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1 Abstract

2 Plasma-enhanced chemical vapor deposition (PECVD) provides a low-temperature, highly-

3 efficient, and catalyst-free route to fabricate graphene materials by virtue of the unique properties 

4 of plasma. In this paper, we conduct reactive molecular dynamics simulations to theoretically 

5 study the detailed growth process of graphene by PECVD at the atomic scale. Hydrocarbon 

6 radicals with different carbon/hydrogen (C/H) ratios are employed as dissociated precursors in 

7 the plasma environment during the growth process. The simulation results show that hydrogen 

8 content in the precursors significantly affects the growth behavior and properties of graphene 

9 (e.g., the quality of obtained graphene, which is indicated by the number of hexagonal carbon 

10 rings formed in the graphene sheets). Moreover, increasing the content of hydrogen in the 

11 precursors is shown to reduce the growth rate of carbon clusters, and prevent the formation of 

12 curved carbon structures during the growth process. The findings provide a detailed 

13 understanding of the fundamental mechanisms regarding the effects of hydrogen on the growth 

14 of graphene in a PECVD process.
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1 INTRODUCTION

2 Since its first discovery in 2004, graphene, a two-dimensional (2D) single-atom-thick 

3 carbon sheet, has attracted tremendous attention because of its outstanding properties and 

4 potential use in many applications1. The unique hexagonal sp2-hybridized carbon network of 

5 graphene results in outstanding electronic, mechanical, optical, and thermal properties1-5. To date, 

6 several approaches have been adopted to fabricate graphene, including mechanical exfoliation1, 

7 chemical exfoliation6, chemical synthesis7, 8, epitaxial growth9, and chemical vapor deposition 

8 (CVD)10-12. In particular, plasma-enhanced chemical vapor deposition (PECVD) has emerged as 

9 a promising new route to fabricate graphene with unique properties in a controllable, low-

10 temperature, highly-efficient, and catalyst-free manner for various applications such as 

11 supercapacitors11, 13, photocatalysis14, transistors15, sensors16, 17, and solar vapor generation18, 19. 

12 During PECVD growth, factors such as plasma power, pressure, precursor composition, 

13 growth time, and substrate type can significantly affect the properties of graphene (e.g., 

14 morphology and quality) and its performance in practical applications10, 20. Among these factors, 

15 hydrogen has been experimentally demonstrated to play a crucial role in determining the 

16 properties of the PECVD-grown graphene10, 21-25. For instance, hydrogen in the precursors can 

17 accelerate the dissociation of carbon sources to carbon radicals by plasma21, 25. These carbon 

18 radicals will further react to form the final products26. Moreover, during the growth, hydrogen 

19 plasma can decrease the growth rates of graphene structures by etching carbon atoms at the 

20 boundaries, thus preventing the formation of amorphous carbon caused by rapid growth of 

21 carbon clusters21, 25. Hydrogen plasma has also been proposed for use in post-treatment processes 

22 to eliminate defects and promote the quality of graphene because of the strong etching effect of 

23 the plasma on sp2-hybridized carbon atoms24, 27. However, the fundamental mechanisms 
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1 governing the effect of hydrogen on the detailed growth behavior and properties such as quality 

2 of graphene remain elusive. Understanding this effect at the atomic scale is essential to 

3 controlling the growth of graphene by PECVD for use in various applications.

4  Reactive molecular dynamics (RMD) has become a widely used tool to reveal chemical 

5 reaction mechanisms at the atomic scale for applications such as catalysis28, 29, etching30, 

6 oxidation31, pyrolysis32, and nanomaterials synthesis33-35. Different from conventional MD, 

7 which describes interactions between atoms through pre-fixed bonds and charges, RMD 

8 simulates chemical reactions based on reactive force fields, where the breaking and formation of 

9 bonds are determined by the bond orders between atoms36, 37. During the PECVD process, 

10 carbon sources are dissociated by the plasma into several radical configurations, CHx (x=0, 1, 2, 

11 3)38, 39. While directly simulating the plasma effect by MD simulations remains difficult, these 

12 known radicals generated in plasma can be used as the precursors to mimic the plasma-enhanced 

13 growth process by RMD40, 41. To date, few papers are reported on RMD simulations of the 

14 graphene growth by PECVD, including the structural evolution of graphene during the growth 

15 process41, 42. Nevertheless, the effect of hydrogen on the detailed growth process and properties 

16 (e.g., quality) of graphene grown by PECVD remains unknown and warrants in-depth 

17 investigation.

18 In this work, we conduct RMD simulations to simulate the growth of graphene by PECVD. 

19 Carbon radicals are employed as dissociated precursors to mimic realistic PECVD growth 

20 processes. The C/H ratio of the precursors is changed to elucidate the effect of hydrogen on the 

21 detailed growth process as well as quality and morphology of graphene. The corresponding 

22 detailed evolutions of the graphene formation processes are visualized to understand the 

23 fundamental mechanisms of the nanomaterial growth at the atomic scale. The results obtained 
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1 from this work provide important insights into understanding graphene growth mechanisms by 

2 PECVD, and can also serve as guidelines for choosing precursors with suitable C/H ratios to 

3 fabricate graphene with desired properties for various applications.

4 METHODS AND SIMULATION MODEL

5 Simulations are performed using the large-scale atomic/molecular massively parallel 

6 simulator (LAMMPS)43. The ReaxFF potential, which has been extensively proved to describe 

7 accurate reactions in hydrocarbon systems44-46, is used to model the graphene growth process in 

8 this work. Following prior studies38, 39, 47, 48, CH3, CH2, CH, and C radicals are employed in the 

9 simulations as the dissociated precursors to mimic actual PECVD growth processes and simplify 

10 the complex distributions of precursors induced by the plasma-mediated dissociation of carbon 

11 sources. Note that CHx (x=0, 1, 2, 3) radicals, without hydrogen radicals or hydrogen atoms, are 

12 employed as the products of carbon sources during the plasma-mediated dissociation process in 

13 our simulations because pure carbon sources (e.g., methane) can be directly employed as the 

14 precursor for graphene growth by PECVD in prior experimental work50, 51. And this simulation 

15 methodology is also widely adopted in prior simulations of plasma-assisted dissociation of 

16 hydrocarbons for the growth of nanomaterials38, 49. In addition, although substrates play an 

17 important role at the initial stage of graphene growth through adsorption/desorption of 

18 hydrocarbon radicals and providing nucleation sites during PECVD10, 11, the subsequent 

19 continuous growth of vertically oriented graphene petals (GPs) into free space is mainly caused 

20 by the accumulation of carbon species52. Therefore, simulations of the growth process without 

21 substrates can provide important insights into the later stage of GP growth. This can also 

22 eliminate the influences of the substrates to focus on the mechanisms governing how hydrogen 

23 affects graphene growth during PECVD. Similar MD simulations of graphene growth without 
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1 substrates are also reported in prior work41, 53-56.  We also conduct simulations with a hexagonal 

2 carbon ring as the seed for graphene growth to mimic the later stage of GP growth and verify the 

3 effect of substrates during graphene growth. The results exhibit same trend as the that observed 

4 in systems without seeds (Supplementary Section. S1).

5 Simulations are conducted at a constant temperature of 3500 K in accordance with prior 

6 work wherein ReaxFF has been successfully demonstrated in hydrocarbon systems at 

7 temperatures ranging from 1000 to 3500 K41, 55, 57. For each C/H ratio, the total amount of carbon 

8 in the precursors is fixed to be 450 for better comparison, and the total amount of hydrogen is 

9 changed accordingly based on the C/H ratios through adjusting the distribution of the 

10 hydrocarbon radicals. The sizes of the simulation domains are modified to maintain the density 

11 of system at 0.12 g/cm3. The detailed compositions of these radicals are shown in Table 1. Note 

12 that this constant density is much higher than the standard densities of typical carbon sources 

13 (e.g., methane, density 0.000717 g/cm3 41). Such a high value of temperature and density is 

14 widely adopted in previous RMD simulations related to materials growth to increase the reaction 

15 rate and reduce computational costs to a realistic level41, 58. Note that the realistic distribution of 

16 hydrocarbon radicals is much more complex because the dissociation of carbon sources in 

17 plasma is highly dependent on multiple factors such as plasma power, plasma type, pressure, and 

18 precursor compositions20. In the future work, the difference of precursor distributions between 

19 theoretical studies and experimental work should be considered when investigating the effects of 

20 other factors (e.g., plasma power and pressure) on the PECVD growth of graphene. 

21 Canonical ensemble (i.e., NVT) is employed to simulate the growth process of graphene 

22 clusters, and temperature in the system is controlled by the Nose-Hoover thermostat method. 

23 Periodic boundary conditions are applied to the system to mimic the practical growth process. A 
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1 time step of 0.1 fs is used to capture the details of reactions at high temperatures. The velocities 

2 and positions of carbon and hydrogen atoms are recorded every 10,000 steps (i.e., every 1 ps). 

3 The radicals are initially equilibrated under NVT at 300 K for 1 ns to achieve random dispersion 

4 within the simulation domain. Equilibration is followed by growth under NVT at 3500 K for 10 

5 ns. The growth process is visualized using Open Visualization Tool (OVITO).

6 Table 1 Components of the precursors in the systems with different C/H ratios.

Number of

C

Number of

CH

Number of

CH2

Number of

CH3

Pure C 450 0 0 0

C:H=2:1 225 150 75 0

C:H=1:1 150 150 150 0

C:H=1:2 0 150 150 150

7 RESULTS AND DISCUSSION

8 The simulated PECVD growth process of graphene at 3500 K based on precursors with a 

9 C/H ratio of 1:1 is shown in Fig. 1, in which the red spheres represent carbon atoms, and the blue 

10 spheres represent hydrogen atoms. Evolution of carbon structures for growth times ranging from 

11 0 to 10 ns can be clearly observed. Initially, CHx radicals are dispersed uniformly in the 

12 simulation box. As the simulation proceeds, several long carbon chains appear and are 

13 subsequently cyclized to form polycyclic hydrocarbon clusters. These isolated polycyclic 

14 clusters are further diffused and merged to form a complete graphene sheet. Animation of this 

15 dynamic PECVD process of the graphene growth can be visualized in the Supplementary video. 
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1

2 Fig. 1. Snapshots of representative dynamic PECVD processes of graphene growth simulated in MD in the 

3 system with a C/H ratio of 1:1. Red spheres represent carbon atoms, and blue spheres represent hydrogen 

4 atoms.

5 A detailed, visual evolutionary depiction of the graphene network formation process with 

6 C/H ratio of 1:1 is shown in Fig. 2, wherein only the carbon atoms (red spheres) are shown for 

7 better visualization of the formed structures. At 0 ns, carbon atoms are dispersed uniformly, 

8 illustrating that radicals are in random positions after the initial equilibrium process (Fig. 2a). 

9 Several short carbon chains are formed within the first 0.05 ns (Fig. 2b) as a result of reactions 

10 between hydrocarbon radicals41. These short carbon chains are subsequently and rapidly 

11 elongated to form longer carbon chains (Fig. 2c). Notably, a large number of branches are visible 

12 in the long chains. Cyclization of branches in the carbon chain has been reported to produce 

13 small carbon rings35, 41. In this simulation, branches on the long chains are indeed cyclized to 

14 produce polycyclic carbon rings, leading to the formation of graphene nuclei (Fig. 2d). Adjacent 

15 graphene nuclei then merge to form networks through cyclization of side chains (Figs. 2e-f). The 
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1 graphene network continues to evolve by condensation of isolated short carbon chains at the 

2 periphery, and finally a complete graphene sheet is formed (Figs. 2g-i).

3

4 Fig. 2. Snapshots of the formation of graphene network in the system with a C/H ratio of 1:1. Red spheres 

5 represent carbon atoms. Hydrogen atoms are not shown here for better visualization of the formed carbon 

6 structures.

7 Simulations based on hydrocarbon radicals with different hydrogen contents in the 

8 precursors (corresponding to different C/H ratios) are conducted to investigate the effect of 

9 hydrogen on the quality of the obtained graphene sheets, which is quantified by the average 

10 number of polygonal carbon rings, during the dynamic growth process from 0 to 10 ns (Fig. 3). 

11 As shown in Fig. 3a, in the system without hydrogen atoms (i.e., pure carbon system), carbon 

12 clusters agglomerate and curve severely to form a tube-like structure resembling those of carbon 

13 nanotubes (more details are shown in Supplementary Fig. S1). As the precursor content of 

14 hydrogen is increased, agglomeration and curving of carbon structures are observed to weaken. 

15 Moreover, in the systems with lower hydrogen contents (C/H=2:1 and 1:1), the carbon atoms 
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1 tend to form a 2D network, indicating that the presence of hydrogen atoms contributes to the 

2 formation of a relatively flat graphene sheet rather than a curved structure caused by 

3 agglomeration and closing. The number of hexagonal carbon rings formed during the growth is 

4 examined to quantitatively evaluate the quality of the carbon structures for the different 

5 precursor C/H ratios (Fig. 3b). These results show that the growth rate of hexagonal carbon rings 

6 decreases when the hydrogen content in the precursor increases. In addition, a greater number of 

7 hexagonal rings is formed in the system with C/H ratio of 1:1 compared to that with C/H ratio of 

8 2:1. Note that only some long carbon chains are formed within 10 ns in the system with a C/H 

9 ratio of 1:2 (Supplementary Section. S2), indicating that the growth rate of hexagonal carbon 

10 rings decreases significantly in systems with higher hydrogen contents. Moreover, the simulation 

11 results are quite different from experimental work, where higher hydrogen contents in the 

12 precursors are generally required to obtain a large graphene network59-61. This discrepancy can 

13 be attributed to the much higher density of carbon sources and higher growth temperature used in 

14 our simulation.

15 Pentagonal and heptagonal carbon rings are common defects in graphene structures34. The 

16 variations in the numbers of pentagonal and heptagonal carbon rings formed in the systems 

17 different C/H ratios are shown in Fig. 3c and 3d, respectively. As the hydrogen content in the 

18 precursor increases, the formation of pentagonal and heptagonal carbon rings is retarded notably, 

19 which is similar to the trends observed for hexagonal carbon rings. More pentagonal and 

20 heptagonal rings are formed in the system with a C/H ratio of 2:1 compared with other growth 

21 conditions, while the number of formed hexagonal carbon rings under this growth condition is 

22 smaller (Fig. 3b), indicating that the obtained graphene sheet contains more pentagonal and 

23 heptagonal ring structures as defects in the system with a C/H ratio of 2:1. Interestingly, notable 
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1 decrease of pentagonal and heptagonal rings during 5-7 ns can be observed in the system with a 

2 C/H ratio of 2:1, while the number of hexagonal rings increases. This phenomenon indicates that 

3 a healing process may occur where some pentagonal and heptagonal carbon rings are 

4 transformed to hexagonal rings because of carbon diffusion and structural reconstruction. Such a 

5 transformation process from pentagonal and heptagonal carbon rings to hexagonal rings was also 

6 observed in previously simulated thermal CVD growth processes34, 62. 

7

8 Fig. 3. (a) Snapshots of carbon structures formed at 10 ns in the systems with different C/H ratios. Number of 

9 (b) hexagonal carbon rings, (c) pentagonal carbon rings, and (d) heptagonal carbon rings as a function of time 

10 in the systems with different C/H ratios. 

11 To illustrate the effect of hydrogen on the morphology of the obtained carbon structures, we 

12 further compare the simulated growth processes of the pure carbon system and the one with a 

13 C/H ratio of 1:1, as shown in Fig. 4. In the pure carbon system, since no hydrogen atoms exist in 
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1 the simulation box, only C-C bonds can be formed at the periphery of the clusters (Figs. 4a-b). 

2 Chemical reactivity of carbon atoms at the edges is high because of their unsaturated states. 

3 Therefore, the peripheries of small carbon clusters can be easily connected by cyclization of 

4 these carbon dangling bonds, leading to the agglomeration and closing of carbon structures, as 

5 shown in Fig. 4c. Finally, a tube-like carbon structure is formed (Fig. 4d and Supplementary Fig. 

6 S2). While in the system with a C/H ratio of 1:1, hydrogen atoms can form C-H bonds with the 

7 carbon atoms at the edges of carbon clusters, thus significantly decreasing the number of carbon 

8 dangling bonds (Figs. 4e-f). In this case, more carbon atoms at the periphery are saturated due to 

9 the existence of hydrogen atoms, thus weakening the cyclization of carbon dangling bonds and 

10 preventing graphene sheet from rolling into a closed structure (Fig. 4g). In this case, relatively 

11 flat graphene sheets are formed (Fig. 4h). However, the decreased number of carbon dangling 

12 bonds also leads to lower growth rates, which can explicitly explain the results shown in Fig. 3. 

13 These simulation results agree well with the experimental observation that hydrogen precursors 

14 in plasma transformed the carbon morphology from nanospheres to nanosheets63.

15
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1 Fig. 4. Structural evolution of the pure carbon system (a) 0.05 ns, (b) 0.2 ns, (c) 0.5 ns, and (d) 1.2 ns. 

2 Structural evolution of the system with a C/H ratio of 1:1 (e) 0.05 ns, (f) 0.5 ns, (g) 3 ns, and (h) 7 ns. Red 

3 spheres represent carbon atoms, and blue spheres represent hydrogen atoms.

4 To further understand the effect of hydrogen on the formation behavior of carbon structures 

5 during growth, the number of carbon atoms in the largest carbon cluster is analyzed as a function 

6 of the growth time with different C/H ratios in the precursors, as shown in Fig. 5. In the pure 

7 carbon system, or the mixture systems with lower hydrogen contents, the number of carbon 

8 atoms increases gradually to a maximum value and then becomes relatively stable during the 

9 evolutionary process, corresponding to the continuous growth of carbon clusters in the initial 

10 stage and equilibrium state afterwards. The growth rate of the largest carbon clusters is observed 

11 to decrease significantly as hydrogen content in the precursor increases. For instance, in the pure 

12 carbon system, the largest carbon cluster grows rapidly to reach a maximum size after 

13 approximately 1 ns, while for the largest carbon cluster in the system with a C/H ratio of 1:1, it 

14 takes approximately 7 ns to reach the maximum size (Fig. 5). These results further illustrate that 

15 hydrogen can efficiently prevent carbon clusters from rapidly growing to form curved structures, 

16 and a high content of hydrogen in the precursor can greatly deter the growth of carbon structures.
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1

2 Fig. 5. Number of carbon atoms in the largest carbon cluster as a function of growth time in the systems with 

3 different C/H ratios.

4 Additionally, hydrogen content in the precursor may also affect the distribution of carbon 

5 cluster sizes during the growth process. In this case, carbon clusters with different sizes 

6 (indicated by the number of carbon atoms) in systems with different C/H ratios are analyzed 

7 every 50 ps, as shown in Fig. 6. Fig. 6a evaluates the population of small-size carbon clusters 

8 (containing 4-10 carbon atoms) as a function of growth time. In the pure carbon system and the 

9 mixture systems with lower hydrogen contents (C/H=2:1 and 1:1), the number of small-size 

10 carbon clusters first increases due to the reactions between carbon radicals, and then decreases 

11 gradually to a minimum value because the small-size carbon clusters further grow to form larger 

12 ones. Notably, the reduction rate of the population of small-size carbon clusters decreases as the 

13 hydrogen content in the precursors increases, indicating that hydrogen deaccelerates the growth 

14 of small-size carbon clusters into larger ones. Similar effects of hydrogen content on the growth 

15 behavior of medium-size carbon clusters (containing 11-100 carbon atoms) are also observed in 

16 Fig. 6b. Therefore, the appearance of large-size carbon clusters (containing more than 100 
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1 carbon atoms) is postponed when the hydrogen content in the precursors increases, as shown in 

2 Fig. 6c. Interestingly, the hydrogen content in the precursor also affects the stability of the 

3 formed large-size carbon clusters (Fig. 6c). For instance, in the pure carbon system and the 

4 system with a low hydrogen content (C/H=2:1), large-size carbon clusters first appear at 0.05 ns 

5 and 0.25 ns, respectively, and remain stable thereafter. While in the system with a higher 

6 hydrogen content (C:H=1:1), the first large-size carbon cluster appears at 0.55 ns and is quickly 

7 dissociated to smaller carbon clusters, which are connected again to form a large-size carbon 

8 cluster at 0.7 ns. Such a process repeats several times until a stable, large-size carbon cluster is 

9 formed at 1.65 ns.

10

11 Fig. 6. Number of carbon clusters containing (a) 4-10 carbon atoms; (b) 11-100 carbon atoms; (c) >100 carbon 

12 atoms as a function of time in the systems with different C/H ratios.

13 Dynamic change of potential energy of the entire system can reveal important information 

14 of the growth behavior of graphene in the process, which can be calculated using the ReaxFF 

15 reactive force field adopted in our simulation. Fig. 7 exhibits comparative potential energies of 

16 the pure carbon system and mixture systems with C/H ratios of 2:1 and 1:1 during the growth 

17 process. In each of the three systems, the potential energy is observed to decrease gradually until 

18 it reaches equilibrium. During the growth process, isolated carbon atoms are prone to reduce 

19 their potential energy through the formation of carbon chains, and these carbon chains will be 
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1 further transformed to more stable carbon networks through cyclization, agglomeration and 

2 closing34, 41. Note that the reduction rate of potential energy in the initial growth stage before 

3 reaching equilibrium varies with the hydrogen content in the precursors. For instance, in the pure 

4 carbon system, the potential energy decreases rapidly and reaches equilibrium within only 1 ns, 

5 which can be attributed to the fast formation of carbon structures due to the high reactivity of 

6 dangling carbon bonds. Moreover, curling and closing of carbon networks will also contribute to 

7 the reduction of potential energy41. When the hydrogen content in the precursors increases, an 

8 increasing number of C-H bonds, instead of C-C bonds, are formed at the peripheries. The 

9 decreased number of carbon dangling bonds slows the growth of carbon networks and prevents 

10 the graphene sheets from rolling into curved structures, leading to a decreasing reduction rate of 

11 potential energy.

12

13 Fig. 7. Comparative potential energies of the systems with different C/H ratios in the precursors as a function 

14 of the growth time. 

15 CONCLUSION

16 In summary, RMD simulations using the ReaxFF potential have been conducted to provide 

17 an atomistic understanding of the plasma-assisted graphene growth using hydrocarbon precursors 
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1 with different C/H ratios. The simulation results indicate that hydrogen content in precursors 

2 significantly affects the growth behavior and properties of graphene during PECVD. Increasing 

3 the hydrogen content in precursors facilitates the formation of C-H bonds at the periphery of 

4 carbon clusters, leading to a decreasing number of carbon dangling bonds. Accordingly, the 

5 growth of carbon clusters can be efficiently slowed by introducing hydrogen in the precursor, 

6 thus preventing graphene sheet from rapidly growing and rolling into a curved structure. 

7 Moreover, the existence of hydrogen is found to substantially affect the number of polygonal 

8 carbon rings and thus the quality of the graphene sheets. Our work provides important insights 

9 into understanding the effect of hydrogen component on the growth behavior and properties of 

10 graphene during PECVD. In future work, we will combine MD simulations with other 

11 techniques (e.g., Monte Carlo) to reduce the computational cost and investigate the growth 

12 behavior of graphene under conditions close to experimental ones.
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