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Spin-component-scaled and dispersion-corrected second-

order Møller-Plesset perturbation theory: A path toward

chemical accuracy†

Chandler Greenwell,a Jan �ezá£,b‡ and Gregory J. O. Beran∗a

Second-order Møller-Plesset perturbation theory (MP2) provides a valuable alternative to density

functional theory for modeing problems in organic and biological chemistry. However, MP2 suf-

fers from known limitations in the description of van der Waals dispersion interactions and reaction

thermochemistry. Here, a spin-component-scaled, dispersion-corrected MP2 model (SCS-MP2D) is

proposed that addresses these weaknesses. The dispersion correction, which is based on Grimme's

D3 formalism, replaces the uncoupled Hartree-Fock dispersion inherent in MP2 with a more robust

coupled Kohn-Sham treatment. The spin-component scaling of the residual MP2 correlation energy

then reduces the remaining errors in the model. This two-part correction strategy solves the problem

found in earlier spin-component-scaled MP2 models where completely di�erent spin-scaling param-

eters were needed for describing reaction energies versus intermolecular interactions. Results on

18 benchmark data sets and two challenging potential energy curves demonstrate that SCS-MP2D

considerably improves upon the accuracy of MP2 for intermolecular interactions, conformational

energies, and reaction energies. Its accuracy and computational cost are competitive with state-of-

the-art density functionals such as DSD-BLYP-D3(BJ), revDSD-PBEP86-D3(BJ), ωB97X-V, and

ωB97M-V for systems with ∼100 atoms.

1 Introduction

Accurately modeling many chemically-interesting systems with
electronic structure theory requires models capable of describ-
ing diverse mixtures of covalent and non-covalent interactions.
Chemical reactions occurring in enzyme active sites demand mod-
els that can treat the thermochemistry associated with changes
in the substrate chemical bonding together with the hydrogen
bonding, electrostatic, and dispersion interactions that govern
the substrate-protein interaction.1 Furthermore, the stabilities of
molecular crystal conformational polymorphs are governed by
the competition between intramolecular conformation and inter-
molecular packing.2 In principle, high-accuracy methods like cou-
pled cluster singles, doubles, and perturbative triples (CCSD(T))
can provide the requisite accuracy for modeling systems like
these, but the steep O(N7) computational cost with system size
N frequently makes it cost-prohibitive in practice.

a Department of Chemistry, University of California Riverside, Riverside CA 92521,
USA. E-mail: gregory.beran@ucr.edu
b Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10
Prague, Czech Republic.
† Electronic Supplementary Information (ESI) available: Additional details on the
SCS-MP2D parameter fitting, examination of the Tang-Toennies damping function,
relative errors for each of the data sets, and a complete anthracene photodimeriza-
tion potential energy curve. See DOI: 00.0000/00000000.

Instead, Kohn-Sham density functional theory (DFT) has be-
come the standard tool of choice for modeling such systems.
Many successful density functionals have been developed over
the years, some of which can approach CCSD(T) accuracy. Large
benchmark studies3–5 have identified some of the best cur-
rent functionals. These include, for example, the hierarchy of
functionals developed by Mardirossian and Head-Gordon: the
range-separated hybrid functional ωB97X-V,6 its hybrid meta-
GGA variant ωB97M-V,7 and the double-hybrid meta-GGA func-
tional ωB97M(2).8 The family of dispersion-corrected, spin-
component-scaled double hybrid (DSD) density functionals de-
veloped in the Martin group are also highly competitive, both in
their original9 and recently-revised forms.10

At the same time, there have been many efforts to achieve
near-coupled cluster accuracy using wave function methods that
are less computationally demanding than CCSD(T). The domain-
based local pair natural orbital variant (DLPNO-CCSD(T))11

achieves most of the accuracy of CCSD(T) at far lower compu-
tational cost, for example. At the other extreme, inexpensive ma-
chine learning models that target CCSD(T) accuracy continue to
improve.12,13 Models based on second-order Møller-Plesset per-
turbation theory (MP2), the least-expensive correlated wavfunc-
tion method, have also garnered considerable attention over the
years. Although MP2 scales O(N5) with system size, efficient
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density-fitting algorithms mean that the computational cost of
evaluating the non-iterative MP2 correlation energy is small com-
pared to that associated with the underlying iterative Hartree-
Fock (HF) self-consistent field energy for many systems. This
means that MP2 can be computationally competitive with modern
state-of-the-art density functionals for systems with up to ∼100
atoms.

Furthermore, MP2 inherently includes exact exchange and does
not suffer from the issues of self-interaction error/delocalization
error that plagues approximate density functionals.14,15 Delocal-
ization error leads to the underestimation of dissociation ener-
gies16–18 and barrier heights,19–22 for example. In the context of
organic molecular crystals, delocalization error can cause spuri-
ous proton transfer in multi-component crystals23 and problem-
atic conformational energies that produce highly incorrect poly-
morph stabilities.24–27

Despite its advantages, MP2 has its own significant deficien-
cies which manifest in systems with strong static correlation (e.g.
stretched covalent bonds) or in systems where van der Waals
dispersion interactions are important (e.g. benzene dimer). The
second-order correlation energy can be partitioned into contribu-
tions arising from same-spin (αα and ββ) and opposite-spin (αβ

and βα) electron pairs. The same-spin contributions are more
connected with long-range static correlation, while the opposite-
spin ones are more important for the dynamic correlation that
is associated with dispersion. The MP2 perturbation series is
biased toward the same-spin correlation and frequently overes-
timates its contribution.28 In 2003, Grimme’s spin-component-
scaled MP2 (SCS-MP2) model29 demonstrated how scaling the
same-spin and opposite-spin energy components of the MP2 cor-
relation energy with constant coefficients improves the accuracy
of MP2 on systems that would otherwise be poorly described,
without any increase in the computational effort required. The
SCS-MP2 prescription greatly improves upon canonical MP2 for
predicting reaction thermochemistry.

However, it soon became apparent that the spin-component
scaling coefficients appropriate for one type of chemical problem
do not always transfer well to other chemical problems. For ex-
ample, the original SCS-MP2 model scales the same-spin corre-
lation energy by css = 1/3, while the opposite-spin correlation
energy is scaled up by cos = 6/5.29 These values were initially
determined from studying reaction energies, though subsequent
work established a theoretical basis for these scaling parameter
values.28,30,31 Studying the S22 benchmark set a few years later,
Distasio and Head-Gordon found optimal scaling coefficients css

= 1.29 and cos = 0.40 for molecular interactions (MI), denoting
the resulting model as SCS(MI)-MP2.32 These SCS(MI)-MP2 css

and cos scaling coefficients are nearly reversed compared to those
found in the original SCS-MP2.

Given that no single set of spin-scaling coefficients can fully
address the MP2 problems, a few strategies for SCS-MP2 models
have emerged over the years. One approach tailors the SCS coeffi-
cients for specific chemical systems, such as for nucleic acid base
pair interactions,33 ethylene dimers,34 or ionic liquids35. Such
models can potentially work well, though this parameterization
strategy inherently limits transferability of the model. Another

approach adapts the spin-component scaling coefficients to each
given system on the fly. This has been done via spin-ratio scaled
spin components (SRS-MP2)36 or by machine learning the opti-
mal scaling parameters as in SNS-MP2.13 Adaptive spin-scaling
approaches can be more universal, though care must be taken to
ensure that the coefficient adaptations retain smooth and contin-
uous potential energy surfaces. Moreover, adaptive schemes can
still have limited applicability: the design of the neural network-
based SNS-MP2 model limits its application to dimer intermolec-
ular interactions, for instance. Other SCS models seek to exploit
the greater computational efficiency associated with the opposite-
spin correlation,37 to improve the long-range behavior of SCS
methods,38 or to apply these ideas to higher-levels of theory
such as MP3,39 coupled cluster models,40,41 and excited state
approaches.42–45

The fundamental challenge for existing spin-component-scaled
MP2 methods is that they attempt to use spin component scal-
ing to address multiple, physically distinct weaknesses inherent
in MP2 simultaneously. These limitations can generally be par-
titioned into the suitability of MP2 pair correlations for covalent
bond chemistry (termed “thermochemistry” here for simplicity)
versus the problems associated with describing van der Waals dis-
persion in non-covalent interactions. The former typically include
more significant amounts of static correlation energy, while the
dispersion interaction arises from dynamical correlation. The dif-
ferences between the optimal scaling coefficients in SCS-MP2 and
SCS(MI)-MP2 highlight the challenge associated with addressing
both problems simultaneously with spin-component scaling.

In the language of intermolecular perturbation theory, the dis-
persion problem arises from the uncoupled Hartree-Fock (UCHF)
description of dispersion that is inherent in MP2.46 Hesselmann’s
corrected MP2 model (MP2C),47,48 addresses this by subtract-
ing out the UCHF dispersion energy and replacing it with a bet-
ter treatment computed at the coupled Kohn-Sham (CKS) level
of theory. MP2C has proved very successful,49 though its inter-
molecular perturbation theory formulation limits its application
to dimer intermolecular interactions. We recently developed a
new version of MP2C, called MP2D,50 which recasts the MP2C
dispersion correction in terms of Grimme’s D3 dispersion correc-
tion.51 MP2D is similar to the MP2 plus van der Waals approach
proposed by Tkatchenko et al;52 however, use of the D3 model in
MP2D makes the dispersion correction more straightforward to
compute.

The MP2D dispersion correction computes the CKS and UCHF
dispersion contributions using atom-centered dispersion coeffi-
cients which are inexpensively interpolated from a small set of ab
initio dispersion coefficients computed for simple hydrides of the
elements. Because MP2D employs atomic dispersion coefficients,
the dispersion correction is applicable to both intra- and inter-
molecular interactions. Its performance for intermolecular inter-
actions is similar to that of MP2C, and it has proved very useful
in describing intramolecular interactions that prove difficult for
many widely used density functionals, such as in conformational
polymorphs of molecular crystals.25,26

The present study introduces spin-component-scaled MP2D
(SCS-MP2D). Because the MP2D dispersion correction already
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addresses the MP2 dispersion problems for non-covalent inter-
actions well, the spin-component scaling coefficients can focus
solely on correcting the residual problems beyond dispersion that
impact MP2 performance for thermochemistry. The proposed
SCS-MP2D model employs seven global empirical parameters,
which is a modest number of parameters compared to many
models derived from big data and machine learning approaches.
SCS-MP2D represents the first spin-component-scaled MP2 model
where a single set of spin-scaling coefficients can describe a wide
variety of intra- and intermolecular organic chemistry. It appears
highly transferable to new systems, despite only a modest amount
of benchmark data being used to fit the empirical parameters.

The addition of spin component scaling to MP2D makes it simi-
lar in many ways to the family of DSD double-hybrid density func-
tionals.9,10 Those density functionals start from a hybrid func-
tional DFT treatment with a modest fraction of exact exchange,
mix in some amount of spin-component-scaled MP2-like correla-
tion (evaluated in terms of the Kohn-Sham orbitals), and include
long-range Grimme dispersion. SCS-MP2D has its foundation in
HF (instead of DFT), includes spin-component-scaled MP2 corre-
lation from which the long-range dispersion has been removed,
and Grimme D3 dispersion. Starting from the exact exchange
treatment in HF circumvents the problems of DFT delocalization
error. By subtracting the UCHF dispersion from the MP2 corre-
lation energy before adding the Grimme dispersion correction,
SCS-MP2D also avoids any issues of double-counting dispersion
energy contribtutions that can hinder dispersion-corrected DFT
models.

As will be demonstrated below, the accuracy of SCS-MP2D is
competitive with some of the very best density functionals on a
large set of benchmark data sets of organic species that span in-
termolecular interactions, conformational energies, and reaction
energies. Furthermore, SCS-MP2D outperforms several state-of-
the-art density functionals for two particularly challenging poten-
tial systems for which delocalization error is known to be an issue:
organic crystal polymorphs of the ROY molecule and the pho-
todimerization reaction of anthracene. The cost of SCS-MP2D is
effectively identical to that of MP2, and it is ∼2–2.5 times faster
than top-tier functionals such as ωB97X-V or ωB97M-V for sys-
tems approaching ∼100 atoms. Overall, the results presented
below highlight how MP2-based wave function methods offer a
viable route toward high-accuracy quantum chemistry in organic
systems.

2 Theory

2.1 SCS-MP2D Energy

The canonical MP2 energy can be decomposed into the HF en-
ergy plus the same-spin (ss) and opposite-spin (os) correlation
energies,

EMP2 = EHF + cosEos
corr + cssEss

corr (1)

In canonical MP2, the spin-scaling coefficients cos and css both
equal one. Spin-component-scaled MP2 methods change those
spin-scaling coefficients to improve the performance of the model.
Grimme’s original SCS-MP2 model employed cos = 6/5 and css =

1/3. As described earlier, however, these coefficients can vary con-

siderably depending on the nature of the chemical system being
studied.

One of the key problems in canonical MP2 lies in its treat-
ment of van der Waals dispersion, such as its well-known over-
estimation of the benzene dimer interaction energy and many
other π-π interactions. The successful MP2C model addresses
this for intermolecular interactions by subtracting out the UCHF
dispersion that is inherent in MP2 and replacing it with a more
reliable CKS description,47,48

EMP2C = EMP2−EUCHF
disp +ECKS

disp (2)

However, the reliance on intermolecular perturbation theory for
the dispersion correction limits MP2C to dimer intermolecular in-
teractions, and the analytic nuclear gradients that would facilitate
geometry optimizations are complicated and have not yet been
implemented.

Our recently proposed dispersion-corrected MP2D model50 ad-
dresses both limitations. MP2D adopts the same basic formal-
ism as MP2C, but it computes the UCHF and CKS dispersion con-
tributions according to Grimme’s D3 strategy,51 which estimates
the atom-centered dispersion coefficients via interpolation among
pre-tabulated reference values for each element in different coor-
dination environments. The D3 dispersion correction can be com-
puted with trivial force-field like cost, is readily differentiated for
analytic nuclear gradients, and is applicable to both intra- and
intermolecular interactions.

SCS-MP2D combines spin-scaling of the correlation energy
with a CKS dispersion correction. The SCS-MP2D energy is given
by,

ESCS-MP2D =EHF + cosEos
MP2-corr + cssEss

MP2-corr

− cosE
disp,os
UCHF − cssE

disp,ss
UCHF +Edisp,tot

CKS

(3)

Because the MP2 correlation energies are scaled by the spin-
scaling coefficients, the UCHF dispersion energy being removed
from the correlation energy must also be scaled accordingly to
obtain a “dispersion-free” SCS-MP2 energy. One is then free to
add an appropriate dispersion treatment onto it—the D3 CKS dis-
persion energy in this case, without any spin-component scaling.
Since the CKS dispersion contribution is unchanged compared to
MP2D, the following discussion focuses on the UCHF contribu-
tion.

Spin-component scaling of the UCHF dispersion energy be-
gins with partitioning the molecular frequency-dependent dipole-
dipole polarizabilities into their α (↑) and β (↓) spin contribu-
tions,

αλσ (iω) = α
↑
λσ

(iω)+α
↓
λσ

(iω)

= ∑
ia

2εia〈i|µ̂λ |a〉〈a|µ̂σ |i〉
h̄(ε2

ia +ω2)
+∑

ı̄ā

2εı̄ā〈ı̄|µ̂λ |ā〉〈ā|µ̂σ |ı̄〉
h̄(ε2

ı̄ā +ω2)

(4)

where i and a are α spin occupied and virtual orbitals, ı̄ and ā are
the analogous β spin orbitals, εia is the HF energy difference be-
tween orbitals i and a, µ̂λ is the λ -th component of the dipole mo-
ment operator, and iω is the imaginary frequency at which the po-
larizability is being evaluated. The isotropic frequency-dependent
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polarizability αiso is computed as the trace of αλσ divided by 3.
In the D3 approach, the isotropic molecular frequency-

dependent polarizabilities are computed and tabulated for a se-
ries of elemental hydrides AmHn (e.g. C2H6, C2H4, C2H2, CH,
and C). The atomic frequency-dependent polarizability for atom
A is then determined by subtracting out the hydrogen contribu-
tions and distributing the remaining polarizability evenly across
the heavy atoms. For the spin up contributions, this takes the
form:

α
A↑
iso(iω) =

1
m
[αAmHn↑

iso (iω)− n
2

α
H2↑
iso (iω)] (5)

An analogous expression can be written for the β (↓) polarizabil-
ities. The total UCHF C6 dispersion coefficients for the interac-
tion of atoms A and B can be computed from the spin-partitioned
isotropic atomic frequency-dependent polarizabilities as,

CAB
6 =

3
π

∫
∞

0
dω

(
α

A↑
iso(iω)+α

A↓
iso(iω)

)(
α

B↑
iso(iω)+α

B↓
iso(iω)

)
(6)

By multiplying out integrand and regrouping terms, one can par-
tition the total UCHF C6 coefficient into separate same-spin and
opposite spin contributions,

CAB
6 =

3
π

∫
∞

0
dω

(
α

A↑
iso(iω)αB↑

iso(iω)+α
A↓
iso(iω)αB↓

iso(iω)
)

+
3
π

∫
∞

0
dω

(
α

A↑
iso(iω)αB↓

iso(iω)+α
A↓
iso(iω)αB↑

iso(iω)
)

(7)

= CAB,ss
6 +CAB,os

6 (8)

Once the same-spin UCHF, opposite-spin UCHF, and total CKS
C6 coefficients have been obtained for each atom type in each co-
ordination number environment, the dispersion energies are com-
puted according to the D3 scheme as described previously.50,51

Specifically, the final C6 coefficients for a given atom in a partic-
ular chemical environment are interpolated using a slightly mod-
ified version50 of the original D3 coordination number scheme,
the C8 coefficients are estimated as proscribed by the D3 model,
and then the dispersion energy is obtained as,

Edisp = s6 ∑
AB

f6(RAB)
C6,AB

R6
AB

+ s8 ∑
AB

f8(RAB)
C8,AB

R8
AB

(9)

where s6 and s8 are scaling coefficients and RAB is the distance
between atoms A and B. The Tang-Toennies damping function
fN(RAB) is given by,

fN(RAB) = 1− exp(sRRAB)
N

∑
k=0

(sRRAB)
k

k!
(10)

where N is the order of the dispersion term (6 or 8), and sR is
a distance scaling factor calculated from the cutoff radius R0,AB

(taken from the D3 dispersion correction51) using two empirical
parameters a1 and a2:

sR = a1R0,AB +a2. (11)

Finally, during the development of the original MP2D model, it
was found that the Tang-Toennies damping function decays too
slowly at covalent-bond distances.50 To address this, the inter-

atomic distance RAB was modified via a secondary damping at
very short distances according to,

R′AB =


rcutR0,AB if RAB <= R0,AB(rcut −w/2)

RAB if RAB >= R0,AB(rcut +w/2)

rcutR0,AB +g(RAB,r′cut ,w
′) otherwise;

(12)

g(RAB,r′cut ,w
′) = (−2.5x8 +10x7−14x6 +7x5)∗w′; (13)

x =
RAB− (r′cut −w′/2)

w′
(14)

where r′cut = R0,ABrcut and w′ = R0,ABw. The empirical parameters
rcut and w define the distance and width over which the damping
occurs. This short-range damping leaves RAB in Eq 9 unchanged
at longer distances, while fixing it at a constant fraction of R0,AB

value for very short distances. The polynomial g(RAB,r′cut ,w
′)

smoothly interpolates between the two regimes. See ref 50 for
more details.

For restricted wave functions, the spin up and spin down
frequency-dependent polarizabilities in Eq 4 are identical and
each equal to half the total polarizability. As a result, the same-
spin and opposite-spin UCHF C6 coefficients in Eqs 7 and 8 are
each equal to one half to the total C6 coefficient, and the spin
components each contribute half of the UCHF dispersion energy
Edisp (Eq 9),

Edisp,ss
UCHF = Edisp,os

UCHF =
1
2

Edisp,tot
UCHF (15)

In this scenario, the final SCS-MP2D energy (Eq 3) can be ex-
pressed as,

ESCS-MP2D =EHF + cosEos
MP2-corr + cssEss

MP2-corr

− 1
2
(cos + css)Edisp,tot

UCHF +Edisp,tot
CKS

(16)

Because the present study focuses only on closed-shell species
with restricted wave functions for which the open-shell reference
hydrides coordination environments contribute negligibly, Eq 16
represents the final equation implemented here.

The SCS-MP2D model contains seven empirical parameters in
total: cos, css, s8, a1, a2, rcut , and w. The s6 parameter scaling
the C6 dispersion energy contribution in Eq 9 is set to unity un-
less otherwise noted. The atom-pairwise dispersion coefficients
CAB

6 coefficients from the reference hydrides are identical to those
used in ref 50. More specifically, the CKS coefficients are taken
directly from the original D3 model, while the UCHF ones were
computed for H, B, C, N, O, F, Ne, P, S, Cl, Ar, and Br atoms ac-
cording to the same Grimme D3 scheme. Accordingly, SCS-MP2D
is presently applicable to typical organic and biological systems.

Finally, one could conceivably design a similar SCS-MP2D-like
approach using the more recent D4 dispersion correction53 or
even the exchange-hole dipole moment (XDM)54 or many-body
dispersion (MBD) models.55,56 Computing both the UCHF and
CKS dispersion contributions in the context of XDM or MBD
would require both Hartree-Fock and DFT calculations, making
it considerably more computationally demanding. Adapting D4
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would be more straightforward computationally and might im-
prove the performance of SCS-MP2D modestly, as evidenced by
its performance with DFT functionals.5,10,53 However, we opt to
use D3 here for consistency with our earlier MP2D model, thereby
enabling more direct assessment of the impact of spin-component
scaling.

2.2 Empirical Parameter Fitting Procedure

The seven empirical parameters in MP2D were fitted to a to-
tal of 559 benchmark data points taken from the S66x8 set of
dimer intermolecular interactions,57 the Diels-Alder reaction en-
ergy (DARC) subset of the GMTKN55 data set,3,58 and the sugar
conformational energy (SCONF) subset of GMTKN55.3 Because
each of the three data sets differ in the number of data points
contained and the magnitudes of the benchmark energy values,
an objective function F was constructed from the weighted sum
of the relative root-mean-square error (RMSE) for each data set.
Relative RMSE values were obtained by dividing the RMSE of
each set by the mean absolute value of the benchmark energies in
the set, 〈|E|〉,

F = wS66x8
RMSES66x8

〈|E|〉S66x8
+wDARC

RMSEDARC

〈|E|〉DARC
+wSCONF

RMSESCONF

〈|E|〉SCONF
(17)

Using relative RMSE values compensates for the fact that the
Diels-Alder reaction energies are many-fold larger than the typ-
ical intermolecular or conformational energies. Different weights
wi for the three relative RMSEs in the objective function were
tested during the fitting. By trial and error, it was determined that
increasing the weight of the DARC data set in the objective func-
tion led to particularly good, transferable parameters. The final
SCS-MP2D parameters were obtained with weight wDARC = 2.0
and wS66x8 = wSCONF = 1.0. The enhanced weight on the DARC
set is consistent with the desire to use spin-component scaling to
improve reaction energies and the importance of including short-
range interactions in fitting the damping function parameters.

Initial exploratory optimizations of the empirical parameters
revealed a rugged landscape containing many local minima.
Therefore, an evolutionary algorithm was implemented to seek
out (nearly) globally optimal parameters that minimize the ob-
jective function. Initial values of the parameters were generated
randomly within a predefined range of plausibly physical values.
Initial spin-component scaling coefficients and most other param-
eters were restricted to lie between 0 and 2, though a2 was given
the range -1 to 2. Each generation of the search algorithm was
populated with 30–40 distinct parameter sets. Each parameter
set was optimized using a quasi-Newton algorithm in Cuby4.59

This gradient-based optimization converged slowly, but it was ob-
served that the parameters varied little after the first ten optimiza-
tion cycles; therefore, 10 cycles were used for each optimization
during the evolutionary search.

After randomly seeding the initial generation, subsequent gen-
erations were created as a mixture of, for example: the five best-
performing parameter sets from the previous generation, five pa-
rameter sets obtained by randomly combining parameters from
the top five performers (inheritance), five sets where new damp-

ing function parameters were generated for the top 5 performers
(mutation), 5 populations where the spin-component constants
were replaced by new randomly generated constants (mutation),
and 10 entirely new randomly generated parameter sets to add
diversity to the population. Optimization runs which varied the
partitioning among inheritance, mutation, and random genera-
tion and the total population size were explored. The genetic al-
gorithm was allowed to run for between 5 and 20 generations. To
avoid biasing the search in favor of the top performing parameters
against newly generated parameter sets, each generation passed
initial starting parameters to the next generation rather than the
optimized parameters. Once the optimal parameters were found
after many searches, they were fully-optimized to ensure a mini-
mum in the parameter landscape had been reached (though their
values changed only slightly). Convergence of the evolutionary
optimization algorithm was tested both by (1) performing dozens
of independent runs of the evolutionary optimizer, and (2) by
seeding a Bayesian search algorithm with good parameter sets
from the genetic algorithm (see Supporting Information Section
S1). The final parameter set discussed in Section 4.1 was dis-
covered relatively early and repeatedly in the search process, and
subsequent searching did not reveal any better-performing pa-
rameter sets.

3 Computational Methods

The MP2D and SCS-MP2D dispersion corrections were calculated
using a developmental version of the freely available Cuby4 soft-
ware.59 Energies were computed at the complete basis set limit
by combining HF/aug-cc-pVQZ with correlation energies extrap-
olated60 from aug-cc-pVTZ and aug-cc-pVQZ results. Counter-
poise corrections were employed for all benchmark sets involv-
ing purely intermolecular interactions: S66x8, 3B-69, SSI, HBC6,
NBC10, Charge Transfer, HB375, and IHB100. MP2 data for
S66x8, 3B-69, SSI, and IDISP was taken from the original sources;
data for all other sets was computed here using PSI4 version
1.3.61 For ISOL24, the 24th isomerization reaction was omitted
because MP2D and SCS-MP2D dispersion coefficients have not
been computed for silicon. For consistency, reaction 24 was ex-
cluded for all other tested methods as well.

DFT calculations were performed using DSD-BLYP-D3(BJ),
ωB97X-V, and ωB97M-V functionals in PSI4 and the revDSD-
PBEP86-D3(BJ) functional in Orca version 4.2.62 The PSI4 DSD-
BLYP-D3(BJ) calculations employ the parameters reported in ref
9, rather than the earlier parameters63,64 which were used in
the GMTKN55 benchmarks.3 Counterpoise corrections were em-
ployed for all intermolecular benchmark sets, except for the
revDSD-PBEP86-D3(BJ) functional, for which the counterpoise-
corrected results were substantially worse than the uncorrected
ones. In general, DSD-BLYP-D3(BJ), revDSD-PBEP86-D3(BJ),
and ωB97X-V calculations were performed using the def2-QZVP
basis set, while the ωB97M-V ones were performed in aug-cc-
pVQZ since the latter basis set is one of the recommended ones
from Ref 7. There are a few exceptions, however: For the SSI
data set, aug-cc-pVTZ results were taken from Burns et al65 for
ωB97X-V and ωB97M-V. The aug-cc-pVQZ basis set was used
with DSD-BLYP-D3(BJ) and revDSD-PBEP86-D3(BJ) for the SSI
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Table 1 Comparison of the MP2D parameters from ref 50 and the SCS-
MP2D ones determined here. All parameters are dimensionless except
for a2.

MP2D SCS-MP2D
cos 1 0.8263
css 1 0.9004
a1 0.9436 1.5359

a2 (Å) 0.4802 -0.7595
s8 1.1873 1.2092

rcut 0.72 0.8254
w 0.20 0.1198

set due to the presence of anionic species. The aug-cc-pVQZ ba-
sis set was similarly employed for all functionals on the IHB100
set of ionic species. Finally, ωB97X-V results for SCONF, ACONF,
Amino20x4, MCONF, PCONF21, DARC, ISOL24, ISO34, and
IDISP were taken directly from the GMTKN55 database.3

The genetic optimization algorithm was implemented by
the authors. The searches employing Bayesian optimization
with Gaussian processes utilized the python scikit-learn library
skopt.gp_minimize.66

4 Results and Discussion

4.1 Parameter optimization
The seven empirical parameters were optimized using the evo-
lutionary algorithm discussed in Section 2.2, and the final SCS-
MP2D model parameters are listed in Table 1. Figure 1 shows
the progress over a single run of the evolutionary optimizer. As
the algorithm proceeds through the generations, the population is
enriched with low-error parameter sets. By the ninth generation,
quite a few parameter sets have been found that perform well,
and these best-performing models change little over the next five
generations. As shown in the radar plot in Figure 1, the five best-
performing members of the population in this optimization run in
blue exhibit parameters that are quite similar to those in the final
SCS-MP2D model in red. The only appreciable variations occur
for the a2 Tang-Toennies damping parameter. The next five best-
performing parameter sets in green differ a little more from the
SCS-MP2D ones, most notably in s8 and a2, but they are again
fairly similar. Moving beyond the ten best parameter sets from
this search, one finds greater parameter diversity, indicating that
algorithm is searching widely. Overall, many independent runs
of the optimizer generated parameter sets that are similar to the
final SCS-MP2D ones, and they were always among the very best
performing models.

Some searches revealed a few alternative parameter sets that
also performed very well, though they had unphysical parameters
such as a negative s8 value. In those models, the MP2D disper-
sion correction had the wrong sign, with the CKS term effectively
increasing the van der Waals binding energy compared to UCHF
for systems such as the π-stacked benzene dimer. This behavior is
contrary to the well-known behaviors from intermolecular pertur-
bation theory where UCHF over-binds such systems.46,48 Other
tests that allowed s6 to deviate from unity (increasing the num-
ber of parameters from seven to eight) produced good-performing

parameter sets with s6 > 1 and s8 ≈ 2. From intermolecular per-
turbation theory, s6 and s8 should both equal one, though the D3
model typically allows s8 to deviate from unity to compensate for
the neglect of higher-order dispersion terms. Given the rapid de-
cay of those higher-order terms with distance, however, it seems
unlikely that those neglected contributions should effectively dou-
ble the s8 contribution. When tested for transferability to other
data sets not employed in the parameter fitting, the final chosen
parameter set in Table 1 performed as well as or better than any of
these alternative parameter sets. Accordingly, the final chosen pa-
rameter set in Table 1 was selected on the basis of its performance
on the training set, physically reasonable parameter values, and
its transferability to other benchmark sets (Section 4.2).

Table 1 compares the final SCS-MP2D parameters against those
published previously for MP2D, which does not scale the spin
components of the correlation energy. The SCS-MP2D disper-
sion correction parameters are fairly similar to those in MP2D.
For example, s8 differs by only 2% between the two models. Val-
ues of s8 near 1.2 are intermediate relative to the range of s8 ∼
0.8–1.7 typically found for D3 with various density functionals.51

The parameters rcut and w that govern damping at very short (co-
valent) distances differ by ∼0.1 between MP2D and SCS-MP2D.
However, as discussed in the original MP2D study,50 a relatively
broad range of parameters rcut and w performs well, and the dif-
ferences in these parameters between the two models has a small
impact on the overall performance.

In contrast, the SCS-MP2D Tang-Toennies dispersion damping
parameters differ noticeably from the earlier MP2D ones. Com-
pared to MP2D, the new parameters enhance the SCS-MP2D dis-
persion correction contribution at shorter distances (SI Section
S2). This increased contribution from the dispersion correction
offsets the diminished contribution of the MP2 correlation energy
that results from having spin-component scaling coefficients less
than one. Interestingly, the spin-scaling coefficients css = 0.8263
and cos = 0.9004 are similar to each other, in contrast to many pre-
vious SCS-type MP2 models. Furthermore, the SCS-MP2D spin-
component scaling enhances the same-spin contribution relative
to the opposite-spin one, which is contrary to theoretical argu-
ments that MP2 typically overestimates the same-spin correlation
more than the opposite-spin contributions.28 On the other hand,
such arguments may no longer apply when such a sizable fraction
of the final SCS-MP2D correlation energy originates from the CKS
dispersion correction.

The importance of the CKS dispersion can be seen from a few
example systems. Along the eight points of the S66x8 π-stacked
benzene dimer potential energy curve, for instance, an average
93% of the SCS-MP2D correlation energy arises from the CKS dis-
persion energy. Only ∼7% stems from what remains of the spin-
component-scaled MP2 correlation energy after subtracting out
the UCHF contribution. Of course, dispersion is expected to be
important for the benzene π dimer. However, even in the DARC
data set chemical reaction energies for which non-dispersion com-
ponents of the correlation energy are more important, the CKS
dispersion still contributes an average 24 kcal/mol, compared to
only 10 kcal/mol from the residual spin-component-scaled MP2
correlation energy that remains after removing the UCHF disper-
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Fig. 1 Left: Performance of one run of the evolutionary SCS-MP2D parameter optimization, plotting the relative root-mean-square error (the objective
function) versus the generation number. The �gure focuses only on the low-error region, and the horizontal lines indicate the best-performing models
in the initial (Gen 0) and �nal (Gen 14) generations. Right: Radar plot comparing the �nal SCS-MP2D parameter values (red) to those of the �ve
lowest-error parameter sets (blue), the next �ve lowest-error models (green), and all other parameter sets (gray) from this particular optimization.

sion component.

That said, a few additional considerations should be noted.
First, there are multiple ways to decompose and group the SCS-
MP2D energy components. If one partitions it into the SCS-MP2
correlation energy plus a dispersion correction (computed as the
difference between the UCHF and CKS dispersion energies), the
dispersion correction amounts to only 0.5 kcal/mol for benzene
dimer at its equilibrium geometry and an average of 1 kcal/mol
(a few percent) for the reaction energies in the DARC set. In
other words, the individual UCHF and CKS dispersion terms are
very large individually, but the difference between the two con-
tributions is much smaller. Finally, note that the parameters were
fitted to the total interaction, conformational, or reaction ener-
gies, rather than to individual components of the correlation en-
ergy. As discussed for MP2D,50 this choice leads to good overall
performance with fewer empirical parameters, but the individual
UCHF and CKS components in SCS-MP2D do not quantitatively
reproduce those from intermolecular perturbation theory and/or
MP2C.

4.2 Performance on Benchmark Data Sets

As discussed above, SCS-MP2D was trained on three datasets
consisting of noncovalent interactions (S66x8), reaction energies
(DARC), and sugar conformational energies (SCONF). MP2D was
fitted against S66x8.50 To assess overall performance and trans-
ferability, SCS-MP2D was tested on 14 additional benchmark data
sets for intermolecular interactions (3B-69 dimers,67 NBC10,68

HBC6,68 HB375,69 IHB100,69 SSI,65 & charge transfer re-
actions70), conformational energies (Amino20x4,3 ACONF,71

MCONF,72 and PCONF213), and thermochemical reaction ener-
gies (ISO34,73 ISOL24,3 IDISP3). Note that IDISP contains a
mixture of interaction types that all involve substantial changes
in intramolecular dispersion energy, but it is grouped with the

reaction energy data sets here because four of the six examples
involve chemical reactions and/or isomerizations. Table 2 sum-
marizes root-mean-square errors for each data set as computed
with several different quantum chemistry models. Figure 2 plots
the relative RMSEs, where the RMSE for each model is divided by
the mean absolute value of the target reference energies for that
data set.

4.2.1 Performance of wave function methods

Consider first the performance of MP2 and MP2D for the inter-
molecular interaction data sets. The MP2D dispersion correction
seeks to address systems like the benzene dimer where disper-
sion is important and which are often considerably over-bound by
MP2. The dispersion correction has minimal impact on hydrogen-
bonded systems like the water dimer, for which MP2 already
performs fairly well. Overall, MP2D reduces the MP2 RMSE on
S66x8 four-fold, from 0.67 to 0.16 kcal/mol. That improvement
partly reflects that MP2D was trained against S66x8 benchmark
data, but the MP2D parameters also prove highly transferable to
other benchmark sets. The MP2D dispersion correction provides
several-fold error reductions in the non-bonded potential energy
curves of NBC10, the protein side-chain side-chain interactions of
SSI, the large database of hydrogen bonds in HCNO-containing
species (HB375), and a set of charge transfer reactions. Smaller
MP2D improvements occur in 3B-69 and the hydrogen-bonded
dimer curves of HBC6, and no appreciable improvement is found
for the ionic H-bonds of IHB100. The smaller improvements seen
in those latter sets largely reflects the lesser importance of disper-
sion interactions in those dimers rather than any weaknesses in
MP2D.

Incorporating spin-component-scaling into MP2D leads to fur-
ther modest improvements for the intermolecular interaction data
sets. In S66x8 (a training set), the RMSE reduces from 0.16 to
0.13 kcal/mol. Improvements are observed for many of the test-
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Table 2 Root mean square errors calculated relative to the benchmark reference values (kcal/mol). The asterix (?) indicates data sets that were used
to �t SCS-MP2D. Cell color indicates the relative RMSE: dark blue ≤ 5%, light blue = 5�10%, orange = 10�25%, light red = 25�50%, and dark red
≥ 50%.

DSD- revDSD-
Data Set MP2 MP2D SCS-MP2D BLYP-D3(BJ) PBEP86-D3(BJ) ωB97X-V ωB97M-V

CBS CBS CBS def2-QZVP def2-QZVP def2-QZVP aQZ

Intermolecular Interactions
S66x8 0.67 0.16 0.13? 0.18 0.16 0.21 0.11

3B-69 Dimers 0.33 0.21 0.18 0.19 0.19 0.20 0.17
SSI 0.36 0.16 0.17 0.15a 0.12 0.16b 0.15b

HBC6 0.32 0.26 0.25 0.37 0.17 0.32 0.24
NBC10 1.55 0.29 0.14 0.33 0.07 0.34 0.17

Charge Transfer 2.72 0.56 0.34 0.77 0.62 0.57 0.45
HB375 0.43 0.16 0.13 0.14 0.13 0.17 0.19
IHB100 0.45 0.46 0.34 0.41a 0.26a 0.37a 0.35

Conformational Energies
SCONF 0.31 0.35 0.18? 0.26 0.13 0.21c 0.24
ACONF 0.11 0.07 0.12 0.08 0.24 0.06c 0.08

Amino20x4 0.26 0.17 0.18 0.16 0.17 0.24c 0.24
MCONF 1.02 0.40 0.33 0.55 0.19 0.27c 0.39

PCONF21 1.11 0.42 0.31 0.48 0.23 0.35c 0.69

Reaction Energies
DARC 3.97 1.90 1.41? 1.10 0.64 4.38c 0.98
ISO34 1.68 1.42 0.96 1.06 0.49 1.56c 0.82
ISOL24 3.72 2.81 2.24 2.71 1.73 4.20c 2.41
IDISP 7.03 1.42 1.29 1.60 0.67 3.88c 2.83

Overall Relative RMSE Statistics (%)
Mean 21.3 7.7 5.9 8.1 4.9 9.5 8.2

Median 11.5 5.8 4.4 5.5 4.1 5.3 4.5
a aug-cc-pVQZ basis b Ref 65, aug-cc-pVTZ basis. c Ref 3

ing sets as well. For example, spin-component-scaling reduces the
NBC10 RMSE by a factor of two, from 0.29 kcal/mol for MP2D
to 0.14 kcal/mol for SCS-MP2D. More typically, SCS-MP2D re-
duces the MP2D errors by around a third or less for many of the
intermolecular interaction sets. Spin-component scaling tends to
improve the MP2D performance on ionic and hydrogen-bonded
systems, even though those generally are reasonable even with
MP2 and MP2D already. Interestingly, SCS-MP2D also performs
better than MP2D for systems like the benzene dimer, which ex-
plains much of the improvement observed for NBC10. As dis-
cussed previously,50 the D3 correction has the weakness that its
highly local interpolation scheme for the C6 dispersion coeffi-
cients distinguishes poorly between benzene and ethene, for ex-
ample. So while MP2D performs well for many systems where
dispersion is important, its performance for the benzene dimer
is actually somewhat worse than the fully ab initio treatment
in MP2C (though MP2D still improves dramatically upon MP2).
SCS-MP2D suffers from the same limitations of the dispersion
coefficients, but apparently the spin-component-scaling compen-
sates somewhat, perhaps through an improved description of the
sizable non-dispersion components of the benzene-benzene in-
teraction. For instance, the RMSE for the π-stacked benzene
dimer decreases from from 0.33 kcal/mol with MP2D to 0.13
kcal/mol with SCS-MP2D. SCS-MP2D performs marginally worse

than MP2D on the SSI data set; this issue will be explored in detail
in Section 4.2.3.

One of the key strengths of MP2D and SCS-MP2D over MP2C
is that the atom-pairwise definition of the dispersion correction
allows for correcting both intra- and intermolecular dispersion.
Because it is based on intermolecular perturbation theory, the
MP2C dispersion correction has no effect on intramolecular con-
formational energies. Intramolecular dispersion corrections can
be essential in systems such as the conformational polymorphs of
organic crystals.25,26

Looking at the six conformational energy data sets (1 train-
ing and 5 testing), the MP2D and SCS-MP2D performance trends
are similar to what was observed for the intermolecular inter-
action data sets. The MP2D dispersion correction already im-
proves upon MP2 nicely. Adding the dispersion correction re-
duces the MP2 RMS errors from 1.11 to 0.41 kcal/mol in peptide
conformers (PCONF21) and from 1.02 to 0.42 kcal/mol in mela-
tonin conformers (MCONF). Including spin-component-scaling
reduces those errors ∼20–25% further. Both MP2D and SCS-
MP2D perform about one third better than MP2 for the amino
acid conformations in Amino20x4. The alkane conformations in
(ACONF) are the only data set here where SCS-MP2D (RMSE
0.12 kcal/mol) does not improve upon MP2 (0.11 kcal/mol) and
is somewhat worse than MP2D (0.07 kcal/mol). Fortunately,
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Fig. 2 Comparison of the relative RMSEs for several models on benchmark data sets focusing on (a) intermolecular interactions, (b) conformational
energies, (c) reaction energies, and (d) the union of all training and testing sets. The asterix indicates that S66x8, SCONF, and DARC were involved
in �tting the SCS-MP2D parameters. Note that the large relative RMSE values for NBC10 and PCONF21 partly re�ect the smaller magnitudes of
the benchmark energies in those two sets. The absolute errors for the best-performing models in NBC10 and PCONF21 are similar to those in HB375
and MCONF, respectively (see Table 2).

these errors are small in both absolute and relative terms (e.g.
6.3% for SCS-MP2D).

Finally, we examine the reaction energies associated with Diels-
Alder reactions (DARC, training set), the smaller- and larger-
molecule isomerizations (ISO34, ISOL24), and the IDISP set,
which contains several dimerzation and isomerization reactions
for which intramolecular dispersion matters. Non-dispersion con-
tributions to the correlation energy are expected to be sizable for
reaction energies, so spin-component scaling might be expected
to have a significant impact in these data sets. Indeed, while
MP2D did improve upon MP2 for all four data sets, SCS-MP2D
performs even better. For example, MP2D (1.42 kcal/mol) only
improved upon MP2 (1.68 kcal/mol) by about 15% for the ISO34
small-molecule isomerizations. The MP2D dispersion correction

has a slightly larger impact on the larger-molecule isomeriza-
tions of ISOL24, reducing the MP2 error by ∼ 25% (3.72 to 2.81
kcal/mol). In both cases, however, SCS-MP2D reduces the er-
rors by ∼40% compared to MP2, with RMSE values of 0.96 and
2.24 kcal/mol, respectively. For DARC, which was included in
the SCS-MP2D fitting, SCS-MP2D reduces the MP2 error by 65%,
and it reduces the MP2D error by ∼25%. The IDISP set tends to
exhibit considerable variability in the error statistics achieved by
different models, due to the diverse chemistry and the disparate
energy scales for the different reactions. Regardless, both MP2D
and SCS-MP2D perform very well for this set, with RMS errors of
1.42 and 1.29 kcal/mol, respectively.

As a whole, these benchmark results demonstrate that the SCS-
MP2D model is highly transferable to a wide variety of organic

Journal Name, [year], [vol.],1�17 | 9

Page 9 of 17 Physical Chemistry Chemical Physics



chemistry, despite being fitted to a modest amount of training
data. In most of the benchmarks performed here, the MP2 dis-
persion contributions account for the largest share of the improve-
ment, but the spin-component scaling almost always improves the
quality of the predicted energies further. Given the error statistics
presented here, SCS-MP2D is arguably one of the best-performing
O(N5) correlated wave function methods available today for de-
scribing intra- and intermolecular interactions in organic chem-
istry. However, a better understanding of its overall performance
requires comparing it to state-of-the-art density functionals.

4.2.2 Comparisons to selected density functional models

Four top-performing density functionals were chosen for com-
parison against the dispersion-corrected MP2 models: the
range-separated hybrid functional ωB97X-V, the meta-GGA vari-
ant ωB97M-V, and the double-hybrid spin-component-scaled
functionals DSD-BLYP-D3(BJ) and revDSD-PBEP86-D3(BJ). The
ωB97X-V and DSD-BLYP-D3(BJ) functionals were selected based
on their excellent performance on the GMTKN55 test suite,3

while ωB97M-V was selected because it represents the meta-GGA
rung on Jacob’s ladder of density functionals and generally per-
forms even better than ωB97X-V.4,7

The recently revised DSD functionals (revDSD) perform even
better than the original DSD functionals.10 The improvements
stem primarily from replacing the D3 dispersion correction with
the newer D4 one53 in some of the functionals and from fitting
the empirical parameters to a much larger set of training data.
The revDSD-PBEP86-D3(BJ) functional was selected as a repre-
sentative example of these new functionals. Because SCS-MP2D
could plausibly be developed based on the D4 correction instead
of the D3 one as well, we opted to compare against the D3 version
of revDSD-PBEP86 for the sake of consistency. On the GMTKN55
data set, the revDSD-PBEP86-D3(BJ) functional performs about
0.1 kcal/mol worse than the D4 version in the weighted mean
absolute deviation.10

The double-hybrid ωB97M(2) functional8 would be another
interesting potential comparison, since it performs noticeably
better than the ωB97X-V and ωB97M-V functionals tested here
and even slightly better than the revDSD functionals (e.g. ∼0.1
kcal/mol better than revDSD-PBEP86-D4 for GMTKN55).4 How-
ever ωB97M(2) is not presently implemented in any of the soft-
ware packages used here. Overall, the four functionals selected
here are representative of top-performing functionals in their re-
spective categories.

To facilitate comparisons between the MP2-based methods and
the DFT functionals, Table 2 employs color-coding based on the
relative RMS errors (i.e. RMSE divided by the average magnitude
of the benchmark energy in each set). Dark blue corresponds to
relative RMSEs of 5% or less, light blue to relative RMSEs in the
range 5–10%, orange to those in the range 10–25%, light red
for the range 25–50%, and dark red for larger relative RMSEs.
Figure 2 plots the relative RMSEs for all models except MP2. MP2
is omitted from Figure 2 because its large errors would obscure
the comparison among the better-performing methods.

Considering first the intermolecular interactions, Figure 2a
highlights how most of these dispersion-corrected MP2 and DFT

models perform well, but revDSD-PBEP86-D3(BJ), SCS-MP2D
and ωB97M-V are the clearly the top performers. The most no-
ticeable differences among the models occur for NBC10 and the
charge transfer set. In NBC10, revDSD-PBEP86-D3(BJ) (RMSE
0.07 kcal/mol), SCS-MP2D (RMSE 0.14 kcal/mol) and ωB97M-
V (0.16 kcal/mol) exhibit errors that are a factor of 2–3 times
smaller than those for MP2D and the other two functionals. For
the charge transfer set, all four functionals perform noticeably
worse than SCS-MP2D, especially DSD-BLYP-D3(BJ). Delocaliza-
tion error in approximate functionals hinders the description of
such systems. The inclusion of exact exchange and/or range-
separation in these functionals reduces delocalization error con-
siderably, but the RMSEs for this set remain appreciably larger
than for any of the other intermolecular interaction data sets.

The performance of SCS-MP2D is also competitive with these
density functionals for the conformational energy data sets. No
single model performs uniformly well across all five test sets, but
SCS-MP2D and revDSD-PBEP86-D3(BJ) exhibit the most consis-
tent performance. The revDSD-PBEP86-D3(BJ) functional per-
forms noticeably better for SCONF, MCONF, and PCONF21, about
the same for Amino20x4, and appreciably worse for ACONF.
However, SCS-MP2D either performs better than or is on par with
the other three functionals. ACONF provides the most notable
exception, with the other three functionals performing quite a bit
better than SCS-MP2D and revDSD-PBEP86-D3(BJ). The peptide
conformations in PCONF21 are interesting for two reasons. First,
due to the small average conformational energies, the relative
RMSE values for most models are more than double those of the
other sets, even if the absolute RMSE values are similar to those
in MCONF. Second, while the ωB97M-V functional generally per-
forms very well for conformational energies, its 0.69 kcal/mol
RMSE for PCONF21 is roughly double that of SCS-MP2D (0.32
kcal/mol) and noticeably worse than the other three functionals
(0.23–0.48 kcal/mol).

The behavior of the various models for the reaction energy
data sets follows similar patterns. SCS-MP2D exhibits root-mean-
square errors that are typically ∼20–70% smaller than those
for DSD-BLYP-D3(BJ) and ωB97X-V for DARC, ISO34, ISOL24,
and IDISP. The only exception is that SCS-MP2D and DSD-BLYP-
D3(BJ) perform about the same on IDISP (1.29 and 1.31 kcal/mol
RMSE, respectively). The comparison between SCS-MP2D and
ωB97M-V is more mixed, with SCS-MP2D performing better on
ISOL24 and IDISP, and ωB97M-V giving smaller errors for DARC
and ISO34. As shown in Figure 2c, SCS-MP2D does notably pro-
vide much more consistent relative errors than ωB97M-V, how-
ever (Figure 2). Finally, revDSD-PBEP86-D3(BJ) is the clear win-
ner for these reaction energies, with errors that are often only half
those of SCS-MP2D.

Figure 2d aggregates the relative errors for all methods except
MP2 on all the data sets. It highlights how SCS-MP2D, MP2D, and
all of the density functionals examined here generally perform
well. The best-performing model is revDSD-PBEP86-D3(BJ), but
SCS-MP2D is only moderately worse. The general consistency
of both models across the different data sets is particularly no-
table. This can also be seen from the mean and median statis-
tics of the relative RMSEs for all data sets in Table 2: revDSD-
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PBEP86-D3(BJ) exhibits the smallest mean and median errors of
4.9% and 4.1%, respectively. SCS-MP2D performs a little worse
at 5.9% (mean) and 4.4% (median), and ωB87M-V is close be-
hind with a median error of 4.5%, though its mean error of 8.2%
is much larger due to its poor performance on PCONF21. The
statistics also highlight that MP2D is fairly competitive with DSD-
BLYP-D3(BJ) and ωB87X-V, but those three models represent a
noticeable decrease in accuracy compared to the best three.

In other words, SCS-MP2D is highly competitive with some
of the best density functionals on these benchmark sets. Based
on earlier benchmarks, one anticipates that revDSD-PBEP86-D4
and ωB87M(2) would perform even a little better than any of the
models here. On the other hand, there are some very encouraging
features of SCS-MP2D here. First, while SCS-MP2D has 7 empir-
ical parameters and the DSD functionals have six, ωB97X-V has
10 and ωB97M-V has 12. The fact that SCS-MP2D exhibits good
performance and transferability with a modest number of empiri-
cal parameters speaks well to the physical partitioning of the dis-
persion and residual correlation energies in the model. Second,
substantial error reduction was obtained with the revDSD func-
tionals compared to the original DSD versions by optimizing the
empirical paramaters against a much larger data set.10 This raises
the prospect that a similar strategy might lead to further improve-
ments for SCS-MP2D as well.

4.2.3 Anion-Anion interactions in the SSI data set

Despite overall good performance on the SSI data set65 (RMSE of
0.17 kcal/mol), SCS-MP2D actually performs slightly worse than
the original MP2D method (0.16 kcal/mol). The subset break-
down in Figure 3 makes clear that the interactions involving an-
ions, especially the anion-anion subset, are the primary driver
of this larger RMSE. In fact, MP2 actually performs better than
SCS-MP2, MP2D, and MP2C on this anion-anion subset, which
indicates there may be a general error in the dispersion correc-
tion scheme used in these methods for ionic species (Table 3).
This behavior contrasts the results of the IHB100 data set of 100
hydrogen-bonded ion pairs, where SCS-MP2D performs some-
what better than either MP2 or MP2D (Table 2).

The SSI reference data uses Sherrill’s silver standard DW-
CCSD(T**)-F12 approach. For comparison, we also computed
the energies using conventional CCSD(T)/CBS as computed from
MP2/aug-cc-pV[TQ]Z and CCSD(T)/aug-cc-pVDZ. Changing the
reference data reduces the SCS-MP2D RMSE modestly from 0.77
to 0.65 kcal/mol, but it does not alter the fundamental story that
SCS-MP2D is performing worse than MP2D for the anion-anion
interactions.

For comparison, Table 3 also compares the performance of
several density functionals on the anion-anion subset. With an
RMSE of 0.73 kcal/mol, ωB97X-V performs comparably to SCS-
MP2D. revDSD-PBEP86-D3(BJ) and DSD-BLYP-D3(BJ) perform
only moderately better at 0.62 and 0.50 kcal/mol, respectively. In
contrast, ωB97M-V performs outstandingly with an RMSE of only
0.29 kcal/mol. These anion-anion interactions represent only a
small fraction of the full set, however, and the different models
exhibit much smaller variations in RMSE across the full SSI data
set.

One possible source of the SCS-MP2D behavior (and the two
DSD functionals, to a lesser extent) could lie in the D3 dispersion
correction. The D3 dispersion coefficients are interpolated from
neutral hydrides based on the geometry-dependent coordination
number. They do not, however, directly differentiate between
neutral and ionic environments. Anions tend to be more polar-
izable and likely exhibit stronger dispersion interactions that are
perhaps not handled ideally in the MP2D and SCS-MP2D mod-
els. The newer D4 dispersion correction53 accounts for the effect
of atomic charge in the coordination numbers used to calculate
the dispersion coefficients. Indeed, the performance of the DSD-
family of double-hybrid functionals improves noticeably over a
variety of benchmark sets when the D4 correction is used in place
of D3.10 Perhaps a version of the MP2D-type methods based on
D4 would perform better for these anion-anion interactions. On
the other hand, it is also worth noting that MP2C, which com-
putes the UCHF and CKS dispersion contributions from first prin-
ciples, still performs worse than canonical MP2 and ωB97M-V. In
other words, the worse performance of the dispersion-corrected
MP2 models is probably not entirely due to the D3 dispersion cor-
rection. Exchange-dispersion and induction-dispersion couplings
are also important in ionic interactions,74 and it is possible that
the CKS dispersion correction and/or spin-component scaling in
the MP2D-type methods disrupt some favorable error cancellation
between the UCHF dispersion and those other terms.

4.3 Two Challenging Examples
The data sets examined above provide a broad perspective for
the performance of SCS-MP2D relative to other models, but it
can also be instructive to look at specific, challenging systems.
Here we focus on two: the torsional scan about the key dihe-
dral angle in the ROY molecule24,25,75 and the dissociation of the
anthracene photodimer.50,76,77 Both have proved challenging for
common GGA and hybrid density functionals due to delocaliza-
tion error stemming from changes in the extent of π conjugation
in these systems. Comparing how several top-performing models
behave on these potential energy curves provides further insights
into their capabilities.

4.3.1 ROY dihedral angle scan

The ROY molecule (Figure 4a) holds the current record for the
largest number of fully characterized crystal polymorphs.78–83

These polymorphs exhibit vibrant red, orange, or yellow crystals,
depending on the degree of conjugation between the two aro-
matic rings as governed by the dihedral angle θthio (Figure 4). The
12 characterized polymorphs lie within a narrow ∼1–2 kcal/mol
energy window, and even modest failures to predict these con-
formational energies correctly inhibits accurate energy ranking
of the different crystal polymorphs.24–26,75,79 GGA density func-
tionals such as B86bPBE-XDM typically predict the thermodynam-
ically preferred Y polymorph to be one of the least stable crystal
forms (Figure 5), while red/orange forms are artificially stabi-
lized. Compared to CCSD(T) benchmarks, MP2D predicts the
conformational energies much more reliably than conventional
GGA and hybrid functionals, and it is one of the relatively few
methods that has been shown to predict the polymorph stabilities
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CCSD(T)-F12 reference values of ref 65.

Table 3 Root-mean-square errors for various models in the anion-anion interaction subset of SSI compared to those for the full SSI data set, using
the benchmark DW-CCSD(T**)-F12 reference values of ref 65.

Method Anion-Anion Subset Full SSI Set
MP2/CBS (Ref 50) 0.36 0.36

MP2C/CBS (Ref 50) 0.43 0.12
MP2D/CBS (Ref 50) 0.43 0.16

SCS-MP2D/CBS (this work) 0.77 0.17
DSD-BLYP-D3(BJ)/aug-cc-pVQZ (this work) 0.50 0.15

revDSD-PBEP86-D3(BJ)/aug-cc-pVQZ (this work) 0.62 0.12
ωB97X-V/aug-cc-pVTZ (Ref 65) 0.73 0.16
ωB97M-V/aug-cc-pVTZ (Ref 65) 0.29 0.15

largely correctly.25,26

Figure 4 plots the one-dimensional conformational energy scan
for θthio. The geometries were taken from ref 25, where they were
obtained by constraining the dihedral angle at different angles 0–
150◦ (in 10◦ steps) and relaxing all other degrees of freedom
using B3LYP-D3(BJ)/def2-TZVP. Single-point energies were then
computed on these geometries with the various methods consid-
ered in Figure 4. CCSD(T) benchmarks25 predict a global mini-
mum around 120◦. A secondary, more shallow minimum occurs
around 50◦, and it is separated from the global minimum by a
small barrier near 70◦. The biggest challenge along this potential
energy coordinate occurs in the ∼0–80◦ region and above 120◦—
i.e. for the more planar structures.

Typical GGA functionals like B86bPBE-XDM dramatically over-
stabilize the more planar structures (Figure 4a), and this leads to
over-stabilization of the polymorphs with red and orange colors
(R, OP, ON, & ORP; θthio ∼ 20–60◦) relative to the yellow ones
(Y, YN, & YT04; θthio ∼ 100–120◦).24,25,75 This behavior stems
from delocalization error in the functionals artificially stabilizing
the more planar conformations that allow greater conjugation be-
tween the two rings.26 B86bPBE-XDM also shifts the global min-
imum of the scan closer to 130◦ than the true 120◦ value, and it
incorrectly predicts both the position and magnitude of the bar-

rier between the two wells. The hybrid B3LYP-D3(BJ) partially
corrects the energies and positions of the two minima and the
barrier, but not enough.

MP2D performs considerably better than these traditional GGA
and hybrid functionals. It predicts the correct position of the
global minimum, and overestimates the barrier height and sec-
ondary minimum stability by < 0.25 kcal/mol. While the position
of the secondary minimum is ∼10◦ degrees too high with MP2D,
it does position the barrier maximum correctly. SCS-MP2D im-
proves upon MP2D modestly throughout the low-angle range,
such that the minima and barrier maximum are all positioned
correctly. The overall RMSE relative to CCSD(T) is about a third
smaller than that of MP2D (0.12 kcal/mol vs 0.17 kcal/mol).

Consider next the double hybrid DSD-BLYP-D3(BJ) functional
(Figure 4b). It performs fairly well near 120◦ and below 30◦,
but it overestimates the barrier near 80◦ and shifts the angle at
which the minima occur by about 10◦ in opposite directions. This
leads to a distorted potential energy curve. In contrast, the range-
separated hybrid ωB97X-V and hybrid meta-GGA ωB97M-V func-
tionals under-stabilize the low-angle conformations, such that no
minimum occurs near 50◦ at all. So while the magnitude of the
errors at any individual point along the energy surface is not es-
pecially large for those three functionals, the shapes of the po-
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tential energy curves are qualitatively incorrect, particularly for
the ωB97-based functionals. The revDSD-PBEP86-D3(BJ) func-
tional performs the best among the DFT models for this curve,
though whether it or SCS-MP2D performs better is debatable and
depends on which regions of the curve one focuses on.

Figure 5 examines the impact of the conformational energy dif-
ferences on the crystal polymorph stabilities by comparing the
relative lattice energies for the seven polymorphs with experi-
mentally reported enthalpies.84–87 The lattice energies were com-
puted via the monomer-correction approach,26 which models the
crystal energy as a combination of periodic DFT for the inter-
molecular interactions and a higher-level of theory for the in-
tramolecular conformational energy. Here, the intermolecular
part is computed with the B86bPBE-XDM functional (results and
fixed-cell optimized geometries taken from ref 25), while the in-
tramolecular conformational energy correction is computed with
SCS-MP2D and the other methods listed in Figure 5.

Figure 5 highlights how the GGA B86bPBE-XDM overstabilizes
the red and orange polymorphs (R, ON, OP, ORP) relative to
the yellow ones (YN, YT04, Y). Correcting the conformational

energies with MP2D or SCS-MP2D gives results in much bet-
ter agreement with experiment, and only the position of the
YN polymorph differs appreciably from experiment. In contrast,
correcting the conformational energies with DSD-BLYP-D3(BJ)
or revDSD-PBEP86-D3(BJ) only partially resolves the B86bPBE-
XDM problems, with the R polymorph still predicted to be more
stable than form Y. ωB97M-V performs somewhat better, though
it seemingly over-estimates the destabilization of R, OP, ON, and
ORP, which is consistent with the errors seen in the low-angle re-
gion of conformational energy scan (Figure 5). Overall, Figure 5
highlights how the conformational energy errors seen in Figure 4
impact polymorph energy differences.

The comparison against experiment assumes that B86bPBE-
XDM is adequate for describing the intermolecular interactions
in the crystal, and it neglects phonon contributions to the en-
thalpies.25 Performing the conformational energy correction with
CCSD(T) leads to polymorph stabilities that are seemingly slightly
worse than the MP2D or SCS-MP2D ones compared to experi-
ment, which is presumably an artifact of those other approxima-
tions and differing degrees of fortuitous error cancellation. In any
case, the SCS-MP2D-corrected polymorph energies exhibit better
agreement with the experimental and CCSD(T)-corrected ener-
gies than do any of the density functionals.

4.3.2 Anthracene photodimerization

The anthracene photodimerization potential energy surface is an-
other system that challenges wave function and DFT methods
alike. This photochemical reaction converts two non-covalent π-
stacked anthracene molecules to form the covalently linked “but-
terfly” photodimer product (Figure 6). The difficulty of modeling
the energy difference between reactants and products with elec-
tronic structure methods was first highlighted by Grimme.76 The
largest difficulty lies in the photodimer product, which exhibits
atypically long C-C single bonds between the rings, highly dis-
torted “anthracene” moieties with diminished π conjugation, and
strong close-range van der Waals dispersion interactions between
rings. This reaction is also of practical importance, as there has
been considerable interest in anthracene-based photomechanical
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Fig. 6 Potential curves along the anthracene photodimerization curve for (a) the photodimer and (b) the π-stacked non-covalent dimer.

materials,88–91 Problematic energy predictions for this reaction
directly impact the ability for modeling to help understand those
systems77 and design anthracene derivatives with improved pho-
tomechanical switching properties.

To study this system, a one-dimensional reaction coordinate as
a function of the separation between the two anthracenes has
previously been constructed.50 At each constrained separation of
the four carbons involved in forming the new bonds, all other de-
grees of freedom were relaxed. Two caveats regarding this energy
curve here should be noted: (1) The constraints applied to gener-
ate this curve enforce a symmetrically stacked sandwich π dimer,
while the true system would offset the anthracene molecules lat-
erally at longer interdimer separations. (2) No effort was made
to model the excited-state chemistry or the multi-reference char-
acter associated with the forming/breaking of two covalent C-C
bonds simultaneously in the intermediate region between ∼2–
3 Å. The spin-restricted wave functions used here will perform
poorly in this region; our focus lies on the reactant and product
basins. A full potential energy curve is provided in SI Section S4
for completeness.

Figure 6 shows how several different methods perform in the
non-covalent π stacked region (near 3.6–3.8 Å) and the covalent
photodimer region (near 1.6 Å). Though not shown here, tra-
ditional GGA and hybrids like B86bPBE-XDM and B3LYP-D3(BJ)
perform poorly for this system, exhibiting errors of up to tens of
kcal/mol and predicting the photodimer product to be less stable
than two non-interacting anthracene molecules.50,76,77 In con-
trast, MP2D performs quite well relative to CCSD(T).50,77 It binds
both the π-stacked dimer and the photodimer a few kcal/mol
too tightly, but the systematic nature of the error between the
two energy wells leads to a photodimerization reaction energy
of -2.8 kcal/mol that agrees almost perfectly with the CCSD(T)
value of -2.9 kcal/mol (Table 4). It also improves considerably
over MP2 (not shown here).50 SCS-MP2D performs a little bet-
ter than MP2D—it slightly reduces the errors relative to CCSD(T)
in the two minima, and it actually mirrors CCSD(T) almost per-
fectly in the bond-breaking region near 2.5 Å, unlike MP2D. The
SCS-MP2D reaction energy of -3.3 kcal/mol is also in excellent
agreement with CCSD(T).

The density functionals examined here perform better than tra-
ditional GGAs and hybrids for this reaction, but flaws remain. In
particular, ωB97X-V and ωB97M-V both overbind the photodimer
and underbind the π dimer. This means that the errors com-
pound when computing the reaction energy, and the resulting ∆E
is much too exothermic (-9.2 and -12.3 kcal/mol, respectively,
Table 4). DSD-BLYP-D3(BJ) reverses the binding trends com-
pared to those two functionals, and it incorrectly predicts almost
zero energy difference between the two species. revDSD-PBEP86-
D3(BJ) gives the best DFT reaction energy of -2.0 kcal/mol,
though it still performs a little worse that SCS-MP2D.

Table 4 also lists RMSE values relative to the CCSD(T) bench-
marks, as computed across all data points used in each of the
two basins. In the non-covalent π dimer basin (3.2–6 Å), MP2D,
SCS-MP2D, and all three functionals perform very well, with er-
rors of 0.5 kcal/mol for SCS-MP2D and 0.7–1.2 kcal/mol for the
four functionals. In contrast, the errors in the photodimer basin
(1.4–2.0 Å) are somewhat larger for ωB97X-V (6.4 kcal/mol)
and ωB97M-V (4.6 kcal/mol), compared to only 1.2 kcal/mol for
SCS-MP2D and 1.8 kcal/mol for revDSD-PBEP86-D3(BJ). Over-
all, spin-component scaling reduces the MP2D errors by about a
factor of two across these two basins, and SCS-MP2D reproduces
this challenging CCSD(T) potential energy curve more faithfully
than any of the four density functionals.

Table 4 Reaction energy ∆Erxn for anthracene photodimerization, 2
C14H10 −→ (C14H10)2,a in kcal/mol. Root-mean-square errors relative to
the CCSD(T) benchmarks are also presented for the photodimer (1.4�
2.0 Å) and π dimer (3.2�6.0 Å) basins from Figure 6.

Root-Mean-Square Error
Method ∆Erxn

a Photodimer π Dimer
CCSD(T) -2.9

MP2 -5.7 10.0 5.1
MP2D -2.8 2.0 1.3

SCS-MP2D -3.3 1.2 0.5
DSD-BLYP-D3(BJ) 0.1 1.5 0.9

revDSD-PBEP86-D3(BJ) -2.0 1.8 0.8
ωB97X-V -12.3 6.4 1.2
ωB97M-V -9.2 4.6 0.7

a ∆Erxn = E(1.6 Å)−E(3.6 Å)
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5 Timings

The computational cost of SCS-MP2D is functionally equivalent
to that of MP2, since the dispersion correction incurs only force-
field-like cost. With modern density-fitting approximations, the
cost of MP2 is comparable to or faster than several of the other
functionals considered here. Table 5 compares the relative tim-
ings of several density functionals against SCS-MP2D. In addi-
tion to DSD-BLYP-D3(BJ), ωB97X-V, and ωB97M-V, Table 5 also
includes timings for the widely-used global hybrid B3LYP-D3(BJ)
functional and the meta-GGA B97M-V (for comparison against the
range-separated version). For consistency, all calculations were
performed in PSI4 and with the aug-cc-pVQZ basis set. Density
fitting was used for both the self-consistent field (SCF) and pertur-
bative correction portions of the calculations, and core electrons
were frozen for the perturbation corrections. All other parame-
ters, including integral thresholds and exchange correlation inte-
gration grids, were left at their default values. Timing data is pre-
sented the 33-atom amino acid tyrosine (Amino20x4 geometry
TYR_xab) and for the 81-atom lanosterol (ISOL24 geometry i4e).
The timings are relative to SCS-MP2D, which took 27 minutes and
9.7 hours of wall time, respectively. As can be seen from the table,
SCS-MP2D, B3LYP-D3(BJ), and DSD-BLYP-D3(BJ) exhibit compa-
rable computational cost. The DSD-BLYP-D3(BJ) calculations are
slightly more expensive per SCF iteration, but SCS-MP2D requires
2-3 additional SCF cycles to converge in these examples due to the
tighter default PSI4 convergence criterion (10−8 hartrees for MP2
calculations vs. 10−6 hartrees for the DFT functionals). On the
other hand, SCS-MP2D is ∼2–2.5 times faster than the ωB97X-V
and ωB97M-V functionals, despite the stricter SCF convergence
criterion in SCS-MP2D. In other words, for a given choice of ba-
sis set, SCS-MP2D requires similar or less time than these state-
of-the-art functionals. A significant fraction of that cost is asso-
ciated with the range-separated hybrid nature of the function;
the meta-GGA B97M-V functional is considerably faster than its
range-separated hybrid analog, ωB97M-V.

Timing comparisons in practical applications will depend on
basis set, of course. For example, including an SCS-MP2D/aug-cc-
pVTZ calculation to enable extrapolation to the CBS limit would
increase the SCS-MP2D cost by 10–20% in these two species, but
it would still be roughly twice as fast as the ωB97X-V and ωB97M-
V functionals. On the other hand, changing the basis set to def2-
QZVP or def2-QZVPPD would reduce the DFT costs appreciably
while probably maintaining good accuracy. DFT functionals often
perform better in smaller basis sets than do MP2 methods, though
large basis sets such as def2-QZVPPD, pc-3, aug-pc3, or aug-cc-
pVQZ are recommended for use with the ωB97M-V functional,
for example.7

6 Conclusions

The last decade has witnessed substantial performance improve-
ments in lower-cost models based on DFT and MP2. This study
presented a new spin-component-scaled, dispersion-corrected
MP2 model that provides accuracy that is competitive with some
of the best density functional models for intermolecular interac-
tions, conformational energies, and thermochemistry in organic

Table 5 Relative PSI4 wall times for several of the density functionals
considered here compared to SCS-MP2D, all employing the aug-cc-pVQZ
basis set and density �tting. The benchmarks employ 4 (tyrosine) or 6
(lanosterol) cores of an AMD EPYC 7282 processor with 4 gigabytes of
DDR4-3200 MHz random access memory per core and Micron 5300 PRO
solid-state disk storage.

Tyrosine Lanosterol
C9H11NO3 C30H50O

# of basis functions: 2096 4780
SCS-MP2D 1.0 1.0

B3LYP-D3(BJ) 1.1 1.2
DSD-BLYP-D3(BJ) 1.1 0.9

B97M-V 1.6 1.0
ωB97X-V 2.1 2.4
ωB97M-V 2.5 2.6

systems. Indeed, SCS-MP2D out-performs the several state-of-
the-art density functionals in the particularly challenging po-
tential energy curves examined here. Among the benchmark
test sets examined, the largest SCS-MP2D performance improve-
ments over MP2D occur for the non-bonded complexes in NBC10,
charge transfer reactions, the ionic hydrogen bonds of IHB100,
and many of the conformational and reaction energy data sets.
For systems with ∼100 atoms, the computational cost of SCS-
MP2D is also similar to or lower than that of top-tier range-
separated and double-hybrid density functionals.

SCS-MP2D is the first spin-component-scaled model for which
a single set of spin scaling coefficients can describe both inter-
and intramolecular interactions well. The fact that the seven em-
pirical parameters in SCS-MP2D could be trained using a rela-
tively small amount of training data while maintaining excellent
transferability to new systems suggest that the partitioning of the
MP2 corrections into an improved treatment of dispersion plus
a re-weighting of the residual correlation energy components is
theoretically sound. Overall, this research shows that correlated
wavefunction methods continue to provide a viable alternative to
DFT for even reasonably large molecules.
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57 J. Řezáč, K. E. Riley and P. Hobza, J. Chem. Theory Comput.,
2011, 7, 2427–2438.

58 E. R. Johnson, P. Mori-Sánchez, A. J. Cohen and W. Yang, J.
Chem. Phys., 2008, 129, 204112.
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