain linear 

combinations of several chemical descriptors, like distances, angles, coordination numbers etc., to 

be used as optimal CVs. Later, this approach has been further developed beyond its linear 

formulation using neural networks to introduce non-linearity, providing an even more flexible tool 

to obtain low dimensional CVs.119  
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If one has access not only to the information provided by the local basins of attraction but 

also to the dynamics of the rare event it is possible, in principle, to obtain even more accurate CVs. 

If this information is available from unbiased simulations (usually only for conformational changes 

in biomolecular systems120 or from biased ones one can extract optimal collective variables from 

the transition dynamics. It is not our purpose to dig deep into the details of these specialized 

methods first developed by Noè and Pande and later applied to the enhanced sampling problems117, 

121, 122 but they represent a very promising and efficient solution to approximate the reaction 

coordinates. 

Alternatively, if one knows a priori the mechanism of a reaction, i.e. can approximate a reaction 

path through a series of plausible molecular structures, special CVs, commonly referred to as path 

collective variables (PathCVs) can be used to sample the chemical reaction.123 The development 

of these CVs does not differ substantially to the grounding ideas of the nudged elastic band (NEB) 

method 124 and PathCVs can be seen as the finite temperature version of it. In simple terms, having 

Figure 6. Top: Surface plot of variable  for sixty points in two dimensions (white dots). Note that isolines are 𝑠
perpendicular to the path in its neighborhood. Bottom: Contour plot of variable  in two-dimensional space shows 𝑧
that its definition can be approximately considered as a measure of the distance from the path itself. Reprinted from 
Ref. [123], with the permission of AIP Publishing. 
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a series of images (molecular structures) representing the change from reactants to products, one 

can build two PathCVs,  (Path Function Value) and  (Distance Function Value), that describe 𝑠 𝑧

the progress of a reaction and the distance from the minimum free energy path, respectively (see 

Figure 6). 

PathCVs are a very powerful method but require the knowledge of the reaction mechanism 

beforehand, which is often not available. A very promising variant of this method, based on 

coordination numbers metrics, is way more robust for sampling chemical reactions and does not 

require the knowledge of intermediate structures.125  Topology-based methods such as Social 

PeRmutation INvarianT (SPRINT) coordinates represent a third alternative to the problem and 

have been used for chemical reaction problems, as well.126 However, despite their great flexibility, 

SPRINT coordinates may suffer from a limited resolving power in the case of homogeneous bulk 

systems with uniform coordination patterns. In this context, Pietrucci et al. used these Path and 

SPRINT CVs to investigate the formation of fullerene from graphene flakes using biased AIMD 

simulations (see Figure 7).
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Figure 7. Graphene nanoflake: zipping into a nanocone and free-energy landscape as a function of the path 
collective variables. Reprinted with permission from Ref. [127]. Copyright 2014 American Chemical Society.

Methods to enhance sampling along collective variables
As previously mentioned, enhanced sampling techniques can be divided into two major families, 

one based on sampling along collective variables and one based on tempering techniques. Here, 

we focus only on CV-based methods as they are the most commonly used in chemical reaction 

sampling and have led to major results in computational catalysis. The reason is that catalysis is 

often associated with large changes in the entropy of the system and CV-based methods increase 

the probability of crossing entropic barriers in CV space; hence exploring configurations of largely 

different entropy. Such a family can be further subdivided into two complementary approaches: 

gradient methods like thermodynamic integration (TI),128, 129  Blue-Moon ensemble,74 or adaptive 

biasing force algorithm,130 and non-Boltzmann sampling like umbrella sampling46 or 

metadynamics51. Figure 8 summarizes the main features of the two method families. 
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Figure 8. Schematic representation of gradient and non-Boltzmann sampling methods. The upper panel reports the 
potential (blue) that is sampled during the simulation and the integration points or applied bias (red). The lower 
panel is related to the top one by the method used for reconstructing the free energy profile (orange) that 
approximates the real unknown free energy (green).

Gradient methods
These methods aim at reconstructing the free energy along a designated CV by integrating its 

gradient ( ). The first example of this technique is represented by thermodynamic integration, ∂F/∂𝐬 

where one calculates the mean force (average gradient) of the free energy at specific points of the 

CVs and subsequently reconstruct the free energy by numerical integration as F(𝐬) ―  F(𝐬𝟎) =

. Often, in order to estimate the mean force at a point, , of the CV space, one needs ∫s
s0

(∂F/∂𝐬) d𝐬 si

to constrain the value of the CV to sample a proper ensemble of configurations of the system. This 

is usually done by using holonomic constraints but introduces fictitious forces that must be 

“weighed out” to reconstruct the equilibrium free energy. This method, proposed originally by 

Ciccotti et al.,74 is referred to as the Blue-Moon ensemble, as it aims at observing events so rare 

they occur “once every blue moon”. Choosing ahead of time the quadrature points, , for {si}

integrating the free energy may be rather cumbersome for complex systems and more practical 

solutions that do not depend dramatically on this choice are desirable. This is the essence of 
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adaptive methods like the adaptive-biasing force74, 131 which allow for a more flexible choice of 

the initial configurations and, thus, make life easier when it comes to converging the free energy 

estimate along the CV.

Non-Boltzmann sampling
These methods aim at reconstructing the equilibrium free energy profile of a specific activated 

process from a non-Boltzmann probability distribution. To achieve this goal, sampling is 

performed adding a bias potential to the underlying potential energy surface along a designated 

CV. By doing so, one prevents the system from sampling already visited regions of the 

configurational space, thus, eventually favoring transition between metastable states, i.e., the local 

minima of the free energy along the CV. By changing the potential energy landscape along a CV, 

, one modifies the ensemble in which the sampling occurs, and Vb (𝐬) =  V(𝐬) + ΔV(𝐬)

equilibrium properties can be reconstructed by statistical reweighting procedures. In the seminal 

work introducing US, Torrie and Valleau proposed that non-Boltzmann sampling can be achieved 

by adding a static bias potential in the form where  is a trial function that ΔV(𝐬) =  ― kBT log𝑤 w

aims at flattening the probability distribution over the CV space, thus removing high free energy 

barriers separating metastable states. The function  is thought of as an “umbrella” covering both 𝑤

easy and hard to sample regions of the configurational space and must be found by trial-and-error 

procedures.52 This technique represents a big step forward in terms of free energy sampling. 

However, its application to complex systems is largely hindered by the trial-and-error procedure 

to determine the bias potential. To overcome these technical limitations, a more practical solution 

has been proposed, where a series of local restrain potentials (windows) are placed along fixed 

points over the CV space, similarly to TI methods, and different replicas of the simulations are 

performed for each window. The final Boltzmann equilibrium distribution is then reconstructed 
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by the weighted histogram analysis method (WHAM)132 that combines properly all the information 

collected from the replicas in one single statistical ensemble.

As mentioned, the main difficulty of US lies in the choice and design of a proper bias potential or, 

in the case of multi-replica simulations, in the large number of calculations required to ensure 

convergence. A great alternative to this approach is represented by metadynamics.51, 133 The 

fundamental idea behind MetaD can be found in previous formulations like “local elevation”,134 

where an on-the-fly and time-dependent bias in the form of sum of Gaussian functions is deposited 

along some order parameters, e.g. dihedral angles of a protein, to push the system away from its 

free energy basins of attraction. The great advancement of MetaD is the possibility of 

reconstructing the unbiased free energy landscape of the process under study, and thus allowing 

for quantitative measurement of thermodynamic and kinetic properties. Given its popularity and 

wide application range in the field of computational catalysis, here will follow a more detailed 

section on this method in its well-tempered variant (WT-MetaD)133, clarifying the fundamental 

theoretical and practical aspects.

Well-tempered Metadynamics in a nutshell

In WT-MetaD, a history dependent biased potential is deposited along one or more CVs  at {𝐬}

fixed time intervals. Such a bias takes the form of a sum of Gaussian kernels whose height 

decreases as long as the simulation proceeds

(13)ΔVn(𝐬,t) =  ∑n
t′ =  τG, 2τG,...w(t) exp( ―

|𝐬(t) ― 𝐬(t′)|
2δ𝐬 )

where is the Gaussian height at time ,  is the time interval at which Gaussians are deposited, w(t) t τG

and is the width of the Gaussian kernel. In standard MetaD remains constants throughout 2δs w(t) 

the whole simulations, whereas in WT-MetaD its value is set according to w(t) = ω0τGexp
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, where  is the initial “deposition rate”, with units in Gaussian height per ( ― ∆V(𝐬,t)/kB∆T) ω0

time, and ∆T is a parameter controlling the excursion velocity of the system from free energy 

minima. It can be demonstrated133 that WT-MetaD converges smoothly to the true free energy 

times a multiplicative constant and has the advantage that only specific barriers are crossed by 

tuning the ∆T parameter.

During a MetaD simulation the system is stochastically pushed away from already visited 

regions of the CV space. In this way, the fluctuations within the basin of attraction are enhanced 

and transition to other metastable states are accelerated. This gives access not only to a full 

exploration of the desired chemical rare event but allows one to determine the shape of the free 

energy landscape and calculate free energy differences including all the relevant entropic 

contributions without the need of approximations, e.g., harmonic or anharmonic frequency 

calculations, to estimate the thermodynamics of the process. As a general rule, the quality of the 

results must be supported by a convergence test of the free energy landscape obtained. This can be 

done by simply integrating the free energy within the basins of attraction corresponding to 

reactants and products and calculate the difference  every  time steps during the simulation. Δ𝐹 𝑁

In such a way, one can monitor the oscillating behavior of the free energy difference between the 

two refence basins which should approach a specific value asymptotically. The oscillations are 

due to the system being pushed forth and back among the free energy basins. Therefore, to 

converge a free energy surface, one needs several recrossing of the barriers separating them. Only 

when such oscillations are small within a specific range (optimally ) the simulation can ±  1 𝑘𝐵𝑇

be considered converged. 

From the free energy profile, one may also derive an approximate estimation of the free 

energy barrier although this quantity is strongly related to the quality of the CV used to sample 
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and project the free energy process. A more quantitative approach that gives access to reaction 

rates is provided by a variant of MetaD referred to as infrequent metadynamics72, a method inspired 

by Voter’s hyperdynamics approach49. In this method one starts with  independent replicas of N

the system from a reference metastable state configuration, say the reactants state, initialized with 

different velocities and properly equilibrated. Then, a MetaD bias is applied on each replica 

independently using very long deposition intervals (long ) and the simulations are stopped when τG

the system has escaped the initial metastable state. The slow deposition rate ensures a rather low 

probability of depositing a bias on the transition state. In such a way, using transition state theory 

one can calculate for each replica the physical (unbiased) escape time  simply by reweighting 𝑡 ∗

the MetaD simulation time  by the ensemble average of the bias as tMetaD 𝑡 ∗ = 𝑡MetaD < exp(βΔV(𝐬

, where  is the inverse temperature. From the collected escape time of each replica, ) > V β = 1/kBT

one can obtain a cumulative distribution probability function, fit it to a Poisson-like distribution, 

and calculate reaction rates as  where the term in angular brackets is the mean kR→P = 1/ < t ∗ >

escape time for all the N replicas obtained from the Poisson fit135. In this context, Xie and Barton 

used infrequent metadynamics simulations (InMetaD) to calculate the activation energy of glucose 

6-phosphate hopping between association states in electrolytes (see Figure 9).
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Figure 9. Hopping activation energy by InMetaD. (a) Cumulative probability distribution of transition time from 
independent InMetaD simulations at IS = 0 mM, 310 K. Theoretical cumulative probability distribution (TCDF) is 
in blue, and the stepwise empirical cumulative probability distribution (ECDF) in black was fitted from the unbiased 
transition times, t. (b) Arrhenius plot of the hopping rate at varying ionic strength. The black line represents an 
Arrhenius fit for all ionic strengths. The shaded area in blue is the 95% confidence interval. Reproduced from Ref. 
[136] (under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence) with permission from the 
Royal Society of Chemistry. 

Data-driven methods for improving AIMD simulations
As mentioned above, data-driven methods such as machine learning and neural networks have 

been applied to the study of molecular simulations in catalytic reactions.137-141 However, directly 

employing these methods to AIMD simulations is still under-developed, and their benefits could 

generally be considered in three categories. First is that these approaches have directly accelerated 

AIMD simulations where the expensive and repetitive energy and force computations required in 

AIMD simulations have resulted in significant bottlenecks.142, 143 These ML-based algorithms have 

been proposed to learn past configurations of AIMD on-the-fly and predict energy and force of 

new configurations faster than conventional AIMD simulations.144 The second categorical 

advantage is that these methods enable the generation of force field parameters with quantum 

accuracy based on established AIMD simulations for catalytic systems.56, 145, 146 The reactive 

dynamics on catalysts can be explored under conditions comparable to experiments.147 They can 

also push the AIMD simulations to longer time scale and larger simulated system sizes within 

acceptable simulation times.148 Similarly, conventional AIMD simulations have difficulty 

exploring solvent and particle size effects in catalysis due to the need for enough statistical 

sampling, but the neural network force field derived from AIMD data can provide a powerful tool, 

e.g., for complicated structure and composition identification under real reaction conditions.149, 150 

Lastly but not least, these methods can provide some insights by the in-depth analysis of the large 
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amount of AIMD-produced data in catalysis simulations. For instance, ML is applied to interpret 

AIMD simulations to extract relevant information in chemical reactions with minimal prior input 

of knowledge on these reactions.151, 152

Applications of enhanced sampling AIMD in 
computational catalysis
Here, we review the most relevant applications of different CV based enhanced sampling 

techniques in catalysis to provide a better understanding of when it is appropriate to use this 

method and what can be learned from this approach. We focus on nanoporous materials and soli-

liquid interfaces where these methods are the most ubiquitously encountered due the nature of 

confinement effects which challenge simple harmonic approximations. Here, we review the 

application of enhanced sampling techniques to the study of the reactivity in three important 

classes of catalytic systems, namely zeolites, metal organic frameworks (MOFs), and solid-liquid 

interfaces.

Zeolites
Acidic zeolites are among the most widely used materials in catalysis and play an important role 

in the petrochemical industry153 and more recently in the conversion of biomasses154-158. The 

catalytic activity in these materials is locally concentrated in the proximity of the Brønsted acid 

site (BAS), where a bridging OH group is shared by an aluminum and a silicon atom belonging to 

the material framework (see Figure 10).
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Figure 10. Schematic representation of a BAS showing the bridging hydroxyl group embedded in the zeolite 
framework. 

This specific structural feature of acidic zeolites is a great advantage in terms of 

computational modelling as not many heterogeneous systems are as well characterized. This gave 

rise to a large research effort to describe from first principles the reactivity inside these materials, 

shedding light on the mechanistic aspects as well as their thermodynamics and kinetics. One of the 

most relevant industrial reactions that is catalyzed efficiently by zeolites is the methanol to 

hydrocarbons (MTH) process, where a new carbon-carbon bond is formed between a light alkene 

molecule and a zeolite-activated methanol (see Figure 11). This reaction is very challenging from 

a computational point of view as its reactivity is driven by the adsorption of methanol at the BAS 

as well as the supramolecular complex formed with the physiosorbed alkene.
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Figure 11. Schematic representation of the relation between apparent and intrinsic kinetics. For the calculation of 𝜟
 various schemes are used, shown by the grey uncertainty in the co-adsorption step of ethene. The value 𝑮𝒂𝒅𝒔,𝒆𝒕𝒉𝒆𝒏𝒆

of  is obtained dynamically in this work.159 Reprinted from Journal of Catalysis, Vol. 388, Bailleul, S., 𝒌𝒊𝒏𝒕
Dedecker, K., Cnudde, P., Vanduyfhuys, L., Waroquier, M., & Van Speybroeck, V., Ab initio enhanced sampling 
kinetic study on MTO ethene methylation reaction, 38-5, Copyright 2020, with permission from Elsevier.

From the point of view of enhanced sampling simulations, the group of van Speybroek has 

provided important methodological and application advancements in modeling the MTO reaction 

in zeolites. In a series of articles,159-163 they use different CV-based enhanced sampling techniques 

to study the methylation of different olefinic and aromatic substrates in acidic zeolites. Using TI, 

US, MetaD and variationally enhanced sampling (VES)164 – a variational approach to 

metadynamics – the authors provided a dynamical picture of the reaction mechanisms162, 163 and 

qualitative estimates and trends over olefinic chemical series of the reaction barriers159-161 along 

the CV. The use of enhanced sampling techniques combined with MD simulations allows one to 

describe the complex reactivity of these processes at real experimental conditions, where in static 

approaches one may face limitations.
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Zeolites are also used very frequently at the industrial level for alkene cracking to optimize 

the size of hydrocarbons. It is generally assumed that the mechanism of the reaction proceeds via 

protonation of the olefinic C=C bond by means of the BAS of the zeolite generating a carbeniun 

ion intermediate that subsequently undergo to β-scission leading to shorter carbon chains. Recently, 

Bučko, Chizallet and coworkers investigated the zeolites catalyzed acidic cracking of alkenes 

focusing on the skeletal isomerization165, 166 and β-scission mechanisms167 using AIMD in 

combination with Blue Moon ensemble calculations. Some of these computational demonstrations 

of unique chemistry over zeolites can be seen in Figure 12. In such a way, they have sampled the 

possible reaction pathways leading to different products involving carbenium ion intermediates, 

shedding light on the mechanistic aspects driving the catalytic reaction acceleration and the 

selectivity induced by the material confinement. Van Speybroek et al. used ab initio MetaD to 

Figure 12. Dynamic features of transition states for isomerization of alkenes over chabazite at two different 
temperatures based on enhanced sampling AIMD simulations—in this case the Blue Moon ensemble method. 
Reprinted with permission from Ref. 163. Copyright 2019 American Chemical Society.
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additionally investigate the stability of cracking intermediates in zeolite H-ZSM-5, which 

confirmed that carbenium ions are cracking intermediates rather than alkoxides.168 

More recently, the application of zeolites in the conversion of alcohols have been studied at 

large. Alcohols are very abundant compounds in lignocellulosic biomass streams.169, 170 In order 

to be useful for other chemical processes involving synthesis steps like carbon-carbon bond 

formation, they must be converted into olefins. Acidic dehydration followed by Friedel-Crafts 

alkylation with aromatic compounds leads to useful supplements for non-fossil fuels. It has been 

shown experimentally that zeolites/water interfaces are able to catalyze efficiently alcohol 

dehydration171, 172 and Friedel-Crafts alkylation173-175, leading to high-performance industrial 

production of heavier substrates. The group of Lercher at the Technical University of Munich - 

TUM (Germany) and Pacific Northwest National Laboratory - PNNL (USA) has pioneered the 

field shedding light on the fundamental experimental details of these reactions.

Figure 13. A cyclohexanol/water solution confined in zeolite H-ZSM-5.

From a computational point of view, these alcohol conversion systems represent a further 

challenge as the reaction takes place at the solid/liquid interface between the zeolite and the alcohol 

aqueous solution.176-178 In this case, the catalytic site is not a well-defined Brønsted site but a 

dynamic molecular interface where the acidic proton is delocalized in the solution confined in the 
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pores of the zeolite (see Figure 13). Despite the intense experimental characterization of these 

processes, a detailed and comprehensive mechanistic understanding at the molecular level is still 

lacking.

First, one needs to characterize the mobility of the Brønsted proton in the water cluster 

confined in the tight hydrophobic zeolite walls. In this regard, Grifoni et al. have recently published 

a comprehensive study correlating two fundamental aspects, namely zeolite framework structure 

and water loading.179 They investigated the acidic deprotonation and diffusion process of four 

different zeolites of increasing pore size in the presence of 1 up to 8 adsorbed water molecules 

around the catalytic site using full ab initio periodic MetaD simulations. The results of the 

calculations provide evidence that at low water loadings, the standard free energy of the formed 

complexes is dominated by enthalpy and is associated with the acid strength of the Brønsted acidic 

site and the space around it. Conversely, the entropy increases linearly with the concentration of 

water in the pores and favors proton solvation which is independent of the pore size/shape. 

One of the first insights into the dehydration mechanism of ethanol/water mixtures in zeolite 

has been proposed by Gounder et al. where they used MetaD to explore the mechanism of the 

reaction.180 At lower water pressure, the inhibition effects of water leads the formation of transition 

states around the periphery of H2O clusters. At higher water pressure, the extended hydrogen-

bonded networks are presented within the water-ethanol cluster, which is accompanied by 

strengthening water inhibition effects. Such interesting dynamic phenomena were captured due to 

the combined works of AIMD and MetaD simulations. Fois et al. also used Blue-Moon sampling 

to study Ti-based zeolites. They identified kinetically vs. thermodynamically favorable structures 

resulting from the interactions of water and hydrogen peroxide with the metal center in Ti-based 

zeolites and explained their relevance to the catalytic properties of zeolites 181. Recently, Hack et 
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al. found that the excess charge is transferred from the zeolite lattice to highly coordinated water 

molecules within the water cluster using the combined approach of 2D IR spectroscopy and AIMD 

simulation182. This study provided valuable understandings on the dynamic natures of H-bond 

switching and reorientation within water clusters under the tight confinement environment of 

zeolites.

Metal-Organic Frameworks (MOFs)

MOFs are novel materials with remarkable porosity and surface area. This makes them excellent 

candidates for separations and catalysis 184-188. Nevertheless, their complex hybrid structure of 

metal clusters connected by organic ligands makes them difficult to model due to the rich 

Figure 14. Representation of the defective 2-brick unit cell of UiO-66 used in the simulations, with solvent in the 
pores of the material. The unit cell is composed by one 12-connected pristine brick and one 10-connected hydrated 
defective brick, which are displayed on the right. Reprinted from Ref. 183 under a creative commons license: 
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode).
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chemistry of inorganic-organic interactions. In this respect, recent studies have used AIMD with 

enhanced sampling methods to investigate catalytic processes involving MOFs.

More precisely, Caratelli et al. studied UiO-66 (see Figure 14) and postulated that Lewis acid 

sites can be formed due to ligands temporarily detaching after interacting with protic solvents 183. 

This dynamic behavior is of particular interest as these sites can be the active sites in catalytic 

processes 183. They used coordination number CVs in order to study this process using AIMD with 

metadynamics. Heshmat investigated CO2 hydrogenation catalyzed by a frustrated Lewis pair 

bonded to UiO-66. In this work, the use of metadynamics provides new insights into the reaction 

mechanism. More precisely, a previously undiscovered stepwise mechanism that is kinetically 

similar to the concerted mechanism suggested by static DFT calculations is identified using biased 

AIMD simulations 189.

Haigis et al. used AIMD simulation with metadynamics bias acting on a bond distance CV 

in order to evaluate the free energy landscape of interactions between MIL-53(Ga) and water 190. 

The organic linker detaches from the metal center in the presence of water following the cleavage 

of a gallium – carboxylic oxygen bond. Also, water inside MOF channels lowers the free energy 

barrier substantially, thus facilitating the process 190. Consequently, this work explains how 

framework stability is deteriorated in presence of water and suggests ways to overcome this 

issue191, 192. 

Defects are also known to affect their mechanical stability; hence mechanistic studies are 

needed to understand their formation and regulate their emergence during MOF synthesis. Large 

system sizes and long-time scales are needed to study the thermodynamics and kinetics of growth 

and understand defect formation. Recently, we investigated the role of solvent and spectator ions 

in the formation of defects based on microsecond-long metadynamics simulations relying on 
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classical potentials.192 In this context, we used AIMD to simulate the formation of building units 

in order to derive the classical potential (see Figure 15).191, 192

Figure 15. Reaction 3 coordinates and energy profile. In (D) the central bridging oxygen joining the three 
chromiums is formed, whereas in (C) an OH group joins two chromium atoms. Not all water molecules shown 
explicitly for clarity. Green is Cr(III), red is O, gray is C, and white is H. All Cr atoms are Cr(III). Reprinted with 
permission from Ref. 191. Copyright 2014 American Chemical Society.

Although metadynamics is a powerful tool that can improve sampling during AIMD 

simulations in the field of catalysis, other enhanced sampling methods have been successfully 

employed in this context. For instance, Hajek et al. used AIMD simulations with umbrella 

sampling in order to investigate structural changes during activation processes. They focused on 

UiO-66 and biased the coordination number between the Zr atoms of the metal center and the 

bridging hydroxyl oxygen. Through these findings, they explained how linkers can be much more 

mobile than metal centers as they detach and reattach to hydroxyl groups inside the MOF. This 
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results in a dynamic acidity, observed inside the MOF, that can have an important role in 

catalysis193. Ming et al. used thermodynamic integration to estimate the free energy barrier of water 

insertion in MOF-5 194. Above a threshold of adsorbed water molecules in the MOF, these facilitate 

the insertion of more water molecules as the free energy barrier for this process is rather low due 

to the cleavage of Zn – O bonds. Demuynck et al. used both classical and ab initio MD as well as 

various enhanced sampling methods to study the MIL-53(Al) breathing behavior 195. They 

highlighted the necessity for AIMD simulations due to dispersion corrections and anharmonic 

effects contributing to the free energy profile relevant to the breathing process. In a later study, the 

same group used time-structure based independent component analysis (tICA) on information 

gained from replica exchange (RE) simulations, namely the tICA-RE protocol 196. This helps the 

identification of slow modes in the replica exchange trajectories that can be biased using enhanced 

sampling methods. This way they could formulate CVs which characterize breathing of MOFs. 

This analysis showed that internal dihedral angles are better CVs than volume as they reveal a 

stepwise breathing mechanism and identify metastable states in this process.

Enhanced sampling is ordinarily used to study catalytic processes, but there are also unbiased 

AIMD simulations of MOFs in catalysis. For example, Vandichel et al. studied the stability of 

UiO-66 in presence of water that is important for its use in catalytic processes 197. In this work, 

they explain how the presence of linker defects facilitates dehydroxylation and water removal 

(when defects occur in neighboring linkers for the latter) and how defects affect mechanical 

stability. Zhang et al. assessed the catalytic properties of TMOF-1. They studied the energetics of 

CO2 diffusion using AIMD simulations. They postulate that CO2 can easily diffuse through the 

channels of this renewable heterogeneous catalyst as the free energy landscape of CO2 diffusion is 

rather flat 198. Bellarosa et al. investigated structural changes within IRMOF-1 using Born-
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Oppenheimer MD 199. Zn-IRMOF-1 degrades more easily than Mg-IRMOF-1 as the latter 

maintains its structure due to the strong coordination between Mg and the oxygen of water. More 

elaborately, this strong interaction hinders additional water molecules approaching the same metal 

center 199.

Chen et al. used AIMD simulations in conjunction with experiments to investigate the effect 

of temperature and CO2 adsorption on MIL-53(Sc) breathing, hence characterizing the change in 

pore geometry caused by external stimuli 200. At last, Xue et al. used AIMD simulations to 

investigate interactions between HKUST-1 and water 201. This MOF has attracted interest in 

heterogeneous catalysis, but its low stability in humid environments limits its use in applications; 

hence interactions between the MOF and water need further investigation. Simulations revealed 

that strong vibrations are induced by water molecules in the pores of HKUST-1. Also, framework 

stability is affected by temperature and water concentration 201.

Heterogeneous catalysis at solid/liquid interfaces 
Sitting at an opposite side of nanoporous catalytic materials like zeolites or MOFs we find catalytic 

surfaces. Here, a much larger variety of materials in terms of composition, structure, and physico-

chemical properties is available, ranging from insulating or semiconducting metal oxides to 

metallic systems, from clean surfaces in vacuum to multifaceted nanoparticles in solution. This 

great experimental versatility, however, often comes with a great disadvantage in terms of 

computational modelling. First of all, in most cases such surfaces are not characterized by well-

defined catalytic sites, whereas the active part of the material is delocalized all over the surface or 

situated ambiguously on structural defects of the surface like vacancies or color centers up to kinks 

or terraces. In such a situation modeling the reaction may be rather cumbersome and could take a 

lot of work for screening the possible reactive sites. Furthermore, nanoparticles or large catalytic 
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surfaces including catalytic defect sites often constitute several thousands of atoms which hampers 

the application of ab initio methods for sampling long trajectories. In such cases, one often needs 

to reduce the complexity of the problem using a slab surface model, where the first surface layer 

and a number of sublayers sufficient to simulate the bulk properties of the material are used to 

mimic the real material. However, even under such reduced complexity conditions, the model may 

require up to hundreds of atoms, often including transition or post-transition metals of the d or f 

block. 

Despite modelling challenges, AIMD simulations have been employed to study structural 

and dynamic properties as well as adsorption/desorption of organic molecules at the solid-liquid 

interface. Gaigeot et al. employed DFT-based MD simulations to study properties of water 

orientation and hydrogen bonding at solid oxide/liquid water interfaces.202 They showed that 

different chemical properties such as acidity of oxide surfaces differentiate water organization at 

the interfaces. Cheng and Sprik investigated a compact electric double layer at the rutile TiO2-

water interface by adding protons to bridging oxygens or removing oxygens from H2O molecules 

adsorbed on terminal Ti cation sites from DFT-based MD simulations203. Yuk et al. investigated 

the hydrogenation of benzaldehyde on Pt-group metals in aqueous phase using AIMD simulations, 

where they show that the site competition between H and benzaldehyde is dependent on the metal 

surface.204 They also observe the strong effect of water on the hydrogenation.

Several researchers successfully used enhanced sampling techniques to simulate reactivity 

at catalytic surfaces. Among many examples, oxide surfaces have been largely studied for their 

application in sustainable energy conversion catalysis. Different crystalline phases of titanium 

oxide have attracted a lot of attention as they can play a relevant role in the photocatalytic water 

splitting205 and CO2 reduction206. Recently, Andrade et al. (See Figure 16) used US in combination 
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with ab initio derived neural network potentials to investigate the proton transfer process of bulk 

liquid water and surface hydroxylation of TiO2 anatase (101).207 

Often the complexity of the molecular motions at solid/liquid interfaces may lead to very 

slow converge of the unbiased AIMD sampling due the large number of degrees of freedom 

relevant to the solvent rearrangements. This is often practically impossible from a simulation point 

of view given the prohibitive computational demand. In such cases, it is mandatory to enhance the 

sampling including solvent degrees of freedom. In another work, Li et al. studied the dissociation 

of water on defective rutile TiO2 (110) surfaces using ab initio MetaD simulations.208 Zinc oxide 

can also be used to reduce and convert CO into more profitable products like methanol. Marx et 

al. used ab initio MetaD to investigate the mechanism and reaction pathways of this process over 

Figure 16. (a) Interatomic distances used to define the two collective variables (CVs) describing proton transfer 
reactions. The first CV, dooo = (d1 + d2)/2, represents the average distance between hydrogen-bonded oxygen atoms 
connecting proton-donor and proton-acceptor sites. The second CV, (v1 + v2)/2 (vi = bi − hi), describes the progress 
of the proton transfer reaction, with positive and negative values corresponding to the dissociated and the molecular 
states, respectively. (b) Free energy surface of water dissociation (left) and proton transport (right) at the anatase 
(101)–water interface. Roman numerals indicate the adsorption state of water at specific regions in the free energy 
plot. Molecular water is more stable than the dissociated state by 8.0 ± 0.9 kJ mol−1, with a free energy barrier of 
32 ± 4 kJ mol−1 separating these states. Reproduced from Ref. [207] (under a Creative Commons Attribution-
NonCommercial 3.0 Unported Licence) with permission from the Royal Society of Chemistry.
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the ZnO (000 ) surface.209 Michel et al. used a combination of experimental observations and ab 1

initio metadynamics to understand the stability of reactive alumina surfaces in water.210 Fabris et 

al. used a combination of ab initio MetaD and US to investigate the hydroxylation and reduction 

of ceria surfaces.211 Lee et al. studied water film formation, cation mobilization and carbonation 

at sc-CO2/anorthite interfaces by combining AIMD simulations and Blue-Moon ensemble 

simulations. They showed that a water monolayer can be formed even at the low water 

concentrations at the interface. Furthermore, the presence of water monolayer accelerates the 

formation of cation vacancies followed by carbonation reaction at electron-rich terminal oxygen 

sites212. 

Catalysis at metallic surfaces is often more demanding from a computational point of view 

due to the fact that the small band gap restricts the use of linear scaling DFT methods and 

necessitates the use of either small cells or short simulation times ⏤ both factors that limit the 

reliability of the results. Nonetheless, examples of the application of enhanced sampling 

techniques can also be found in this field. Yang et al. studied the adsorption of hydrogen at 

water/Pt(111) interface  through a combination of AIMD/Blue-Moon ensemble simulations and 

kinetics.213 They discovered that H2 adsorption is strongly suppressed in the presence of the liquid 

as a result of both enthalpic (change in work function of Pt(111)) and entropic (restructuring of the 

interface) drivers. Sun and Jiang reported an AIMD study of the CH2 ⥫ CH + H reaction on 

Ni(111)214 using integrated tempering215. Okumura et al. studied the reactive adsorption of 

hydrogen on a Pt surface using MetaD on a neural network derived potential. Very recently, de 

Pablo et al. reported the investigation of the free energy Landscape for nitrogen dissociation on 

Ru(0001)216 using a neural-network-based enhanced sampling method called combined-force 

frequency (CFF)217, a ML gradient-based method. 
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5. Conclusions

The combination of ab initio molecular dynamics with enhanced sampling methods provides the 

computational catalysis community with a powerful and flexible tool to study reactivity in complex 

and structured reaction environments from first principles. Through these molecular simulations, 

one can examine catalysts in a holistic manner accounting for both the active site and its 

environment. This contribution to the understanding of the atomistic and molecular aspects of 

catalysis enables us to move beyond simple models (which are designed for rapid screening of 

materials) to models that better reflect the innate complexity of catalysts under operating 

conditions, including elevated temperatures and a mixture of products, reactants, and inhibiters/co-

catalysts.  In this respect, AIMD and other statistical methods are slowly becoming vital to 

complementing experimental evidence, refining our understanding of reactivity in complex 

environments, and ultimately using this knowledge to design better catalytic materials/processes. 

In parallel, the entrance of machine learning and data science techniques in the mainstream of 

molecular simulations is boosting the applicability of modeling techniques to a wide variety of 

problems and improving in silico materials design. It is the hope of the authors that this review 

will help researchers in the computational catalysis community in orienting themselves in this vast 

field as well as guiding experimental scientists in understanding the immense potential that these 

techniques possess to improve process understanding with atomistic detail. 
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