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The fundamental construct of organic chemistry involves understanding molecular behavior through functional groups.
Much of computational chemistry focuses on this very principle, but metallic materials are rarely analyzed using these
techniques owing to the assumption that they are delocalized and do not possess inherent functionality. In this paper, we
propose a methodology that recovers functional groups in metallic materials from an energy perspective. We characterize
neighborhoods associated with functional groups in metals by observing the evolution of Bader energy of the central cluster
as a function of cluster size. This approach can be used to conceptually decompose metallic structure into meaningful
chemical neighborhoods allowing for localization of energy-dependent properties. The generalizability of this approach
is assessed by determining neighborhoods for crystalline materials of different structure types, and significant structural
defects such as grain boundaries and dislocations. In all cases, we observe that the neighborhood size may be universal—
around 2-3 atomic diameters. In its practical sense, this approach opens the door to the application of chemical concepts,
e.g., orbital methods, to investigate a broad range of metallurgical phenomena, one neighborhood at a time.
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1. Introduction

Chemical properties such as reactivity in molecular systems originate from functional groups,
which retain their chemical identity regardless of the constitutive environment. Taking organic
chemistry as the quintessential example, understanding the chemistry of a moderate number
functional groups has made it possible to predict the properties of complex molecules. The
functional group concept has also been useful in studying and manipulating the properties
of many classes of materials, like carbon nanotubes [1], metal organic frameworks [2], and
proteins [3]. Amongst those materials that have not benefited from this chemical analysis are
metals—owing to the assumption that they are delocalized structures that do not possess an
equivalent of functional groups. Here we test this assumption, by devising a methodology to
determine and assess functionality associated with metallic materials.

Functionality is a well-studied chemical concept. An important early investigation by
Bader and Beddall showed that it is possible to spatially partition molecules into volumes
with well-defined energies and boundaries [4]. In his book, Bader mentions, “The primary
purpose in postulating the existence of atoms in molecules is a consequence of the observation
that atoms or groupings of atoms appear to exhibit characteristic sets of properties (static,
reactive, and spectroscopic), which, in general, vary between relatively narrow limits”. He
defines this grouping of atoms as a functional group. He further adds, “In some series of
molecules, the variation in the properties is so slight that a group additivity scheme for certain
properties, including the energy, can be established”[5]. When such a condition exists, these
atomic groupings are said to possess transferability - i.e., their energy and other properties
are insensitive to the local environment. In his earlier work to assess transferability of a
bonded fragment, Bader observed that the difference in charge distribution and energy of CO
in CO2 and OCS is very small. He thus perceived a measure of transferability of functional
groups being determined by the extent to which their charge distributions remain unchanged
during transfer between systems [6–8]. These functional groups seemed to have an associated
“neighborhood” wherein atoms felt its effect. Successive analyses that followed on the concept
of transferability and its applications involved a rigorous investigation of charge distributions,
and notably, not much attention was given to how the energy of functional groups evolve when
moved from one constitutive environment to another [9–13].
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A more recent perspective on functionality was presented by Prodan and Kohn as the theory
of nearsightedness of electronic matter (NEM). NEM derives its name from the observation
that atoms “see clearly” only nearby atoms [14, 15]. Rigorously, it posits that for a fixed
chemical potential, the charge density, ρ(r), and local properties originating from ρ(r) are
sensitive to changes to the external potential within some neighborhood with nearsightedness
range Rc. Changes to the potential beyond Rc—no matter how large—do not significantly
affect the density. NEM has been argued to be the foundation of many chemical concepts
including “divide and conquer”,“chemical transferability”, and Pauling’s “chemical bond”
[16–21].

To quantify NEM and transferability of functional groups, one must determine the neigh-
borhood size wherein its effects are felt. In this context, of particular relevance is the work
done in [10] to determine the “nearsightedness range”. The authors investigated changes to ρ
with changing molecular structure using the softness kernel. They argued that the effect of a
functional group is felt only in a neighborhood about 3 atoms away, and structural changes
that are farther from the neighborhood do not produce significant chemical effects. They
showed that the correct view of nearsightedness and functionality is to picture it as a process
under constant chemical potential consistent from the perspective that reactions are carried
out in a solvent.

However, there is another equally valid way to envision functionality—more in keeping with
Bader’s idea of additivity—as the successive addition of environments around a functional
group. In accordance with this view, we consider change in energy associated with adding
successive coordination spheres about a central atom, and investigate the viability of these
energy changes to determine neighborhood size, consequently serving as a means to describe
metallic functionality. We propose a methodology to assess ρ sensitivity in these systems
through changes in Bader atom energies. Identifying these neighborhoods in metals enables
localization of structural perturbations that significantly alter energy.

When calculating Bader atom energies using the virial theorem there are several approaches
(see SI for a more complete discussion). Of note is one method that treats the total kinetic
energy as the sum of the noninteracting and correlation kinetic energy (Ts +Tc). Another often
used approach represents the total kinetic energy by the product of the noninteracting kinetic
energy and the virial factor (Ts*VF) [22]. Although both representations yield similar energy
differences, those obtained through the Ts*VF representation, which implicitly include the
exchange and correlation contributions to total energy, have been found to be more sensitive
to the small contributions to the energy in unrelaxed systems, and to work well with metallic
clusters. Accordingly, our calculations of Bader atom energies make use of this method.

As an initial step in validating our approach to identifying metallic functionalities, we
explored the evolution of energy for a well-understood organic functional group, i.e., an
aldehyde, by growing the hydrocarbon chain to which it is attached. Our approach was
intended to quantify the associated neighborhood of the aldehyde functional group. We
considered CHO(CH2)nH for our calculations, and varied n from 0 to 7. In accordance with
the virial theorem, we utilized Bader partitioning to subsequently compute the energy of the
aldehyde functional group (defined as the sum of the Bader energies of C, H and O) for each
step, as summarized in Fig. 1 [5, 13].

Consistent with our expectations, the energy is an exponentially decaying function. The
energy change beyond 3 carbon atoms from the functional group, is found to be less than
three-tenths of an eV, coming to less than one-tenth of an eV between carbons 6 and 7. Our
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Fig. 1. The evolution of energy of an aldehyde group with increasing carbon atoms in the attached hydrocarbon chain.

Fig. 2. A schematic of the series of cluster calculations for metallic materials is presented here. The cluster to the left indicates the central cluster Ω.
The cluster in the middle indicates the central atom surrounded by 4 coordination spheres, and the one to the far right denotes a critical cluster with n

coordination spheres.

observations from energy evolution retrieve similar results from the softness kernel analysis in
[10]. Armed with these findings, we now move onto metals.

2. Neighborhoods in Metallic Materials

For the calculations summarized here, our general approach is to consider a “central cluster” Ω
of radius RΩ consisting of an atom and its first coordination shell—i.e., first nearest neighbors.
We isolate this cluster from its constitutive environment and compute its energy. Subsequently,
we compute the changes to this energy ∆εΩ as the atomic environment at successively greater
distances from Ω are restored. Simply, we include concentric “spheres” containing second
nearest neighbor atoms, third nearest neighbor atoms, and so on through nth nearest neighbor
atoms. A schematic of this series of cluster calculations is presented in Fig. 2. Beyond some
R (or equivalently, n), we expect ∆εΩ will asymptotically approach zero and be small in
comparison to a phenomenon specific characteristic energies—in our case, cohesive energy.
This “critical cluster,” denoted as Rc, defines the neighborhood associated with the property
of interest. We hypothesize that structural changes beyond Rc, no matter how large, will not
significantly affect cohesive properties.

Through the aforementioned methodology we were able to calculate the central atom energy
Ex

n as a function of adding successive coordination shells. Here x indicates the element and
n indicates the number of coordination shells surrounding the central atom. Adopting this
notation, the energy of an isolated atom is represented as Ex

0 and the energy of single atom
contained in an extended system as Ex

∞. It then follows that the formation energy, Ef , of an
elemental crystal is given as Ef = Ex

∞ − Ex
0 .

When crystalline systems are analyzed as progressively larger clusters, there exists a
decreasing perturbative influence on the central atom due to the increasingly distant free surface.

Rajivmoorthy et al. 3

Page 3 of 16 Physical Chemistry Chemical Physics



This perturbation energy to the central atom as a function of n is given by ∆Ex
n = ∆Ex

n −∆Ex
0 .

As n increases, the value of ∆Ex
n will approach the crystal formation energy Ex

f . This
perturbative effect can also be equivalently interpreted as stabilization of the central atom (or
central cluster) as a result of embedding in progressively larger coordination environments. Both
interpretations offer conceptual advantages when seeking to understand metallic functionality.

We now define a stabilization function, ∆εx
n ≡ | Ex

∞ − Ex
n |, giving the magnitude by which

the energy of an atom in an extended system is perturbed by the complete removal of all
material beyond its nth coordination shell. Where the system of interest is a perfect crystal,
this function may be placed in a convenient form by adding and subtracting Ex

0 ,

∆εx
n = | (Ex

∞ − Ex
0 ) − (Ex

n − Ex
0 ) | = | Ex

f − ∆Ex
n | [1]

where ∆Ex
n ≡ Ex

n − Ex
0 is a stabilization function giving the per atom energy change to Ω

through the successive addition of n coordination spheres.

3. Computational Setup

Eleven crystalline elements (Al, Si, V, Cu, Nb, Mo, Tc, Ru, Rh, Pd, Ag) were modeled as
clusters created with n varying from 0 to as large as 11. To model defect structures, we
considered an Al dislocation, and grain boundaries in Cu and Fe which were also modeled as
clusters. Density functional theory methods provided within the SCM chemistry and materials
modeling suite [23, 24] were used. The per atom energy of Ω was found similarly using Bader
partitioning precluding relativistic corrections. The omission of relativistic effects should not
significantly effect our conclusions (see SI for more details).

ADF 1 cluster methods were used to calculate ∆Ex
n, while the BAND 2 package was used

to calculate Ef [23–26] for the crystals. Eq. (1) was used to calculate ∆εx
n for a series of

crystalline materials and defect structures, which we then use in a search for functionality.

4. Crystalline Neighborhoods

For the crystal systems, we constructed our calculations in sets of increasing complexity. In
the first set we determined ∆εx

n of four crystals: diamond cubic (DC) silicon, a prototype
covalent material; face centered cubic (FCC) aluminum, a free electron metal; FCC copper, a
d-block metal with a full d-band; and body centered cubic (BCC) vanadium, a metal with a
partially occupied d-band. These elements were chosen both because of their different crystal
and electronic structures, and also because they could be modeled using the same basis set
for both the BAND and ADF cluster calculations, thus minimizing inherent error in the
calculated values of ∆εx

n (see SI). The focus of the second set of calculations was to develop
an understanding of the factors causing variation to the stabilization function across elements
sharing the same crystallographic structure. For this set of calculations we drew from the 4d
transition metals: BCC niobium and molybdenum; hexagonal close packed (HCP) technetium
and ruthenium; and FCC rhodium, palladium, and silver.

4.1. Silicon, Aluminum, Vanadium and Copper.
Silicon possesses the diamond cubic crystallographic structure. Its near neighbor shell structure
is summarized in Table 1, with the central cluster Ω represented by a five atom cluster (Si5)
composed of a central atom and its four tetrahedrally coordinated nearest neighbors.

Relative to the energy of an isolated Si atom, E0, the evolving per atom Bader energy of
Si5—as the coordination environment was increased to include a second, third, fourth and so

1
amsterdam density functional

2
accurate periodic DFT code
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Table 1. The diamond cubic (DC) shell structure. Row 1: Number of the coordination shell.
Coordination shell zero is the central atom. Row 2: Number of atoms in coordination shell n. Row
3: Total number of atoms in the cluster of n coordination shells. (Hard sphere representations of
some of these clusters are provided in the SI.) Row 4: Radius of the cluster, i.e. distance between
the central atom and the atoms of the nth shell in atomic diameters or equivalently nearest neighbor
separations.

Coordination shell n 0 1 2 3 4 5 6 7 8 9 10 11
Number of nth neighbors 0 4 12 12 6 12 24 16 12 24 12 8
Total atoms in cluster 1 5 17 29 35 47 71 87 99 123 135 143

Cluster radius 0 1 2
√

2
3

√
11
3 4

√
1
3

√
19
3 2

√
2 3 4

√
2
3

√
35
3

√
43
3 4

Table 2. Si atomic diameter, energy of formation, isolated atomic energy, and changes in central
Bader atom energy resulting from the addition of cluster coordination spheres (∆Ex

n) as described
in the text. Distances are reported in Å and energies in eV. ∆E10 was not determined.

Si diameter (Å) Ef E0 ∆E1 ∆E2 ∆E3 ∆E4 ∆E5 ∆E6 ∆E7 ∆E8 ∆E9 ∆E11

2.352 -5.42 -7865.72 -3.05 -9.01 -5.66 -5.55 -6.09 -6.71 -6.67 -6.12 -5.91 -5.79

on, up to eleven coordination shells—is reported in Table 2 along with the nearest neighbor
distance of Si and its calculated formation energy, Ef .

These results are summarized graphically in the upper left of Fig. 3 where ∆εSi is depicted
as a function of n. This figure represents the sensitivity of Ω to the retreating perturbation,
that is, the distance over which the central cluster Ω can clearly see the free surface. When
the energy goes to zero, from Ω’s point of view, the surface has vanished. Plainly, when the
free surface is infinitely distant from Ω, the per atom energy of Ω will be identical to that
of an atom in crystalline Si. Hence beyond some point the decay of ∆ε will approach zero
asymptotically. In fact, because for both ordered and disordered gapped materials3 the change
in the density due to a perturbation at R decays exponentially with R,[14] it is arguable that
energy decay should not only be asymptotic but exponential.

Regardless, inspection of Fig. 3 reveals that the onset of the asymptotic/exponential decay
begins with coordination shell seven, where the per atom energy difference between crystalline
silicon and the central cluster Ω is on the order of an eV, decreasing to 0.36 eV at eleven
coordination shells—thus defining the critical cluster size to be 3 atomic diameters beyond Ω.

Inherently, the variation of ∆ε originates from changes to the central cluster charge density
[27]. And just as the energy of a central cluster within an infinitely distant free surface will be
equivalent to that of a crystal, so too will its charge density be identical to the crystalline
density. For all elemental crystals, equivalence between the central cluster and crystalline
charge densities is required when the Bader atom surfaces of the central cluster are coincident
with the crystalline Voronoi polyhedra (cells) about each atom. Quite generally, the difference
between the surface of a cluster’s Bader atoms and a crystal’s Voronoi cells provides a measure
of their charge density differences, which vanish when the two surfaces coincide [8].

A Bader atom’s surface must contain local charge density minima. (In the chemical literature
[5] these minima are called cage critical points to indicate that there is one such point interior
to cages of bound atoms.) Plainly, an atom’s local charge density minima may be a finite or
an infinite distance from the atomic nucleus. If all the local minima are a finite distance from
the nucleus, the surface of the Bader atom is topologically connected and the atom is said to
be closed. On the other hand, if even one local minimum is located at infinity, the Bader atom
surface is disconnected and the atom is said to be open. Importantly, for any open Bader
atom there is a path lying entirely within the atom that runs from the location of the nucleus

3
The systems modeled here are all gapped, in that the central cluster energy converges to within ~0.3 eV—our measure of significance—of the formation energy before the energy
difference between the LUMO and HOMO is on the order of kT.
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Fig. 3. The stabilization function (∆εx
n) for the elements Al, Si, V and Cu as a function of n. The callouts in the graphs give the number of atoms in the

representative cluster. For example, an Al cluster representing a central atom and its first 7 coordination spheres will contain 135 atoms.

to a point at infinity. Quite simply, an open atom is characterized by a channel of decreasing
charge density extending from the nucleus to the neighborhood of at least one infinitely distant
point. In contrast, the surfaces of crystalline Voronoi polyhedra are necessarily connected. For
example, the Voronoi cell of the diamond cubic structure is in a class of truncated tetrahedra.

As a means of clarifying this issue, consider the evolution of Ω’s Bader atoms as more
coordination shells are added [27]. In the case of Si, this process is represented in Fig. 4.
The top-left frame depicts the Bader atom surfaces of Si5, or equivalently the interatomic
boundaries between the central atom and its first coordination sphere. This set of surfaces is
constructed from four asymptotic—hence disconnected—surfaces. As a result, all the Bader
atoms of the Si5 cluster are open. In other words, around every point there is a direction in
which the charge density is decreasing and thus local minima are infinitely distant from the
central atom.

The boundary of the central Bader atom evolves with the addition of the twelve atom
second coordination sphere to yield the Si17 cluster pictured in the top-right frame of Fig. 4.
While the asymptotes separating the surfaces of this atom become steeper, the central Bader
atom still extends to infinity. That is, running through all points near the central atom there
is a path of decreasing charge density that leads to infinity. This path will pass through the
“spikes” evident in the top-right frame of Fig. 4.

As depicted in the bottom-right frame of Fig. 4, it is with the addition of the fourth
coordination sphere to make a Si35 cluster that the boundary of the central Bader atom is
topologically connected and the atom is closed. It is at this point that the cages of bound
atoms sharing the central atom as a common vertex are completed, which mandates a single
local minimum at the center of each of these cages. In a sense, it is with the completion
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Fig. 4. Depiction of the central Bader atom surfaces in 5, 17, and 35 atom clusters (1, 2, and 4 coordination shells respectively). Nuclear positions are
indicated by spheres colored according to coordination shell. In Si5 (top-left) the central Bader atom remains clearly open in four regions, one of which is
facing to the left of center, while elsewhere the Bader atom surfaces are essentially converged. With two coordination spheres (top-right; Si17) those same
open regions have closed coincident with topological cage points, and only slivers of very-nearly converged surfaces prevent the Bader atom from being
closed. At four coordination spheres (bottom-right; Si35) the Bader atom has closed completely. The open surfaces in Si5 were truncated according to the
0.001e− charge density isosurface.

of these cages, and the resultant closing of its Bader atom, that the central atom becomes
isolated from the surroundings through an intervening shell of charge density.

While the central atom is closed with the fourth coordination shell, Ω closes at the seventh
coordination shell, i.e. Si87. It is here that the cages having a first coordination sphere atom
as a vertex are completed. In fact, at this point the Bader atoms of Ω possess the topology
of the Voronoi polyhedra of crystalline silicon. And, though Fig. 3 shows only a few points
beyond the seventh coordination shell, ∆ε decreases monotonically (arguably exponential
decay) through these points. Closing of the Bader atoms of the Ω provides a means to identify
and characterize these crystalline neighborhoods.

Returning to the remaining crystals of the first set: Al, V, and Cu. The central cluster of
the FCC metals (Al and Cu) is a cuboctahderon consisting of a central atom and its twelve
nearest neighbors. The central cluster of BCC V is a nine atom cube with an atom at the
cube center and its eight nearest neighbors located at the cube vertices. Pictures of these
clusters along with analogues of Table 1 giving more information regarding the shell structure
of FCC and BCC crystals along with the element specific cluster energy analogues of Table 2
are provided in the SI.

This information is also summarized graphically in Fig. 3 where ∆εn for the central cluster
of each element is plotted as a function of n. In all cases, within ten coordination spheres
∆ε converges to within a fraction of an eV of the computed crystalline formation energy
(∆εAl

9 , ∆εV
10, ∆εCu

9 = 0.30, 0.58, 0.05 eV respectively). More noteworthy however, though the
onset of exponential decay is element dependent—two, three, and five coordination spheres
for V, Al, and Cu respectively—beyond the point where the Bader atoms of Ω close (BCC
clusters of five coordinations spheres and 59 atoms, and FCC clusters also of five coordination
spheres and 79 atoms) ∆ε is monotonically decreasing or level.

Rajivmoorthy et al. 7
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4.2. 4d Metals.
The 4d transition metals required larger basis sets for the accurate determination of Bader
atom energies. Because these basis sets were not available to the BAND calculations, a “basis
set mismatch” error was introduced into the determination of ∆ε. Specifically, we estimate
that the formation energy calculated using the smaller basis sets available to BAND may be
as much as 0.6 eV less than its estimated value from cluster calculations using larger basis sets
(see SI). Nonetheless, for this set of calculations we are more interested in the stabilization
function. Accordingly, ∆E as a function of the number of coordination shells for the BCC
metals Nb and Mo; the FCC metals Rh, Pd and Ag; and the HCP metals Tc and Rh are
shown in Fig. 5. The information contained in these figures is provided in tabular form in the
SI.
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Fig. 5. The change in central Bader atom energy resulting from additional cluster coordination shells (∆E) for the BCC (left column), FCC (center
column) and HCP (right column) 4d transition metals. The red stripes indicate a range for the crystalline formation energy of ±0.3 eV arising from
different basis sets. Insets provide a higher fidelity depiction of ∆E for the three largest clusters of the series.

Consider as a first case the similarities in the form of ∆E for the BCC metals Nb and Mo.
Recall that the central nine atom cluster of a BCC metal closes at 59 atoms or equivalently five
coordination spheres and 2.0 atomic diameters. Figure 5 reveals a rapid decrease of more than
an eV in the central cluster energy on addition of the fifth coordination sphere—transforming
a 51 to a 59 atom cluster; and for both Nb and Mo bringing the central cluster energy to
within 0.3 eV of the estimated formation energy. While in V (Fig. 3) the effect is not as
dramatic, a similar central cluster stabilization is observed. This substantive change in ∆E is
indicative of a strong coupling between the central nine atom cluster and the region extending
from the fifth coordination sphere.

In addition to these similarities there are notable differences, most striking is the stabilization
of the central cluster Ω by the third and fourth coordination shells. For Mo there is a dramatic
stabilization of Ω with the addition of the third coordination shell, while for Nb and V the
same stabilization results from the addition of the third and fourth coordination shells. These
variations reflect stronger coupling between Ω and its immediate surroundings in Mo compared
to Nb and V. A relevant consequence for such a variation is that in Mo the effects of a
perturbation altering the positions of a few atoms will be more localized than those from the
same perturbation in Nb or V.

The decay of ∆ε for the FCC metals—shown in the center column of Fig. 5—also exhibit
similar forms. Notably, the closing of Ω at five coordination spheres and 79 atoms is well
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inside the region of asymptotic decay for all the FCC metals modeled (Al, Cu, Rh, Pd, Ag).
And it is at this size that the energy of Ω falls to within 0.15 eV of the estimated formation
energy for all the 4d FCC transition metals. However, more striking is the central cluster
stabilization from the third coordination shell, which for the 4d transition metals accounts for
the bulk of the stabilization energy. This stabilization can be attributed to the partial closing
of Ω.

Unlike the BCC metals, characterized by a single type of local minimum, the FCC metals
have two: the first at the center of the FCC octahedral hole, and the second at the center of the
FCC tetrahedral hole. The tetrahedral holes of the central atom form with the addition of the
first coordination sphere and the central atom octahedral holes with the second coordination
sphere. The addition of the third coordination sphere at a cluster size of 43 atoms completes
all the tetrahedral holes of Ω. And obviously the octahedral holes of Ω are completed at
the same time as the closing of Ω with the addition of the fifth coordination shell. Even so,
unlike Cu, for the 4d FCC metals, there is little coupling between the central cluster and
the fifth coordination shell. Hence, just as in the case of the BCC metals, the energy of a
perturbation to a small number of atoms in the FCC transition metals will be differentially
distributed in accordance with metal’s stabilization function. Particularly relevant to our
subsequent discussion, perturbation energy will be more delocalized in Cu compared to the 4d
FCC metals.

Lastly, turning to the modeled HCP transition metals where there are four symmetry
unique local minima adjacent to Ω. Like the FCC structure there are both tetrahedral and
octahedral minima. And like the FCC metals, the onset of exponential decay begins with
the addition of the second coordination sphere. However, with Ω possessing D3h symmetry,
the octahedral and tetrahedral holes are split into symmetry unique pairs depending on their
displacement perpendicular or parallel to the 3-fold axis. The central thirteen atom cluster
undergoes significant closure with the third coordination shell and completely closes with the
fifth coordination shell—a cluster of 51 atoms. And beyond which, the stabilization energy
due to successive coordination spheres is a fraction of an eV.

The key point is that across all structure types modeled, the energy of Ω “improves” in lock
step with its progressive closing, and changes by a fraction of an eV when the surrounding
fully close the cluster at a radius of 2.5 to 3 atomic diameters. In other words, the size of the
neighborhoods principally responsible for controlling cohesive properties in all types of crystals,
regardless of the element or structure, is the same. The precise form of the stabilization
function depends on the arrangement of local charge density minima within this volume.

5. Defect Neighborhoods

Defects play a significant role in dictating the properties and performance of materials. For
example, the theoretical strength of mild steel, correlated with its Young’s Modulus, ranges
anywhere from 10-40 GPa [28]. However, its measured tensile strength is much lower -
between 0.7-2.1 GPa. This discrepancy between theoretical strength and measured strength is
attributed to structural defects in the material.

Amongst the more important structural defects affecting performance in metals are disloca-
tions and grain boundaries. A grain boundary is the region of transition between two atomic
arrangements and may be manipulated to enhance strength. Dislocations are characterized
by a partially missing plane of atoms. Their production and mobility, which is the source of
plastic deformation, also influence strength. Inhibiting their motion can lead to undesirable
properties such as brittle failure. This is sufficient evidence to believe that these defect
structures inherently possess functionality, and to determine defect neighborhoods wherein
such energy dependent properties can be localized, we now turn to investigating the central
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cluster energy evolution in these systems.

5.1. Al Edge Dislocation.
An Al edge dislocation was generated via molecular dynamics (see SI). Ω for this structure
was defined to be the 9-atom cluster centered on the non-crystallographic hole intrinsic to the
defect. As in the crystalline studies, we computed the per atom stabilization function (∆E)
for this cluster through the addition of successive coordination shells (though a coordination
shell is somewhat arbitrarily defined for a non-crystalline system) about the central cluster Ω.
The calculated energies and specific structure geometries are summarized in the SI and the
results are shown graphically in Fig. 6.

We observe that Ω is closed by the coordination shell that is 57 atoms and about 2.2 atomic
diameters distant from the cluster center. At this point, the adjoining cages that have one of
the atoms in Ω as a vertex are complete. Beyond this critical cluster size, the central cluster
energy increases and then, as in the crystalline case, appears to asymptotically approach E∞,
which denotes the energy of Ω when contained in an extended system.
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Fig. 6. Schematic representation of Al edge dislocation critical cluster - the red spheres indicate atoms and the cyan octahedron indicates the cage
point on which the cluster is centered (left). Change in Bader energy per atom (∆E) for hole-centered Ω resulting from additional dislocation cluster
coordination shells. Callouts indicate number of atoms constituting the representative clusters. (right)

Not unlike the crystalline calculations, the central cluster of the dislocation undergoes
stabilization as we grow its surrounding coordination shells. From Fig. 6, it is clear that the
central cluster Ω undergoes a stabilizing effect up until it is closed—at which point subsequent
addition of atoms destabilize Ω. This is visibly evident from the increase in ∆E beyond 2.0
atomic diameters. As the system as a whole must adopt an electronic distribution of lowest
energy, this destabilizing effect is permitted only if there is an offsetting energy lowering of
the atoms making up the shells beyond 2.0 atomic diameters.

5.2. Cu and Fe Grain Boundaries.
A well-studied grain boundary both experimentally and computationally is a symmetric 36.8◦

<001> (310) type tilt boundary in Cu which Duscher et al.,[29] determined via atomic resolution
x-ray diffraction to be characterized by a repeating kite structure represented schematically in
Fig. 7. The atoms immediately adjacent to this site form a roughly pentagonal coordination
shell of 14 atoms. We take this 14 atom shell containing a central Cu atom as the central
cluster Ω for our investigation. For this symmetric grain boundary coordination, this cluster
is dominated by tetrahedral holes arranged in a manner incommensurate with crystal packing
[30].
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Fig. 7. Depiction of the symmetric 36.8◦ (310) <001> type tilt boundary cluster. A simulated image of the grain boundary region from reference [29] with
the structural unit is indicated (top). The 2-dimensional repeating structural unit (middle), and the corresponding 3-dimensional central cluster with the
Cu atom in the center (bottom) are shown. The atoms are color coded based on their positions in the coordination sphere; and the central cluster is
represented by the first coordination sphere. The XZ plane, indicated by the gray plane in the bottom frame coincides with the grain boundary plane and
corresponds to the grey shaded rectangle in the middle frame, where the same atom coloring is used to show the central cluster atoms in the boundary.

We similarly computed the stabilization function for the central cluster through larger
coordinations. The calculated energies are given in the SI and the results are shown graphically
in Fig. 8. The grain boundary central cluster is fully closed by the coordination shell 2.3 atomic
diameters distant from its center and containing 77 atoms Fig. 9. And as with the crystalline
systems, beyond this point the stabilization function for Cu containing clusters appears to
be asymptotically converging on E∞ which we estimate to be at 2.7 atomic diameters and 97
atoms (see SI)4.

As in the case of the Al dislocation, inspection of Fig. 8 reveals two regions of significant
coupling to the Cu containing central cluster. The first region, which again clearly is stabilizing,
occurs with the shells between 1.7 atomic diameters containing 23 atoms and 1.9 atomic
diameters containing 47 atoms, and correlates to the closing of the non-crystallographically
arranged holes adjoining the central cluster (Fig. 9).

4
using the number of points in Fig. 8, we could more accurately determine E∞ for the Cu grain boundary than we did for the Al dislocation, thus confirming that ∆E for these
defects ultimately converges to E∞
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Fig. 8. Change in central cluster Bader energy resulting from additional grain boundary cluster coordination shells. Per atom ∆E for Cu atom centered
grain boundary clusters. Callouts indicate number of atoms constituting the representative clusters.

Fig. 9. The polyhedral stacking picture for the 77-atom cluster of FCC symmetric 36.8◦ <001> (310) type tilt boundary in Cu. The black spheres represent
Cu atoms, and the grain boundary is defined by a repeated stacking of hole-centered polyhedra, i.e., trigonal capped prisms (TCP) and pentagonal
bipyramids (PBP) [30]. Octahedra (oct) and tetrahedra (tet) from the bulk closest to the grain boundary are now closed at this cluster size.

The second region, which destabilizes the central cluster, occurs with the shells between 2.2
atomic diameters containing 63 atoms and 2.3 atomic diameters containing 77 atoms. Again,
this is only possible through an offsetting energy lowering of the atoms making up the shells
between 2.2 and 2.3 atomic diameters.

To model another defect neighborhood, we looked at a symmetric 53.1◦ (210) <001> type
tilt boundary in FCC Fe. We chose the central cluster Ω this time encapsulating a grain
boundary cage point, defined by a 9-atom trigonal capped prism (Fig. 10). The stabilization
function for Ω also reveals a similar trend to the Cu grain boundary calculations. At 1.6
atomic diameters and 29 atoms, the non-crystallographic tetrahedra adjoining the trigonal
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capped prism are closed, leading to the characteristic stabilization visible by a decrease in
∆E. Ω in this case is closed at 1.8 atomic diameters and 41 atoms—when the tetrahedral and
octahedral cages immediately adjoining Ω are closed.
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Fig. 10. Schematic representation of the grain boundary and its 9-atom central cluster (top). Change in central cluster Bader energy resulting from
additional grain boundary cluster coordination shells for FCC Fe. ∆E for Fe cage-centered grain boundary clusters. Callouts indicate number of atoms
constituting the representative clusters.

6. A Functional Group Perspective of Defect Stability

We hypothesize that the local structure of metals is mediated by the surrounding neighborhood
extending 2 to 3 atomic diameters distant. In further support of this hypothesis we point
to experimental and computational investigations of lattice relaxations [31–33] showing that
only the first four or five atomic layers (3 atomic diameters) adjacent to a clean surface
show measurable shifts from their bulk spacings. In fact, shifts of the fourth and fifth layer
are observed at cryogenic temperatures as they are comparable to the amplitude of room
temperature lattice vibrations. Also noteworthy is the experimental and theoretical evidence
that the structure of small metallic clusters is far from crystallographic [34–39]. For example,
experimental characterization to determine the structure for Ag and Fe microclusters showed
that clusters that have radii less than 3 atomic diameters are inconsistent with crystal packing
[39].

This hypothesis invites a functional group interpretation of metallic behavior. We have
identified two broad metallic functionalities: one crystalline and one defect. Both are contained
in neighborhoods roughly 3 atomic diameters in radius. Using the Cu grain boundaries to
illustrate, crystalline atoms are essentially blind to grain boundaries more distant than 3
atomic diameters. The same is true of atoms located on the grain boundary, which cannot
see the crystalline atoms 3 atomic diameters away. However, the atoms in this three atomic
diameter “frontier” region see both environments. These atoms are frustrated by the fact that
the alignment of the d-orbitals that maximally stabilize the crystalline functionality differ
from the alignment that stabilize the grain boundary environment. Simple group-theoretical
arguments will help to clarify this conjecture.

The local symmetry about the center atom of the grain boundary cluster depicted in Fig. 7
is approximately D5h, giving a natural coordinate system, (X, Y, Z), in which the Z-direction
is aligned with the pentagonal axis (a <310> direction) and the XY-plane is coincident with
the grain boundary plane. As a consequence, the d-orbitals on this central atom will be
split into three sets. The first containing the dZ2 orbital, the second containing dXZ and
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dYZ orbitals, and the third containing the dXY and dX2−Y2 orbitals. Importantly, linear
combinations of the elements of the second set will always produce two nodal planes, one in
the grain boundary plane and another in a perpendicular plane containing the Z-axis. Linear
combinations of the elements of the third set will also produce two perpendicular nodal planes
that will intersect along the Z-axis.

On the other hand, the natural crystalline coordinate system, (x, y, z), will align with the
<001> directions to produce two d-orbital sets: the first containing the dxy, dxz, and dyz

orbitals, and the second containing the dz2 and dx2−y2 orbitals. Each element of the first
set has two perpendicular nodal planes drawn from the family of {100} planes, while linear
combinations of the second set produce perpendicular nodal planes drawn from the family of
{110} planes.

Interactions between atoms are maximized through the alignment of their respective nodal
planes [40]. Such orientations optimize orbital overlap and thereby lower the system energy.
Hence, enhanced stability for the atoms of the frontier region between the grain boundary and
the bulk crystal will be achieved by either aligning nodal surfaces with the grain boundary
(X, Y, Z) frame or by aligning them with the crystalline (x, y, z) frame. In general, the
simultaneous alignment with both frames is geometrically impossible, leading to the frustration
apparent in the Cu grain boundary stabilization function of Fig. 8.

Inspection of Fig. 8 reveals that the energy of the central 15 atom cluster is decreased by
successive coordination spheres until reaching a cluster size of about 47 atoms. Through this
process the atomic d-orbitals of the surrounding coordination spheres align themselves with
the (X, Y, Z) frame so as to optimize their overlap with the grain boundary atoms. However,
the central cluster energy begins to increase for cluster sizes beyond 2.1 atomic diameters—
dramatically so for cluster between 63 and 77 atoms. As the central cluster sees the enlarging
crystalline environment, speaking anthropomorphically, the atoms of the first coordination
shell of the central cluster choose to aligning their d-orbitals with the crystalline (x, y, z)
frame and promote crystalline stability at the expense of the local boundary environment. It is
noteworthy that at a cluster size of 77 atoms, the crystalline octahedra and tetrahedra closest
to the grain boundary are closed (Fig. 9). We have previously shown that these polyhedra
and their stacking are important in describing the stability of transition metals [41], and now
find that they play a role in mediating defect stability as well.

Note that the stability functions for all the defects modeled show a stabilizing effect from the
nearest coordination spheres followed by a destabilizing effect as the crystalline environment
grows. Thus, depending on the structure and underlying chemistry of a defect, frontier atoms
may either promote local or crystalline stability. The extent of this competition seems to
us to be an important factor influencing defect properties and motivated our preliminary
investigation of Bi-doped FCC symmetric 36.8◦ <001> (310) type tilt boundary in Cu.

Bi atoms segregate to and embrittle Cu grain boundaries [42–46]. Shown in Fig. 11 is a
comparison of the stabilization function for the pure copper boundary (shown previously as
Fig. 8) with one in which the central Cu atom—a known site for Bi segregation [29]—has been
replaced with a Bi atom. It is evident that the Bi-doped Cu grain boundary does not possess
the region over which the local structure is destabilized, indicating that Bi more strongly aligns
the d-orbitals of the Cu atoms in its first coordination shell with the local coordinate frame
at the expense of the crystalline structure. Though further work is needed, this stabilization
behavior may be a characteristic of embrittling segregants. This result partially supports the
argument presented by Eberhart and Vvedensky [47] on the directionality of orbital overlap to
predict such embrittlers in grain boundaries, and Haydock’s bond mobility model [48] evoking
near-neighbor solute-solvent interaction as an indicator of embrittling behavior.
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Fig. 11. The central cluster energy evolution for Bi-doped Cu FCC symmetric 36.8◦ <001> (310) type tilt boundary (black) compared with the undoped
calculation in Fig. 8 (red).

7. Conclusions

We have recovered neighborhoods associated with crystals, dislocations, and grain boundaries
that we interpret as environmentally insensitive metallic functionalities characterized by well
defined energies and energy related properties. From the calculations presented here, it appears
that regardless of their local structure, metallic functional groups have a universally similar
neighborhood size—asymptotically converging on a defect or crystalline formation energy
within a radius of 2 to 3 atomic diameters.

In organic chemistry the concept of functionality forms the conceptual basis from which
to understand and predict the properties of large and complex structures such as proteins
and enzymes. The advantage in this approach is realized by picturing properties as arising
from individual neighborhoods a few atoms in diameter. In contrast, at the electronic level,
complex metallic systems containing numerous interacting defects are seen as monolithic units
that are computationally cumbersome to analyze. Our work has demonstrated that it may be
possible to decompose these complex metallic structures into simpler functional groups that
may be studied one at a time, and whose interactions are determined by the few atoms along
the boundaries separating these neighborhoods.

We used our non-standard approach to investigate the mechanism through which impurities
at a boundary (or other defect) affect behavior. Specifically, we presented preliminary results
from electronic structure calculations of a Bi-doped FCC symmetric 36.8◦ <001> (310) tilt
boundary of Cu, which demonstrated that Bi acts to intensify the orbital overlap of the
local grain boundary functionality at the expense of the crystalline structure. This may be
indicative of embrittling behavior, as Bi is known to embrittle Cu grain boundaries.

Our work has shown the functionality concept is applicable to metals and alloys, and that
this methodology can be applied to study a broader range of structures and solute effects,
which will be the subject of a future paper. We believe these functional neighborhoods
serve as powerful models for further and more chemically based investigations to uncover the
relationships between electronic structure and the mechanical response of metallic materials.
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