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ABSTRACT

Reconstituted photosynthetic proteins which are activated upon exposure to solar energy hold 

enormous potential for powering future solid state devices and solar cells. The functionality and 

integration of these proteins into such devices has been successfully enabled by lipid-like peptides. 

Yet, a fundamental understanding of the organization of these peptides with respect to the 

photosynthetic proteins and themselves remains unknown and is critical for guiding the design of 

such light-activated devices. This study investigates the relative organization of one such peptide 

sequence V6K2 (V: Valine and K: Lysine) within assemblies. Given the expansive spatiotemporal 

scales associated with this study, a hybrid coarse-grained (CG) model which captures the structure, 

conformation and aggregation of the peptide is adopted. The CG model uses a combination of 

Iterative Boltzmann Inversion and Force Matching to provide insight into the relative organization 

of V6K2 in assemblies. The CG model reproduces the structure of a V6K2 peptide sequence along 

with its all atom (AA) solvation structure.  The relative organization of multiple peptides in an 
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assembly, as captured by CG simulations, is in agreement with corresponding results from AA 

simulations. Also, a backmapping procedure reintroduces the AA details of the peptides within the 

aggregates captured by the CG model to demonstrate the relative organization of the peptides. 

Furthermore, a large number of peptides self-assemble into an elongated micelle in the CG 

simulation, which is consistent with experimental findings. The coarse-graining procedure is tested 

for transferability to longer peptide sequences, and hence can be extended to other amphiphilic 

peptide sequences.

INTRODUCTION

The creation of novel solar cells which functionally integrate photosynthetic proteins into a 

synthetic matrix can harness solar energy to power a diverse array of nanoelectronics and solid-

state devices.1 Such cells will require the integration of fully functional reconstituted 

photosynthetic proteins from either plants, algae or bacteria. Reconstituting proteins such that they 

preserve all their functionality is nontrivial and has been achieved with lipid-like peptides. 1–6 

Furthermore, small-sized assemblies of the lipid-like peptides and stabilized photosynthetic 

protein complexes can aggregate into three dimensional networks which can be used to power 

macroscale devices using solar energy. A rational design of such networks requires a fundamental 

understanding of how the peptides organize relative to the protein complexes and themselves. This 

study examines the relative organization of one such lipid-like peptide sequence, namely V6K2 (V: 

Valine, K: Lysine) in an aggregate encompassing this sequence.

Lipid-like peptides encompass 1-2 charged amino acids (head group) and 6-8 hydrophobic amino 

acids (tail group). The electrostatic interactions along with the hydrophobic effect drive the 
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assembly of these peptides into regular structures, e.g., nanotubes, fibers or vesicles.7 Experimental 

studies have explored tuning the electrostatic and hydrophobic effects by synthesizing lipid-like 

peptide sequences of different head and tail lengths.8,9 These modifications yield different 

nanostructures, each having unique material properties.8–10 However, experimental approaches are 

constrained in their ability to resolve physical phenomena across diverse spatiotemporal scales, 

and are unable to resolve the relative organization of the peptides. A suitable computational 

approach which captures the large spatiotemporal scales associated with self-assembly and the 

chemical structure of the molecules can overcome this challenge.

All atom (AA) models provide a detailed representation of the chemical structure of peptides 11,12 

and explicitly account for all intra- and intermolecular degrees of freedom (DOFs). Earlier 

computational studies have used AA models to investigate the aggregation of peptides. These 

studies are limited to either the early stages of aggregation,13–15  or the examination of the stability 

of pre-assembled aggregates.16,17 AA models are computationally very expensive when examining 

assembly of numerous, randomly dispersed peptides in aqueous environment. 

The formation of nanostructures occurring over large spatiotemporal scales requires models which 

simultaneously capture the effective chemistry of the peptides while having significantly fewer 

DOFs than the AA models. Coarse-graining approaches reduce selected DOFs in an AA model 

while preserving the effective chemistry of the molecule.18 Groups of atoms in the AA model are 

mapped onto superatoms or pseudo atoms, also known as coarse-grained (CG) beads. An 

appropriate mapping scheme preserves the general structural description of the AA representation 

of the peptide in the CG model. The coarse-graining process reduces the number of coordinates 
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and hence the DOFs that define the peptide, thereby significantly reducing the computational cost 

of using the CG model. In this study, the Molecular Dynamics (MD) technique is used to simulate 

the CG model. Similar to the CG MD approach, the Dissipative Particle Dynamics (DPD)19–22 

method is also suitable for investigating phenomena which span multiple spatiotemporal scales as 

it allows for a large time step and very soft potentials. However, unlike CG MD, DPD is unable to 

capture the structure of individual molecules in solution and in assemblies due to the soft 

potentials. The DPD potential allows for very large overlaps between the particles which 

introduces enormous challenges when backmapping the DPD representation into the AA 

representation. Whereas CG MD has stiffer potentials, a smaller time step and no overlap between 

the MD beads. These features of CG MD allow it to capture the structure of the molecules and 

makes it easier to backmap the CG representation into the AA representation. Hence, CG MD is 

more suitable for this specific study which requires a CG potential which can capture the chemical 

structure of the molecules while simultaneously resolving their assembly.

The scientific questions determine the coarse-graining methodology. A top-down approach 18 is 

used to study peptide systems where thermodynamic properties are of particular interest, e.g., 

peptide assembly. On the other hand, a bottom-up approach 23 is used to study structural details 

and local interactions.  Both coarse-graining approaches neglect certain DOFs, and focus on 

investigating specific properties of interest.

Top-down approaches have been particularly successful in capturing the assembly of various 

peptides. Some approaches employ a scheme 24 that neglects the structural details of individual 

peptides. This technique drastically reduces the computational cost of simulating the assembly of 
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a large number of peptides.  An earlier study uses this approach to study the relationship between 

local peptide properties and the mechanism underlying peptide aggregation.25 Nucleation and 

growth kinetics in the self-assembly process are also investigated with similar models.26 

Alternatively, an intermediate coarse-graining scheme 27 is applied to preserve some structural 

details during the self-assembly process. These models employ a higher number of beads per 

residue to preserve chemical specificity. One such example is the Martini model 28 which has been 

extensively used for simulating the assembly of peptides. Each CG bead is classified on the basis 

of the charge and polarity of the underlying AA fragment. The pairwise nonbonded potentials 

between the CG beads are parameterized to fit the free energy of partitioning between aqueous and 

hydrophobic solutions obtained from experiments. This model is successful for yielding self-

assembled nanostructures for various classes of peptides.29–38 The impact of factors like the initial 

concentration of peptides,33,39 peptide sequence,33,34 peptide chain length 32 and external conditions 

38 on peptide self-assembly have been investigated with the Martini model. Elongated 

nanostructures are of particular interest to the current study. The Martini model is tested on 

amphiphilic peptides that self-assemble into elongated micelles. 40 In addition, the Martini model 

is used to study the aggregation of peptide amphiphiles into relatively larger, elongated 

nanostructures such as nanofibers. 30 Another example of a top-down approach is the PRIME 

model 41 which is used in conjunction with discontinuous molecular dynamics.  Spontaneous 

formation of nanofibers has been resolved with the PRIME model.42 Some of these models have a 

predetermined secondary structure, 28 whereas other models reproduce the AA secondary structure 

with special potentials.43,44  However, the conformations of the peptides or their detailed local 

interactions within an aggregate cannot be resolved by a top-down approach.
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Investigations of the local structure and forces require a bottom-up approach.23 The approach is 

targeted towards reproducing specific properties in an AA system. Iterative Boltzmann Inversion 

(IBI) 45,46  is extensively used to preserve the chemical structure of peptides within aggregates.47,48 

Alternatively, Force Matching (FM) 49 minimizes the difference between the forces on the CG 

beads across AA and CG resolutions. FM is used to construct a generalized force field for any 

arbitrary peptide sequence.50 Analogous approaches such as Inverse Monte Carlo and Relative 

Entropy minimize the difference between a certain parameter across the AA and CG 

resolutions.51,52 In addition, a reformulation of the Relative Entropy method preserves structural 

details of individual peptides within amorphous aggregates.53 All these methods approximate the 

many-body potential of mean force (PMF) with effective pairwise CG potentials. Also, the AA 

distributions functions (for specific DOFs) are reproduced in the CG simulations. Although some 

correlations between DOFs cannot be reproduced,54 there is significant agreement in the structural 

features corresponding to the underlying AA models. It is noted that there are more sophisticated 

approaches that better approximate the many-body PMF with local-density potentials 55,56 or 3-

body potentials. 57,58

Systems with multiple peptides in aqueous solution involve complex interactions which cannot be 

resolved by a single coarse-graining approach. This difficulty can be addressed by coarse-graining 

approaches 59 which combine multiple techniques to resolve different features or interactions in 

the system. For example, in an earlier study on peptide aggregation,47 the bonded and nonbonded 

interaction potentials are extracted from AA trajectories. The bonded potentials and the peptide-

water nonbonded potentials are resolved by applying IBI. The remaining nonbonded potentials are 

resolved by sampling the free energy of the underlying AA fragments. The resulting CG model 
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efficiently reproduces the conformational flexibility of individual peptides, and the interactions 

between multiple peptides. Alternate methods such as the Adaptive Resolution Scheme (AdResS) 

enables AA and CG resolutions of a system in spatially localized regions of a simulation box.60  

The AA and CG regions are interfaced by a region with hybrid resolution. The AA, CG and hybrid 

resolutions are part of a single simulation, and the scheme allows exchange of the different 

resolutions of a molecule across the boundary of a region.61,62 This approach is powerful and 

effective for scientific problems requiring a specific resolution in fixed spatial regions of the 

corresponding systems.  Hence, a suitable hybrid CG technique is required which can 

simultaneously resolve on-demand the individual structure, conformation and aggregation 

behavior of peptides, independent of their spatial location within the simulation box.

This study examines the relative organization of the V6K2 peptide sequence in assemblies. This 

requires a bottom-up CG model which preserves the individual structure and conformation of the 

peptide while capturing its assembly. Here, AA trajectories are sampled to build CG tabulated 

potentials. A structure-based coarse-graining technique, i.e., IBI is employed to derive the bonded 

potentials. This ensures that the individual structure of the peptides in the CG model is preserved. 

Additionally, IBI is used to derive the peptide-water nonbonded potentials. This ensures that the 

structure of the interface between the peptide molecules and water in the CG model is preserved. 

IBI works perfectly for bonded and peptide-water nonbonded potentials as a well-defined 

structural property of the AA reference system is available. This is achieved by sampling a single 

AA peptide in water (dilute solution). In the case of peptide-peptide nonbonded potentials, IBI 

generates potentials that are not transferable to other peptide concentrations. The potential is 

generated by sampling multiple AA peptides in water (concentrated solution). IBI generates multi-
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well peptide-peptide nonbonded potentials (see Figure SI.1.B) that accurately captures the 

structure of the interactions in the reference system. However, since it is highly coupled to the 

underlying structure of the reference system, these potentials are expected to have lower 

transferability. On the other hand, a force-based method, i.e., FM produces single welled potentials 

(see Figure SI.1.D) with the same reference system. Due to its non-specific nature towards the 

structure of the interaction, it is surmised that FM potentials could be transferable to other systems 

within a limited peptide concentration range. Also, this method matches forces between the AA 

reference and CG models at different scales. In this manner, all forces that are inherent to the 

reference system that govern self-assembly of the peptides are reproduced in the CG model. FM 

has been extensively used to generate coarse-grained potentials for peptides.50 In addition, it works 

well with long peptide sequences63 like the one in this study. Thus, a hybrid scheme involving the 

IBI and FM methods aims at preserving the structure of individual peptides, the structure of the 

peptide-water interface, and the forces between the peptides that govern assembly. 

In this study, a CG model for the V6K2 peptide sequence 6,64 is developed.  The development of a 

CG model for such a peptide sequence poses particular challenges as the DOFs associated with 

the long hydrophobic tail group may be correlated. Hence, a stepwise procedure to build CG 

potentials of a short peptide (V2K), and test its transferability on longer peptides (V4K and V6K2) 

is developed. The CG model resolves the structure of the V6K2 peptide sequence. The solvation 

structure of individual peptides is in good agreement with the corresponding results from the AA 

simulations. These peptides self-assemble into micelles. The relative organization of the peptides 

and the effective size of the micelle is in agreement with corresponding results from AA 

simulations. Furthermore, a large number of these peptides self-assemble into an elongated micelle 
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which is consistent with experimental findings.64,65

METHODS

Mapping Scheme

All the peptides in the VnKm (n: number of Valine residues and m: number of Lysine residues) 

series are coarse-grained using the same mapping scheme. These peptides encompass a 

hydrophobic tail and hydrophilic head group. The hydrophobic tail group includes Valine residues. 

As shown in Figure 1, VBx (V: Valine; B: backbone; x: index of Valine residue) CG beads represent 

the Valine backbone residues that form a linear chain. Each Valine backbone bead is associated 

with a side chain bead, i.e., VSx (V: Valine; S: side chain; x: index of Valine residue). The 

hydrophilic head group consists of Lysine residues. Since Lysine has a larger excluded volume, 

two CG beads represent the side chain KSy1 and KSy2, and one CG bead represents the backbone 

bead KBy (where K: Lysine; B/S: backbone/side chain; y: index of Lysine residue). On average, 

there are two to three heavy atoms per CG bead which is similar to another coarse-graining scheme 

for amino acids.50  Capping residues are added on the C terminus (NH2) and N terminus (CH3CO).6

All the CG models include an explicit description of water and monovalent chloride ions. A one-

site mapping scheme is used for both components. The development of the CG potential generates 

a set of effective pairwise potentials which account for the van der Waals and electrostatic 

interactions present in the atomistic simulations. Inclusion of separate electrostatic and van der 

Waals terms into the effective CG potentials will be pursued in a future study.
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Fig. 1: The coarse-graining scheme for V6K2. Green and purple beads represent Valine and Lysine 

residues, respectively. The smaller green beads (VSx, V: Valine; S: side chain; x: index of Valine 

residue) represents the side chain of the Valine residues. The larger green beads (VBx, V: Valine; 

B: backbone; x: index of Valine residue) represents the backbone of the Valine residues. Similarly, 

the smaller and larger purple beads represent the Lysine side chain (KSy1 and KSy2) and backbone 

(KBy) residues, respectively (K: Lysine; B/S: backbone/side chain; y: index of Lysine residue). The 

sizes of the backbone and side chain beads are kept different for visual clarity (bead sizes are not 

representative of their mass). The capping residues are not shown for clarity. 

Coarse-Grained Potential Development 

The Boltzmann Inversion (BI) method has been extensively used for structure-based coarse-

graining.45,54,66 BI depends on a structural property of the reference system, such as the RDF of a 

pairwise interaction.  These distributions can be measured using particle trajectories from AA 

simulations. As per the mapping scheme, the CG coordinates are mapped onto the AA coordinates. 

Consequently, the distribution functions between the CG-mapped coordinates provide a reference 
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for the equivalent interaction in the CG model. These CG-mapped distribution functions are 

representative of the sampling of the AA particle trajectories. Hence, extended AA particle 

trajectories sampled at frequent intervals will generate smooth reference distributions. The 

reference distributions are inverted via BI using Eqs. (1-4) to obtain tabulated potentials: 47,48,66

             (1)𝑈𝐶𝐺(𝑑,𝑇) =  ― 𝐾𝑏𝑇𝑙𝑛(𝑃𝐶𝐺(𝑑,𝑇)
𝑑2 )

              (2)𝑈𝐶𝐺(𝜃,𝑇) =  ― 𝐾𝑏𝑇𝑙𝑛(𝑃𝐶𝐺(𝜃,𝑇)
𝑠𝑖𝑛(𝜃) )

           (3)𝑈𝐶𝐺(𝜙,𝑇) =  ― 𝐾𝑏𝑇𝑙𝑛(𝑃𝐶𝐺(𝜙,𝑇))

                (4)𝑈𝐶𝐺(𝑟,𝑇) =  ― 𝐾𝑏𝑇𝑙𝑛(𝑔(𝑟,𝑇))

Eqs. (1-4) represent the potentials obtained from BI for bonded and nonbonded interactions. PCG 

is the normalized distribution function of a bonded interaction as a function of a degree of freedom 

(i.e., d is the bond distance,  is an angle and  is a dihedral angle). This idea can be extended to 𝜃 𝜙

nonbonded interactions where the normalized distribution would be the radial distribution function 

(g(r)) of the pairwise interaction [Eq. (4)]. All potentials are state dependent and hence associated 

with a specific temperature of T. Kb is the Boltzmann constant. 

The potential obtained via BI works well for simple molecules like polymers.67 However, the BI 

scheme cannot be directly applied for complex molecules such as peptides. This can be explained 
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by the assumptions underlying the BI scheme: i). The bonded and nonbonded potential energy 

terms should be treated separately. ii). All bonded DOFs should be uncorrelated (Eq. 5). In the 

event that these assumptions do not hold true, which is typically the case for peptides,47,48,54,67 the 

IBI scheme is applied to refine the potentials. Further corrective schemes like addition of special 

bonded potentials are used in this study. This is discussed in the Results and Discussions.

          (5)𝑃𝐶𝐺(𝑑,𝜃,𝜙,𝑇) =  𝑃𝐶𝐺(𝑑,𝑇) ×  𝑃𝐶𝐺(𝜃,𝑇) ×  𝑃𝐶𝐺(𝜙,𝑇) 

The IBI scheme is highly efficient in correcting Boltzmann inverted bonded and nonbonded 

potentials.66 The procedure is described by Eq. (6).  

           (6)𝑉𝑖 + 1(𝜌) =  𝑉𝑖(𝜌) +  𝐾𝑏𝑇 𝑙𝑛 [ 𝑃𝑖(𝜌,𝑇)

𝑃𝑟𝑒𝑓(𝜌,𝑇)] 

 is representative of any arbitrary DOF (d, , ,r). First, a CG simulation is run using an initial 𝜌 𝜃 𝜙

estimate of the potential ( ). Next, the resulting CG bonded and nonbonded distributions are 𝑉𝑖(𝜌)

examined. If there is a difference between a CG distribution ( ) and the corresponding 𝑃𝑖(𝜌,𝑇)

reference distribution (CG-mapped distributions that are representative of atomistic sampling, i.e., 

), the underlying CG potential is corrected. The difference between the potential of mean 𝑃𝑟𝑒𝑓(𝜌,𝑇)

force of the CG distribution and the reference distribution (namely, second term in Eq. (6)) is the 

correction used to develop a new potential, i.e.,  . The process is repeated until the CG 𝑉𝑖 + 1(𝜌)

distribution converges with the corresponding reference distribution within a tolerance value. 
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The FM 49 scheme is extensively used to build CG tabulated potentials with the help of forces from 

AA trajectories.63 In FM, the AA forces on the CG-mapped coordinates are projected onto the CG 

model. The method employs a least square approach to minimize the difference between forces in 

the AA and CG resolutions. 

          (7)𝜒2 = ∑𝑀
𝑚

∑𝑁
𝑛  |𝐹𝑟𝑒𝑓

𝑚𝑛 ― 𝐹𝐶𝐺
𝑚𝑛|2   

M is the number of frames (or, MD configurations) and N is the total number of CG beads. 𝐹𝑟𝑒𝑓
𝑚𝑛

refers to the forces in the reference simulation (AA), acting on the nth CG bead in the mth 

configuration. Similarly,  refers to the corresponding CG force. The FM scheme converts Eq. 𝐹𝐶𝐺
𝑚𝑛

(7) into a set of linear equations.68 These equations can be solved only when they are 

overdetermined. That is, the number of parameters should be less than the product of the number 

of beads (N) and configurations (M). This can be ensured by extensive sampling of the AA system 

so as to yield a large value for M. 

The Versatile Object-oriented Toolkit for Coarse-Graining Applications (VOTCA) package 

(version 1.5) 69 is used to determine the CG potentials. FM is used to determine the CG peptide-

peptide nonbonded potentials. The peptide topology is modified to exclude bonded and 

intramolecular nonbonded interactions. This approach is termed as force matching with exclusions. 

59 This modification works well when all the bonded and nonbonded potentials are used in 

conjunction to run CG simulations. The reference AA simulations generate 20,000 frames of force 

data. The force data from the AA simulation is reevaluated with the modified topology. The FM 

algorithm organizes the data into smaller blocks so as to have 100 frames in each block. Cubic 
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splines are used to fit the force data across all blocks. The grid spacing between the minimum and 

maximum distances of a particular interaction can control the number of splines. An optimal 

number of splines would result in smooth CG potentials that preserve most of the atomistic details. 

A grid spacing of 0.03 nm is used which results in an average of 30 splines for each interaction. 

The IBI method is used to determine the other nonbonded potentials, namely water-water and 

peptide-water potentials. Reference RDFs are generated from 100,000 frames of AA trajectory. 

Details of the IBI process for specific nonbonded interactions are discussed in the Results and 

Discussions. Also, potentials involving ions are discussed in the Results and Discussions.

For bonded potentials, 100,000 frames of configurations from the AA simulations are used. This 

results in smooth bonded distribution functions. BI is applied to obtain the CG bonded potentials 

and run the CG simulations. Any discrepancy in the comparison of the CG distributions with the 

reference distributions is addressed by iteratively correcting the CG bonded potential using IBI. 

All Atom Simulations 

The AMBER99SB 70 force field is used to simulate all the VnKm peptides. A previous study on 

VnKm peptides employs the same force field. The AMBER force field accounts for effects such as 

hydrogen bonds between peptides and water. These interactions are critical to resolve chemical 

details such as secondary structure and peptide solvation.  Hence, the AMBER force field 

generates good reference trajectories and forces for building the CG potentials. The AA modeling 

conditions are analogous to an earlier study.47 The GROMACS Molecular Dynamics package 

(2016.1) 71–73 is used run initial energy minimization and equilibration simulations. The 2020.2 
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version of GROMACS is used to compute the AA trajectories and forces. The Lennard-Jones cut-

off is 1.4 nm and the long range dispersion correction for energy and pressure is employed. The 

Particle Mesh Ewald (PME) algorithm is used 74 for the long range electrostatics. The system 

samples the NPT ensemble. The temperature is set at 300 K using the velocity-rescaling thermostat 

(with a stochastic term)  75,76   and a pressure of 1 bar using the Parrinello-Rahman barostat.77 All 

bond distances are constrained by the LINCS algorithm.78 A 2 fs time step (using the leap-frog 

integrator) is employed to run the AA simulations. An explicit description of water using the 

SPC/E 79 model is used. Details of runtimes and sampling rates are provided in the Results and 

Discussions. The end-to-end distance of the peptide sequence of interest, i.e., V6K2 is within the 

range determined by experiments. 6 

Coarse-Grained Simulations 

The final AA configuration file is converted to a CG representation using the csg_map tool in the 

VOTCA package.69 The volume of the CG simulation box is the same as that corresponding to the 

equilibrated AA system. The 2018 version of GROMACS is used to run the CG simulations. At 

the time of development, tabulated potentials were not compatible with the 2020.2 version of 

GROMACS. The CG simulation is run at constant volume with a leap-frog stochastic dynamics 

integrator with a timestep of 2 fs. 80 The inverse friction coefficient is 1 ps. Bonded and nonbonded 

tabulated potentials are used for the CG simulations. Details of runtimes are provided in the Results 

and Discussions. 

Backmapped-atomistic Simulations
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A code provided by a previous study 81 is used to project the AA coordinates onto the final CG 

configuration. Next, the backmapped-atomistic configuration is relaxed using the following 

steps:81 

1. 500 steps of energy minimization that excludes nonbonded interactions between peptides, 

water molecules and ions. 

2. 500 steps of energy minimization without any exclusions. 

3. A series of 4 short position restrained NVT simulation runs wherein the timestep is 

increased in the following order: 0.2, 0.5, 1 and 2 femtoseconds. 

Finally, the backmapped-atomistic configuration is simulated in the same way as the original AA 

simulations without any position restraints. The root-mean-square deviation (RMSD) between the 

backmapped-atomistic and underlying CG configuration is measured at different intervals. It is 

noted that other sophisticated approaches 82 could also be employed for reintroducing atomistic 

details in a CG configuration. 

RESULTS AND DISCUSSION

A bottom-up coarse-graining approach is employed to preserve the structural properties of V6K2 

while capturing its aggregation characteristics. AA simulation data is used to derive CG bonded 

and nonbonded potentials. These potentials work in conjunction to reproduce the overall structure 

of a single V6K2 peptide in aqueous solution. The AA solvation structure of the peptide is 

reproduced in the CG model. In addition, internal DOFs like the linear extension of the 

hydrophobic tail group and the RDF of the backbone beads are in agreement with corresponding 

results from the AA simulations. The CG model is tested on systems that are not a part of the 

parameterization. Systems with multiple V6K2 peptides in aqueous solution are used for these tests.  
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First, the structure of individual peptides in multi-peptide systems is assessed. Next, the relative 

organization of peptides in a micelle formed by 8 peptides is compared across the AA and CG 

resolutions. The effective size of the micelle formed in the AA and CG simulations are also 

compared. Furthermore, the morphology of an aggregate formed by a large number of peptides is 

validated against the supramolecular structure of self-assembled peptides reported by an 

experimental study. 64,65 The outcomes of the tests demonstrate that the CG model preserves the 

individual structure of the peptide while capturing its assembly. The steps followed to develop the 

CG model are summarized in Figure 2. 
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Fig. 2: The workflow for the systematic bottom-up coarse-graining of the V6K2 peptide sequence 

in aqueous solution. 

Water-water Potentials 

A system with 2100 water molecules in a simulation box (of dimensions 4 nm) is used to sample 

the water-water nonbonded interactions. The simulation is run in the NPT ensemble for 200 ns, 

and the trajectories from the final 50 ns are sampled for building a reference RDF. The RDF is 

inverted using BI to generate a CG potential. This potential serves as an initial estimate for the CG 

simulation. The volume of the CG simulation box is the same as the equilibrated AA simulation 

box. The simulation is run in the NVT ensemble using the leap-frog stochastic dynamics integrator 

80 with a timestep of 2 fs. The resulting RDF for CG water-water interactions does not match with 

the reference RDF. Hence, IBI is applied to correct the CG potential. This correction requires 300 

IBI steps, each running for 300 picoseconds. The resulting CG water-water RDF in a system with 

a single V6K2 peptide is in perfect agreement with the corresponding reference RDF (see Figure. 

SI.2). 

The water-water interactions do not incorporate any effects from other molecules (i.e., peptides 

and ions). Hence, the CG water-water nonbonded potential is transferable across systems with 

varying peptide concentration. This is supported by the agreement between AA and CG RDFs of 

water-water interactions at different peptide concentrations (see Supporting Information (SI) file, 

Figure SI.3). 
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It is noted that a high concentration of peptides could disrupt the packing of water molecules. In 

this study, the formation of elongated micelles is reported with 128 CG peptides (discussed later). 

The water-water RDF of the corresponding AA simulation shows a slight disruption in the packing 

of water (see Figure SI.4). This is based on the observation that the water-water RDF does not 

decay to 1 at a distance of 1 nm (the water-water RDF of pure water decays to 1 at a distance below 

1 nm). The CG model is able to reproduce the water-water RDF of the AA 128 peptide model. 

This demonstrates that the CG water-water potential is transferable to systems where the packing 

of water is slightly disrupted. However, for higher concentrations, one can expect that these 

potentials may result in errors. One may need to make further refinements to the force field to 

account for the disruption of the packing of water molecules. 

Initial Estimates for Bonded Potentials 

The BI method is used to generate potentials for all bonded interactions. An AA system consisting 

of a single V2K peptide in aqueous solution serves as the reference system. The system is simulated 

for 500 ns. 100,000 coordinate frames of AA trajectory are processed (from the final 100 ns of AA 

simulation) to produce smooth CG bonded potentials. These potentials can be used as an initial 

estimate for bonded potentials in any VnKm peptide sequence. These potentials can approximately 

model the internal structure of these peptides, and can be refined using IBI. 

Peptide-Water Potentials 

To develop peptide-water nonbonded potentials, the peptide-peptide, water-water nonbonded and 

initial estimates of the bonded potentials need to be derived a priori. A single peptide in water is 

sampled for 1 microsecond. The simulation box has dimensions of 4 nm. Reference RDFs are 
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constructed using 100,000 coordinate frames from the final 100 ns of AA trajectory. A 100 step 

IBI procedure generates CG potentials that reproduce the reference RDF. Each IBI step runs for 

300 picoseconds. The transferability of these potentials is assessed by applying the peptide-water 

potentials developed for the CG V2K peptide on the CG V6K2 peptide. Figure SI.5 shows that the 

solvation structure of the CG V6K2 peptide is primarily in agreement with the corresponding AA 

reference system. There are extremely minor differences between the AA and CG RDFs at some 

of the peak positions. Since the AA trajectory of the V6K2 peptide sequence was available at the 

time of force field development, it was used to build separate peptide-water potentials for the CG 

model of V6K2. This improves the agreement between the AA and CG peptide-water RDFs (see 

Figure 3). The agreement between these RDFs demonstrates the correct solvation of the peptide in 

the CG representation. 
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Fig. 3: Peptide-water and ion-water radial distribution functions. A-C shows the solvation of the 

peptide beads. D shows the same for the Chloride beads. The black and red curves represent 

reference and CG distributions, respectively. 

Potentials involving ions

An effective CG potential accounts for all underlying effects that are explicitly modelled in the 

AA representation of the system.  Hence, interactions involving ions are modelled with effective 

CG potentials that account for the electrostatic, van der Waal and other interactions present in the 

AA model. Three types of effective CG potentials are developed to account for the ions: ion-ion, 

peptide-ion and ion-water potentials. The objective of these potentials is to capture the electrostatic 
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interactions between charged moieties, namely Chloride ions and Lysine residues. The ion-ion and 

peptide-ion potentials are resolved using FM along with the peptide-peptide nonbonded potentials, 

thereby preserving the electrostatic forces between the moieties in the CG model. The procedure 

for building FM potentials is described later. Consequently, across all CG simulations, ions are 

well-coordinated with the Lysine residues (Figure SI.6).  

Finally, the ion-water potential is developed along with the peptide-water potentials. Figure 3.D 

shows agreement between the reference and CG RDFs. There is a minor discrepancy in the height 

of the first peak of the CG RDF. Further refinement of the potential is avoided as it impacts the 

accuracy of the peptide-water potentials (as ion-water and peptide-water potentials are resolved 

simultaneously using IBI). However, the ion-water potential ensures that the overall solvation 

structure of the CG ion beads is correct. 

Coarse-Grained Bonded Potentials  

The initial estimates for the potentials for all the bonded interactions are derived by BI. The 

potentials are further refined via IBI. This procedure is aimed at building a transferable CG model 

that could be applicable to longer peptides in the VnKm series. The bonded potentials are 

constructed from an AA reference of a short peptide (V2K), and the transferability of the potentials 

to longer peptide chains (for example: V6K2) is assessed. Since V6K2 is significantly longer than 

V2K, the length of the peptide chain is increased in a stepwise manner (V2K->V4K->V6K2), as 

shown in Figure SI.7. At every step, corrections are made to the set of potentials, and the updated 

set of potentials are transferred to the subsequent step. The solvent is explicitly represented in all 

AA and CG systems. The corrections in the CG potentials for the V4K and V6K2 sequences are 
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almost identical. The CG model development for V6K2 is discussed in detail as it is the peptide 

sequence of interest. 

Five types of bonds are defined for any peptide sequence in the VnKm series: Valine backbone 

(VBx-VB(x+1)), Valine side chain (VBx-VSx), Valine-Lysine connector (VBx-KBy), Lysine long bond 

(KBy-KSy1) and Lysine short bond (KSy1-KSy2). Schematic representations of these bonds are shown 

in Table SI.1

Fig. 4: Comparison of the reference (black) and CG (red) distributions for (A-C) long and (D-E) 

short bonds in the V6K2 peptide sequence. 
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The BI method is used to generate the potentials for the shorter bonds in the peptide, namely the 

Valine side chain and Lysine short bond (see the width of distributions in the lower panel of Figure 

4). These CG potentials are generated by processing the AA trajectory of a V2K peptide, and are 

transferable to the CG representation of a V6K2 peptide (see agreement between the AA and CG 

curves in Figure 4.D-E). On the other hand, BI is unable to generate suitable potentials for the 

longer bonds (see the width of distributions in the upper panel of Figure 4). The resultant CG 

distributions only sample one of the peaks in the underlying reference distribution. Hence, these 

potentials provide constrained conformations as they ignore significant AA details. Such errors 

arise whilst dealing with longer bonds, especially the ones that have a bimodal distribution. It is 

surmised that these types of bonds do not satisfy the assumptions of BI (see Methods). The CG 

potentials associated with these bonds are corrected by applying IBI. Reference distributions for 

these bonds in V6K2 are required to initiate the IBI process. The AA representation of a single 

V6K2 peptide in water is sampled for 1 microsecond. 100,000 coordinate frames from the final 100 

ns of AA trajectory are processed to generate reference bond distributions.  Three steps of IBI are 

applied to correct the bonded potentials. Each IBI step runs for 10 ns. Figure 4 shows the resulting 

CG distributions to be in agreement with the reference distributions. 

The BI method is unable to derive the correct CG angle potentials. Majority of the reference angles 

only reproduce one peak. Seven steps of IBI are applied to correct all the angle potentials (see 

Figure SI.8). Each IBI step runs for 20 ns. 

The dihedral potentials developed using AA references for V2K and V4K are partially transferable 

to the CG model of V6K2. To improve the agreement between the AA and CG dihedral 
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distributions for V6K2, the AA reference trajectories for a single V6K2 peptide is sampled. The BI 

method processes 500,000 coordinate frames from the final 500 ns of AA trajectory.  This 

procedure generates smooth dihedral potentials. Figure SI.9 shows the CG dihedral potentials to 

sample the majority of the underlying AA distributions. Hence, the local structural details are 

preserved in the CG model. However, there are some minor inconsistencies: the CG potential for 

the VBx - VB(x+1) - VB(x+2) - VB(x+3) dihedral slightly over-samples the more likely conformation at 

-140 degree.  On the other hand, the potential slightly under samples the less likely conformation 

at +140 degrees. The same behavior is observed for the VSx - VBx - VB(x+1) - VS(x+1) dihedral. Further 

refinement of these potentials using IBI impacts other interactions in the CG model. Since majority 

of the AA details are preserved by the CG dihedrals, further refinement of the associated potentials 

is not performed. 

Peptide-Peptide Potentials

The main objective of these nonbonded potentials is to model the interpeptide interactions that 

govern the assembly of peptides, and the intramolecular nonbonded interactions that contribute to 

the structure of individual peptides.  Both types of interactions are resolved by the same set of CG 

potentials. The FM method with exclusions 59 is employed to develop these potentials. This 

modification excludes all forces associated with bonded and intramolecular nonbonded 

interactions from the net forces in the system during the FM process. In this way, the FM process 

only matches the intermolecular forces rather than the forces associated with the bonded and 

intramolecular nonbonded interactions. A previous study 59 shows that the exclusion approach 

results in good agreement with the corresponding reference system. In the context of this work, it 

is surmised that intramolecular nonbonded interactions could significantly vary as the peptide 
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chain length increases. Hence, the exclusion of intrapeptide forces could enhance the 

transferability of the peptide-peptide nonbonded potentials (namely, to longer peptide molecules 

in the VnKm series). However, this process leads to loss in peptide backbone conformation as the 

CG intramolecular nonbonded potentials do not account for AA intramolecular nonbonded 

interactions. This is corrected by employing special bonded potentials which will be discussed in 

a later section.  An AA representation of 25 V2K peptides solvated with 1600 water molecules in 

a simulation box (of dimensions 4 nm) serves as the reference system. This system has a high 

peptide concentration of 0.65 M so as to sample the reference forces that govern peptide assembly. 

Twenty-five monovalent chloride ions are added to maintain charge neutrality of the system. This 

system is simulated for 500 ns in the NPT ensemble. The final 100 ns of simulation trajectory is 

used to extract force data. The FM algorithm compiles the force data to generate CG potentials. 

The peptide-peptide nonbonded potentials will be best suited for systems with the same peptide 

concentration as the current system (i.e., 0.65 M). 

 To access the accuracy of the peptide-peptide nonbonded potentials, the RDFs of the AA and CG 

representations of the 25 V2K peptide system are compared (see Figure SI.10). There is overall 

qualitative agreement between the AA and CG RDFs. The major peak positions of the RDFs are 

in agreement with each other. However, due to coarse-graining, the CG RDFs are unable to capture 

the ordering between the peptides. For example, Figure SI.10.A shows that the CG RDF averages 

over the atomistic details between 0.3 to 1 nm. This behavior could be a consequence of coarse-

graining wherein the underlying effect of empty spaces in the AA fragments are smoothened out 

in the CG model. Also, since FM is not designed to match the structure of the underlying AA 

interactions, the CG model is unable to reproduce the local structure of these nonbonded 
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interactions. A previous study on FM enhances the agreement with the underlying structure using 

3-body potentials.57,58 Currently, this approach is beyond the scope of this study and will be 

pursued in future. Further, Figure SI.10.D shows the distribution of ions around the peptides in the 

AA and CG systems. The position of the major peak of the CG RDF is in agreement with that of 

the AA RDF. However, the CG peak is higher than the AA peak, thereby indicating that the ion 

concentration near the peptide surface is higher in the CG simulation. This could be a consequence 

of implicitly accounting for electrostatics with effective CG potentials. 

These nonbonded potentials contribute to the individual structure and assembly of the peptides. 

These features are examined in subsequent sections and serve as validation for the peptide-peptide 

nonbonded potentials. 

Peptide Chain Conformations

The equilibrium chain conformations of the peptide are governed by the CG model. The end-to-

end distance is measured to characterize the chain conformation of the V6K2 peptide (see Figure 

SI.11.A). This is the distance between the two capping residues at the ends of the peptide. In Figure 

SI.11.A, the peak at 0.25 nm in the CG distribution corresponds to a folded conformation of the 

CG peptide. This conformation could be attributed to the unrestrained flexibility of the CG peptide 

backbone and is due to the assumptions of the FM with exclusions method. The method derives 

the peptide-peptide nonbonded potentials by excluding bonded and intramolecular nonbonded 

interactions. Whereas this approach yields peptide-peptide nonbonded potentials which are 

transferable across the VnKm series, the intramolecular nonbonded potentials are not derived 

explicitly.  To obtain further clarity on the backbone flexibility, the degree of bending of the 
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backbone in the AA and CG representation of the peptide is compared. This comparison requires 

the measurement of the 1-3-5 angles (VBx - VB(x+2) - VB(x+4) and VBx - VB(x+2) - KBy) across the 

peptide backbone. 

Figure SI.11.B shows that the region between 20 - 40 degrees is sampled by the CG simulation but 

not by the AA simulation. This could be a consequence of the unrestrained flexibility of the peptide 

backbone. Hence, 1-3-5 special angles are derived from BI to reduce the flexibility of the CG 

peptide backbone. These potentials are further refined by five steps of IBI. This procedure does 

not yield good quality potentials if the regular backbone angles (e.g., VBx - VB(x+1) - VB(x+2)) are 

fixed. This observation could be attributed to the correlations between the conformations sampled 

by the 1-3-5 special angles and the regular backbone angles. Hence, these angles are 

simultaneously refined using IBI. Figure 5.A shows that these refinements result in perfect 

agreement between the end-to-end distances corresponding to the AA and CG representations of 

the peptide. This result indicates that all CG potentials work in conjunction to preserve the chain 

conformation of the peptide. However, less likely conformations between 40-80 degrees are not 

sampled by the CG model (see Figure 5.B).  This minor inconsistency is ignored as the refinements 

are responsible for the good agreement in the chain conformation of the peptide.  

Another measure of the chain conformation, namely the radius of gyration, corresponding to the 

AA and CG representations of the peptides are compared. This measurement quantifies the 

effective dimension of the peptide. Figure SI.12 shows the radius of gyration of the CG 

representation of the peptide to be in agreement with the corresponding value for the AA 

representation of the peptide. This observation further demonstrates that the CG model preserves 
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the chain conformation of the peptide. The solvation of the peptide remains unaffected by the 

refinement and addition of bonded potentials.  

Fig. 5: The (A) end-to-end distance and a (B) selected 1-3-5 angle of a V6K2 peptide.  The black 

and red curves represent the AA and CG distributions, respectively. 

In addition to the chain conformation of the peptide, key internal structural properties such as the 

linear extension of the long hydrophobic tail group and the RDF of the backbone beads need to be 

validated. Figure SI.13.A compares the extension of the hydrophobic tail group using the AA and 

CG models. The less likely conformation yielding a distance of 0.8 nm is not sampled by the CG 

model. This could be attributed to minor inconsistencies in the CG model (i.e., some of the CG 

dihedral potentials ignore the less likely conformations sampled in the AA simulation). However, 

given the chemical complexity of the amphiphilic peptide sequence (long hydrophobic and 

charged hydrophilic blocks), the internal structure of the CG peptide is well aligned with the 

reference data. The internal structure of the peptide backbone is further investigated using the RDF 
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between the backbone beads. This measurement includes six Valine and two Lysine backbone 

beads. Figure SI.13.B shows the CG RDF to be in good agreement with the reference distribution. 

The RDF at distances greater than 1 nm (see inset of Figure SI.13.B) is nearly in perfect agreement 

with the AA RDF. This result is significant as these interactions are not explicitly modeled by any 

specific CG potential. These interactions are cumulatively governed by bonded and nonbonded 

potentials. Hence, this result validates the use of a hybrid approach towards deriving bonded and 

nonbonded potentials. 

Time Scales and Computational Efficiency

In CG simulations, the reduced DOFs and smooth interaction potentials can accelerate the 

dynamics of the molecules.83,84 Earlier studies have compared the AA and CG timescales using 

various methods. 63,85 One approach is to compare the diffusion coefficients of a single peptide in 

the two representations. The self-diffusion coefficient is determined using AA and CG trajectories. 

The ratio of the coefficients in the CG (DCG) representation to the corresponding value in the AA 

representation (DAA) provides an estimate of the acceleration in the dynamics. Values of DCG and 

DAA are provided in Table SI.2. The speed-up factor, i.e., DCG/DAA is ~1.5 for a single V6K2. This 

means that the effective CG simulation time is approximately 1.5 times that of the AA simulation 

time. However, in the case of multiple peptide systems, the speed-up factor could be a function of 

the peptide concentration. Hence, for systems with multiple peptides, the study will focus on the 

final equilibrated structures observed in the respective models. However, the performance (as 

reported by the MD software in nanoseconds/day) of the AA and CG models can be compared for 

multiple peptide systems. An 8 peptide system (discussed in the next section) is scaled across a 

selected number of CPUs on a supercomputer (see Figure SI.14). The system is solvated with 
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approximately 2000 water molecules in a simulation box of dimension 4 nm. The CG model has 

a performance of 430 ns/day with 8 CPU cores. Whereas the AA model has a performance of 110 

ns/day on the same computing resources. Hence, coarse-graining yields a gain in computational 

efficiency (ratio of the performance of the CG and AA models) by at least a factor of 4. Further, 

the CG model can resolve the self-assembly of 128 peptides into an elongated micelle within a 

short time span. This is not feasible with the corresponding AA model. It is noted that the gain in 

computational efficiency is not sufficiently high. This could be attributed to the bottom-up coarse-

graining approach. Here, several bonded potentials consist of multiple energy wells of varying 

depths. These features are particularly observed in the dihedral and 1-3-5 angle potentials. The 

complex nature of these potentials captures the underlying chemistry of the AA fragments. 

Additionally, these potentials are used in tabulated form instead of fitting the energy values with 

an analytical function. Due to these reasons, a low CG simulation time step of 2 femtoseconds is 

employed, thereby resulting in a low gain in computational efficiency. It is noted that another 

bottom-up study reports a similar gain in computational efficiency.47 The study accurately resolves 

the AA conformation of peptides in the CG model with the same CG simulation time step. In 

future, following a previous study on relatively longer peptides,63 the mapping scheme of the VnKm 

peptides will be modified to investigate its effect on the computational efficiency.  

Multiple Peptide Systems

Prior to using the CG model for investigating self-assembly, the model must be examined for its 

ability to preserve the structure of a peptide in multi-peptide systems. Hence, the CG model is 

tested on systems encompassing 2, 4, 8 and 16 solvated peptide molecules. The corresponding AA 

systems are generated for comparison. The concentration of these systems ranges from 0.05 M to 
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0.29 M.  With the exception of the 16 peptide system, all the other systems are simulated in a box 

of dimensions 4 nm. The 16 peptide system is placed in a simulation box of dimension 4.5 nm.  

Both AA and CG simulations start from an initial configuration where the peptides are randomly 

distributed, solvated in a simulation box and the system is equilibrated using the NPT ensemble 

for 5 ns. Next, the production AA and CG simulations are simulated for 500 ns and 200 ns, 

respectively. On some occasions, the CG simulations are run for longer durations to obtain better 

statistics. The final 100,000 coordinate frames are sampled for analysis.  

Fig. 6: The end-to-end distances of peptides in the (A) 1, (B) 2, (C) 4, (D) 8 and (E) 16 peptide 

systems. The black and red curves represent AA and CG distributions, respectively. 
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Figure 6 shows the end-to-end distances of peptides in the multi-peptide systems. There is good 

agreement between the AA and CG distributions for all except the 2 peptide system. The CG 

distributions for 2, 4 and 8 peptide systems are nearly the same, and is equivalent to that of the 

single peptide system. This result could be attributed to the bonded potentials that are fitted to the 

single peptide reference system. This could explain the disagreement in the 2 peptide system (see 

Figure 6.B). To improve the agreement between these distributions, the bonded potentials for this 

system can be further refined using a suitable reference (AA trajectory for the 2 peptide system). 

In this study, further refinement of the bonded potentials is not performed as there is overall 

agreement in the structure associated with AA and CG representations of the peptides. In addition, 

the CG model only captures the major peak of the 16 peptide system at ~2.5 nm. The compact 

conformations between 1 nm and 2 nm are not sampled by the CG model. These conformations 

have a low probability of occurrence, and hence further refinements to the force field are not 

performed. 

Figure SI.15 compares the radius of gyration of the AA and CG representation of the peptides in 

multi-peptide systems. There is qualitative agreement between the AA and CG simulations for all 

except the 2 peptide system. Figure SI.15 shows that the AA distributions becomes narrower as 

the peptide concentration is increased.  This means that the conformation of these peptides 

becomes relatively restrained as the peptide concentration is increased. Except for the 2 peptide 

system, the CG model is able to capture this behavior. This is significant as the restraining effect 

was not a part of the parameterization. On some occasions, the individual AA peptides sample 

relatively compact conformations. This can be seen in the 8 and 16 peptide systems where the 

peaks of the AA distributions are at relatively smaller values (~ 0.82 nm) in comparison to the 
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peaks of the CG distributions (~ 0.85 nm). Further, the discrepancy in the 2 peptide system could 

be attributed to frequent conformational changes (see Figure SI.16.A-B). It is observed that both 

AA and CG simulations of 2 V6K2 peptides yield a peptide dimer (see inset in Figure SI.16.A-B). 

The AA peptides organize antiparallel to each other in the dimer (Figure SI.16.A). This 

organization between the peptides is preserved for the entire duration of the AA simulation. 

Whereas the CG peptides organize in both antiparallel and parallel orientations (Figure SI.16.B). 

This means that the CG peptides frequently undergo conformational changes during the course of 

the simulation. This could explain the wider distribution of the radius of gyration values in the CG 

simulation (see Figure SI.15.B). To summarize, the end-to-end distance and radius of gyration 

calculations show that the CG model is able to preserve the overall structure of V6K2 peptides even 

in the presence of interactions with neighboring peptides. The latter is not explicitly accounted for 

in the parameterization process, and hence demonstrates the robustness of the CG model.

The assembly of the peptides is tested on the 8 peptide system with a peptide concentration of 0.21 

M, which is within the same order of magnitude at which the peptide-peptide nonbonded potentials 

are developed. Both the AA and CG simulations yield a self-assembled micelle (see Figure 7.A-

B). 
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Fig. 7: A micelle consisting of eight peptides in (A) AA and (B) CG resolutions. (C) Equilibrated 

backmapped-atomistic conformation of the micelle. Color Scheme - Green: Valine and Purple: 

Lysine. 

The final CG configuration (Figure 7.B) is backmapped to AA coordinates to test the stability of 

the CG configuration in the AA representation. The backmapped-atomistic configuration is 

simulated for 1 ns without any restraints. The RMSD between the backmapped-atomistic and the 

initial CG (see Figure 7.B) configuration after 1 ns is 0.5 nm. An additional 10 ns of dynamics 

increases the RMSD to 0.8 nm (see the final backmapped-atomistic configuration in Figure 7.C). 

This deviation from the underlying CG configuration is very small given that the backmapped-

atomistic simulation explicitly considers a higher number of DOFs. 

To compare the relative organization of the peptides in a micelle, the interactions between the 

hydrophobic residues are investigated. Figure SI.17 shows that the hydrophobic residues of the 

peptides are aligned with each other. Intermolecular RDFs between first (V1) and last (V6) Valines 

in the V6K2 peptide sequence characterizes the relative orientation of these peptides (see Figure 

SI.16.E-F). A higher count of either V1-V1 (black lines) or V6-V6 (red lines) interactions is 

indicative of parallel orientation between the peptides. Whereas a higher count of V1-V6 

interactions (blue lines) is indicative of antiparallel orientation between the peptides.  The 

antiparallel orientation is dominant in the AA 8 peptide system (Figure SI.16.E). Whereas Figure 

SI.16.F shows that the antiparallel orientation is lost to a certain degree in the CG 8 peptide system. 

In addition, the intermolecular RDFs show that the CG representation of the peptides prefer to 
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pack tightly within the micelle. This observation is based on the starting points of the AA and CG 

RDFs. The starting point of the AA RDFs is ~0.5 nm and the starting point of the CG RDFs is 

~0.25 nm. This discrepancy can be explained by the underlying effects modeled in the AA and CG 

simulations. The AA model employs the AMBER force field that accounts for interactions such 

as hydrogen bonding between peptides and water. These interactions result in higher number of 

peptide-water interactions. Figure SI.18 reports higher solvation of AA peptides in comparison to 

the CG peptides. These interactions with water could hinder the AA peptides from packing tightly 

within the micelle. On the other hand, the CG model does not explicitly model interactions such 

as hydrogen bonding between peptides and water, thereby resulting in a tighter packing of the 

peptides. 

The dimension of these micelles are compared by measuring their radius of gyration (see Figure 

SI.19). The AA simulation samples radius of gyration values between 1 and 3 nm. The CG 

simulation samples a slightly wider range which encompasses values between 1-3 nm. In addition, 

the probability of finding a compact conformation of the micelle (between 1-1.5 nm) is relatively 

higher in the CG model. These compact conformations are representative of the tight packing of 

the CG representation of the peptides in the micelle (see Figure SI.16.E-F). As previously 

discussed, this could explain the under-solvation of the Valine backbone and side chain residues 

in the CG representation (see Figure SI.18). This indicates some loss in transferability of the CG 

potentials. The degree of peptide solvation can be addressed by tuning the peptide-water potentials 

with a suitable reference system (i.e., an AA system with 8 peptides). It is noted that reducing the 

strength of the interpeptide potentials does not correct the packing of the Valine residues in the 

hydrophobic core of the micelle. However, further refinement of the peptide-water CG potentials 
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is not deemed necessary as there is overall agreement on the size of the micelles. For the 

backmapped-atomistic system, the distribution of radius of gyration values is approximately at the 

center of the AA and CG distributions. The solvation of the backmapped-atomistic peptides is in 

agreement with corresponding results from the original AA simulation (see Figure SI.18), 

demonstrating the preservation of a solvation structure which is consistent with the AA 

description. These results demonstrate the stability of the aggregates sampled by the CG model.  

It is noted that the individual conformations of the AA peptides are relatively more compact than 

CG peptides (see Figure SI.15.D). However, the intermolecular RDFs (Figure SI.16.E-F) shows 

that the AA peptides are not as tightly packed in the micelle as the CG peptides. Hence, even with 

individual AA peptides sampling compact conformations, the resultant micelle has a larger size. 

To further understand the relative organization of the peptides, the interactions between all the 

hydrophobic residues are investigated. The probability of interactions between all possible Valine 

residues within a cut-off distance (i.e., 0.65 nm) are presented as a contact map 34 (see Figure 

SI.17). The backbone section of each Valine residue is considered for this measurement. The CG-

mapped coordinates of the AA model are used to compute the contact map for the AA systems. 

Hence, the interactions between the Valine residues can be compared across the AA and CG 

resolutions. In the contact maps (see Figure SI.17), V1 represents the Valine residue farthest away 

from the Lysine residues, and V6 represents the Valine residue closest to the Lysine residues (see 

Figure 1). The AA contact map shows a high probability of interactions between V2, V3 and V4 

residues (see lower middle section of Figure SI.17.A). This suggests that these Valine residues 

from neighboring peptides are aligned which is a characteristic of a -sheet-like organization. In β
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addition, the high probability of interactions along an edge of the map (V4-V1, V5-V1 and V6-

V1) indicate a preference towards antiparallel orientation between the peptide chains.  The 

antiparallel orientation minimizes the repulsions between the Lysine residues by increasing the 

distances between Lysine residues. Furthermore, V2-V2 and V3-V3 interactions are preferred over 

V5-V5 and V6-V6. This indicates that the Valine residues that are closer to the N terminus (e.g.: 

V2, V3) have a higher affinity towards each other as compared to the residues closer to the C 

terminus (e.g.: V5, V6). As reported in a previous study,34 this result could be due to a cooperative 

hydrophobic effect (namely, V2, V3 have more hydrophobic neighbors as compared to V5, V6 

that have Lysine neighbors on one side).  It is surmised that the cooperative hydrophobic effect 

plays a role in stabilizing the peptide aggregate. Finally, it is noted that the AA contact map is 

highly asymmetric (for example, interactions like V1-V6 is not equivalent to V6-V1). This means 

that peptides are not perfectly aligned with each other in the micelle. It is surmised that the high 

magnitude of electrostatic repulsions between the Lysine residues could prevent perfect alignment 

between the peptides. 

Similarly, the CG contact map (Figure SI.17.B) demonstrates the probability of interactions 

between the Valine residues in the CG model. The plot shows that relative organization of the 

peptides is consistent with corresponding results using the AA description. A high probability of 

interactions between V2, V3 and V4 residues indicates -sheet-like organization. In addition, the β

cooperative hydrophobic effect is reproduced in the CG model; namely, the V2-V2 and V3-V3 

interactions are greater than the V5-V5 and V6-V6 interactions. However, due to the removal of 

selected AA features, a few discrepancies are observed; namely, the CG model shows a diminished 

preference for antiparallel orientation. Since Lysine-Lysine repulsions are not explicitly modeled 
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by electrostatic potentials, the CG V6K2 peptides show a reduced tendency towards organizing in 

the antiparallel orientation. Furthermore, the distribution of hues is different in the AA and CG 

contact maps. The distribution of the hues in a contact map reflects the relative packing of 

hydrophobic residues in the micelle. The CG contact map reports a uniform distribution of hues: 

the packing of the hydrophobic residues gradually decreases from the center (V3 or V4) to the 

sides (V1 or V6) of the map.  On the other hand, the AA contact map (Figure SI.17.A) reports a 

relatively random distribution of hues. Thus, the hydrophobic residues in the AA simulation do 

not pack in a uniform manner as reported by the CG simulation. The discrepancy could be a 

consequence of coarse-graining wherein the empty spaces associated with the underlying AA 

fragments are smoothened out in the CG model. It is noted that the CG contact map is relatively 

more symmetric in comparison to the AA contact map. It is surmised that the peptides are more 

aligned with each other as the effect of electrostatic repulsions between Lysine residues is reduced 

in the CG model. This could be a consequence of the using effective CG potentials.

Finally, Figure SI.17.C demonstrates the probability of interactions between the Valine residues 

in the backmapped-atomistic model. It shows the reproduction of two structural properties; 

namely, the relative packing of hydrophobic residues, and preference towards the antiparallel 

orientation. Also, the contact map is asymmetric like the AA contact map (Figure SI.17.A). All 

these features are reproduced as the CG model correctly samples the overall structure of the 

peptides. 

In summary, the morphology of the final aggregate and relative organization of the peptides are in 

agreement with corresponding results from the AA simulations. Hence, all CG bonded and 
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nonbonded potentials accurately model peptide aggregation. In addition, the CG model has 

successfully captured the relative organization of the peptides within an aggregate in a short span 

of time relative to the AA model.

Figure SI.16 shows the intermolecular RDFs for 2, 4, 8 and 16 peptide systems. In the AA 

simulations, it is observed that peptides prefer to organize in a parallel orientation with increasing 

peptide concentration. For smaller peptide concentrations (namely the 2 peptide system), the AA 

simulation only samples the antiparallel orientation (Figure SI.16.A). The corresponding CG 

simulation (Figure SI.16.B) samples both antiparallel and parallel orientations (the antiparallel 

orientation is relatively preferred). On the other hand, at higher peptide concentrations (namely the 

16 peptide system), the AA simulation primarily samples the parallel orientation (Figure SI.16.G). 

The corresponding CG simulation primarily samples the same orientation (Figure SI.16.H). This 

shows qualitative agreement between the intermolecular packing of peptides in the AA and CG 

simulations. 
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Fig. 8: Self-assembly of 128 CG V6K2 peptides. A) Self-assembled nanostructures after 107 

timesteps of the CG MD simulation. The largest aggregate, i.e., an elongated micelle is represented 

by regular beads, and the smaller aggregates are represented by translucent beads. (B) Side and 

(C) end views of the elongated micelle. The smaller aggregates are removed from (B) and (C) for 

clarity. Also, water and ion beads are removed from (A-C) for clarity. Color Scheme - Green: 

Valine and Purple: Lysine.

The ability of the CG model to capture the self-assembly of V6K2 peptides into large nanostructures 

reported by experiments is assessed. Earlier experiments have reported V6K2 peptides to assemble 

into nanorods for concentrations ranging from ~ 0.05 to 0.5 mM.64,65 In this computational study, 

a much higher peptide concentration of 0.21 M is chosen. This enables faster self-assembly of the 

peptides at a lower computational cost. 53,80  The system of interest encompasses 128 V6K2 peptides 

in the CG representation in a simulation box of dimension 10 nm.  The peptides are solvated with 

approximately 26000 water molecules, and 256 Chloride ions are added to maintain charge 

neutrality of the system. It is observed that the majority of the peptides assemble into an elongated 

micelle (see Figure 8) which is a precursor to nanorods and thereby consistent with experimental 

observations.64,65 Another study using the Martini model has reported the formation of a large 

nanorod using longer simulations.86 To permit large scale assembly within a bottom-up CG 

framework, appropriate references (an AA model of 128 V6K2 peptides) need to be integrated into 

the parametrization process. This approach is out of scope of the present study and will be pursued 

in a future work. 

CONCLUSIONS
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In this study, a hybrid CG model is used to resolve the structure of a V6K2 peptide and capture its 

assembly in aqueous solution. The underlying AA solvation structure of the peptide is perfectly 

reproduced in the CG model. The CG model is developed with AA trajectories and forces as 

references, and hence accounts for complex DOFs that govern the structure and solvation of 

peptides. In addition, due to the reduced representation of the system, longer spatiotemporal scales 

can be easily accessed. The CG model provides a gain in computational efficiency by a factor of 

4. The structure of individual V6K2 peptides are tested in multiple peptide systems. The potentials 

preserve the structure of the individual peptides in the presence of interactions with neighboring 

peptides. The aggregation of a few peptides is successfully validated against corresponding results 

from AA simulations. In addition, the self-assembled nanostructure formed by a large number of 

these CG peptides is in agreement with prior experimental observations.64,65

This study outlines a method to resolve the structure of peptides within aggregates. This is critical 

towards understanding structure-function relationships of tunable peptide sequences. Hence, this 

method can be extended to other molecules that assemble into nanostructures. Future 

improvements to the CG model can be made with additional AA simulations to enhance the 

agreement with multiple peptide systems. In addition, the use of complex potentials to better 

approximate the many-body PMF could improve the transferability of the potentials across various 

systems.55–58 This could resolve the structure of peptides within much larger nanostructures. 

Furthermore, the impact of local interactions on the properties of the nanostructure spanning large 

spatiotemporal scales, such as curvature and bending rigidity, can be investigated. 

Conflicts of Interest

Page 42 of 48Physical Chemistry Chemical Physics



43

There are no conflicts of interest to declare.

Acknowledgements 

M.D. would like to acknowledge NSF CAREER DMR-1654325 for financial support. Portions of 

the research presented used computational resources supported by NSF XSEDE (allocation DMR-

140125).

Notes and References

Simulation files for the CG 1 and 8 peptide systems are available in a GitHub repository. 87

1     R. Das, P. J. Kiley, M. Segal, J. Norville, A. A. Yu, L. Wang, S. A. Trammell, L. E. Reddick, R. 

Kumar, F. Stellacci, N. Lebedev, J. Schnur, B. D. Bruce, S. Zhang and M. Baldo, Nano Letters, 

2004, 4, 1079–1083.

2     B. Ge, F. Yang, D. Yu, S. Liu and H. Xu, PLoS ONE, 2010, 5, e10233.

3     X. Zhao, Y. Nagai, P. J. Reeves, P. Kiley, H. G. Khorana and S. Zhang, Proceedings of the 

National Academy of Sciences, 2006, 103, 17707–17712.

4     J. I. Yeh, S. Du, A. Tortajada, J. Paulo and S. Zhang, Biochemistry, 2005, 44, 16912–16919.

5     P. Kiley, X. Zhao, M. Vaughn, M. A. Baldo, B. D. Bruce and S. Zhang, PLoS Biology, 2005, 3(7), 

e230.

6     K. Matsumoto, M. Vaughn, B. D. Bruce, S. Koutsopoulos and S. Zhang, The Journal of Physical 

Chemistry B, 2009, 113, 75–83.

7     Q. Meng, Y. Kou, X. Ma, Y. Liang, L. Guo, C. Ni and K. Liu, Langmuir, 2012, 28, 5017–5022.

8     S. Santoso, W. Hwang, H. Hartman and S. Zhang, Nano Letters, 2002, 2, 687–691.

9     G. von Maltzahn, S. Vauthey, S. Santoso and S. Zhang, Langmuir, 2003, 19, 4332–4337.

Page 43 of 48 Physical Chemistry Chemical Physics



44

10   S. Vauthey, S. Santoso, H. Gong, N. Watson and S. Zhang, Proceedings of the National Academy 

of Sciences, 2002, 99, 5355–5360.

11   S. A. Hollingsworth and R. O. Dror, Neuron, 2018, 99, 1129–1143.

12   R. O. Dror, R. M. Dirks, J. P. Grossman, H. Xu and D. E. Shaw, Annual Review of Biophysics, 

2012, 41, 429–452.

13   J. E. Straub and D. Thirumalai, Annual Review of Physical Chemistry, 2011, 62, 437–463.

14   L. E. Buchanan, E. B. Dunkelberger, H. Q. Tran, P.-N. Cheng, C.-C. Chiu, P. Cao, D. P. Raleigh, 

J. J. de Pablo, J. S. Nowick and M. T. Zanni, Proceedings of the National Academy of Sciences, 

2013, 110, 19285–19290.

15   C. A. Miller, S. H. Gellman, N. L. Abbott and J. J. de Pablo, Biophysical Journal, 2009, 96, 4349–

4362.

16   W. M. Berhanu, E. J. Alred, N. A. Bernhardt and U. H. E. Hansmann, Physics Procedia, 2015, 68, 

61–68.

17   O.-S. Lee, S. I. Stupp and G. C. Schatz, Journal of the American Chemical Society, 2011, 133, 

3677–3683.

18   W. G. Noid, The Journal of Chemical Physics, 2013, 139, 090901.

19   R. D. Groot and P. B. Warren, The Journal of Chemical Physics, 1997, 107, 4423.

20   M. Dutt, O. Kuksenok, S. R. Little and A. C. Balazs, Nanoscale, 2011, 3, 240-250.

21   M. Dutt, O. Kuksenok, M. J. Nayhouse, S. R. Little and A. C. Balazs, ACS Nano, 2011, 5(6), 

4769–4782.

22   F. Aydin, G. Uppaladadium and M. Dutt, Colloids and Surfaces B: Biointerfaces, 2015, 128, 268–

275.

Page 44 of 48Physical Chemistry Chemical Physics



45

23   E. Brini, E. A. Algaer, P. Ganguly, C. Li, F. Rodríguez-Ropero and N. F. A. van der Vegt, Soft 

Matter, 2013, 9, 2108–2119.

24   C. Wu and J.-E. Shea, Current Opinion in Structural Biology, 2011, 21, 209–220.

25   R. Pellarin, E. Guarnera and A. Caflisch, Journal of Molecular Biology, 2007, 374, 917–924.

26   J. Zhang and M. Muthukumar, The Journal of Chemical Physics, 2009, 130, 035102.

27   H. I. Ingólfsson, C. A. Lopez, J. J. Uusitalo, D. H. de Jong, S. M. Gopal, X. Periole and S. J. 

Marrink, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4, 225–248.

28   L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman and S.-J. Marrink, 

Journal of Chemical Theory and Computation, 2008, 4, 819–834.

29   P. W. J. M. Frederix, R. v. Ulijn, N. T. Hunt and T. Tuttle, The Journal of Physical Chemistry 

Letters, 2011, 2, 2380–2384.

30   O.-S. Lee, V. Cho and G. C. Schatz, Nano Letters, 2012, 12, 4907–4913.

31   M. Mazza, R. Notman, J. Anwar, A. Rodger, M. Hicks, G. Parkinson, D. McCarthy, T. Daviter, J. 

Moger, N. Garrett, T. Mead, M. Briggs, A. G. Schätzlein and I. F. Uchegbu, ACS Nano, 2013, 7, 

1016–1026.

32   N. Thota, Y. Ma and J. Jiang, RSC Adv., 2014, 4, 60741–60748.

33   S. Mushnoori, K. Schmidt, V. Nanda and M. Dutt, Organic & Biomolecular Chemistry, 2018, 16, 

2499–2507.

34   Y. Sun, Z. Qian, C. Guo and G. Wei, Biomacromolecules, 2015, 16, 2940–2949.

35   C. Guo, Y. Luo, R. Zhou and G. Wei, Nanoscale, 2014, 6, 2800–2811.

36   P. W. J. M. Frederix, G. G. Scott, Y. M. Abul-Haija, D. Kalafatovic, C. G. Pappas, N. Javid, N. T. 

Hunt, R. v. Ulijn and T. Tuttle, Nature Chemistry, 2015, 7, 30–37.

37   G. G. Scott, P. J. McKnight, T. Tuttle and R. v. Ulijn, Advanced Materials, 2016, 28, 1381–1386.

Page 45 of 48 Physical Chemistry Chemical Physics



46

38   J. Kwon, M. Lee and S. Na, Journal of Computational Chemistry, 2016, 37, 1839–1846.

39   C. Guo, Y. Luo, R. Zhou and G. Wei, ACS Nano, 2012, 6, 3907–3918.

40   N. Thota, Z. Luo, Z. Hu and J. Jiang, The Journal of Physical Chemistry B, 2013, 117, 9690–9698.

41   H. D. Nguyen and C. K. Hall, Journal of the American Chemical Society, 2006, 128, 1890–1901.

42   H. D. Nguyen and C. K. Hall, Proceedings of the National Academy of Sciences, 2004, 101, 

16180–16185.

43   R. A. Mansbach and A. L. Ferguson, Organic & Biomolecular Chemistry, 2017, 15, 5484–5502.

44   R. A. Mansbach and A. L. Ferguson, The Journal of Physical Chemistry B, 2017, 121, 1684–1706.

45   F. Müller-Plathe, ChemPhysChem, 2002, 3, 754–769.

46   D. Reith, M. Pütz and F. Müller-Plathe, Journal of Computational Chemistry, 2003, 24, 1624–

1636.

47   A. Villa, N. F. A. van der Vegt and C. Peter, Physical Chemistry Chemical Physics, 2009, 11, 

2068.

48   A. Villa, C. Peter and N. F. A. van der Vegt, Physical Chemistry Chemical Physics, 2009, 11, 

2077.

49   S. Izvekov and G. A. Voth, The Journal of Physical Chemistry B, 2005, 109, 2469–2473.

50   R. D. Hills, L. Lu and G. A. Voth, PLoS Computational Biology, 2010, 6, e1000827.

51   A. P. Lyubartsev and A. Laaksonen, Physical Review E, 1995, 52, 3730–3737.

52   M. S. Shell, The Journal of Chemical Physics, 2008, 129, 144108.

53   S. P. Carmichael and M. S. Shell, The Journal of Physical Chemistry B, 2012, 116, 8383–8393.

54   O. Bezkorovaynaya, A. Lukyanov, K. Kremer and C. Peter, Journal of Computational Chemistry, 

2012, 33, 937–949.

55   T. Sanyal and M. S. Shell, The Journal of Chemical Physics, 2016, 145, 034109.

Page 46 of 48Physical Chemistry Chemical Physics



47

56   T. Sanyal and M. S. Shell, The Journal of Physical Chemistry B, 2018, 122(21), 5678–5693.

57   A. Das and H. C. Andersen, The Journal of Chemical Physics, 2012, 36, 194114.

58   L. Larini, L. Lu and G. A. Voth, The Journal of Chemical Physics, 2010, 132, 164107.

59   V. Rühle and C. Junghans, Macromolecular Theory and Simulations, 2011, 20, 472–477.

60   M. Praprotnik, L. Delle Site and K. Kremer, The Journal of Chemical Physics, 2005, 123, 224106.

61   M. Praprotnik, L. Delle Site and K. Kremer, Physical Review E, 2006, 73, 066701.

62   M. Praprotnik, L. Delle Site and K. Kremer, The Journal of Chemical Physics, 2007, 126, 134902.

63   J. Zhou, I. F. Thorpe, S. Izvekov and G. A. Voth, Biophysical Journal, 2007, 92, 4289–4303.

64   M. K. Baumann, M. Textor and E. Reimhult, Langmuir, 2008, 24, 7645–7647.

65   I. W. Hamley, Soft Matter, 2011, 7, 4122.

66   D. Reith, M. Pütz and F. Müller-Plathe, Journal of Computational Chemistry, 2003, 24, 1624–

1636.

67   C. Peter and K. Kremer, Soft Matter, 2009, 5, 4357.

68   S. Izvekov, M. Parrinello, C. J. Burnham and G. A. Voth, The Journal of Chemical Physics, 2004, 

120, 10896–10913.

69   V. Rühle, C. Junghans, A. Lukyanov, K. Kremer and D. Andrienko, Journal of Chemical Theory 

and Computation, 2009, 5, 3211–3223.

70   V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg and C. Simmerling, Proteins: Structure, 

Function, and Bioinformatics, 2006, 65, 712–725.

71   H. J. C. Berendsen, D. van der Spoel and R. van Drunen, Computer Physics Communications, 

1995, 91, 43–56.

72   E. Lindahl, B. Hess and D. van der Spoel, Journal of Molecular Modeling, 2001, 7, 306–317.

Page 47 of 48 Physical Chemistry Chemical Physics



48

73   D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C. Berendsen, Journal 

of Computational Chemistry, 2005, 26, 1701–1718.

74   T. Darden, D. York and L. Pedersen, The Journal of Chemical Physics, 1993, 98, 10089–10092.

75   G. Bussi, D. Donadio and M. Parrinello, The Journal of Chemical Physics, 2007, 126, 014101.

76   G. Bussi, T. Zykova-Timan and M. Parrinello, The Journal of Chemical Physics, 2009, 130, 

074101.

77   M. Parrinello and A. Rahman, Journal of Applied Physics, 1981, 52, 7182–7190.

78   B. Hess, H. Bekker, H. J. C. Berendsen and J. G. E. M. Fraaije, Journal of Computational 

Chemistry, 1997, 18, 1463–1472.

79   H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, The Journal of Physical Chemistry, 1987, 

91, 6269–6271.

80   W. F. van Gunsteren and H. J. C. Berendsen, Molecular Simulation, 1988, 1, 173–185.

81   T. A. Wassenaar, K. Pluhackova, R. A. Böckmann, S. J. Marrink and D. P. Tieleman, Journal of 

Chemical Theory and Computation, 2014, 10, 676–690.

82   J. Peng, C. Yuan, R. Ma and Z. Zhang, Journal of Chemical Theory and Computation, 2019, 15(5), 

3344–3353

83   S. J. Marrink and D. P. Tieleman, Chemical Society Reviews, 2013, 42, 6801–6822.

84   D. Fritz, K. Koschke, V. A. Harmandaris, N. F. A. van der Vegt and K. Kremer, Physical 

Chemistry Chemical Physics, 2011, 13, 10412–10420.

85   M. Zhao, J. Sampath, S. Alamdari, G. Shen, C.-L. Chen, C. J. Mundy, J. Pfaendtner and A. L. 

Ferguson, The Journal of Physical Chemistry B, 2020, 124, 7745–7764.

86   Chien Yu Lu, Thesis, Rutgers, The State University of New Jersey, 2020.

87   Hybrid CG Models Peptides, DOI: 10.5281/zenodo.5715326, (accessed November 2021). 

Page 48 of 48Physical Chemistry Chemical Physics


