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Ices in the interstellar medium largely exist as amorphous solids composed of small molecules including

ammonia, water, and carbon dioxide. Describing gas-phase molecules can be readily accomplished

with current high-level quantum chemical calculations with the description of crystalline solids

becoming more readily accomplished. Di�erently, amorphous solids require more novel approaches.

The present work describes a method for generating amorphous structures and constructing electronic

spectra through a combination of quantum chemical calculations and statistical mechanics. The

structures are generated through a random positioning program and DFT methods, such as ωB97-

XD and CAM-B3LYP. A Boltzmann distribution weights the excitations to compile a �nal spectrum

from a sampling of molecular clusters. Three ice analogs are presented herein consisting of ammonia,

carbon dioxide, and water. Ammonia and carbon dioxide provide semi-quantitative agreement with

experiment for CAM-B3LYP/6-311++G(2d,2p) from 30 clusters of 8 molecules. Meanwhile, the

amorphous water description improves when the sample size is increased in cluster size and count

to as many as 105 clusters of 32 water molecules. The described methodology can produce highly

comparative descriptions of electronic spectra for ice analogs and can be used to predict electronic

spectra for other ice analogs.

Introduction

In cold interstellar regions and protoplanetary disks, amorphous
solids exist due to the lack of energy required to produce
crystalline solids. While specific molecular concentrations vary
depending on the astrophysical environment, H2O, H2CO, N2,
CO, O2, CO2, H2O2, CH4, and NH3 are the primary constituents
of grain mantles1–5 that exist as amorphous solids in low
temperatures. These amorphous solids can act as a surface
upon which molecules accumulate and reaction pathways are
accelerated. At temperatures around 10 K, most molecules—
except H2 and He—that collide with these ice analogs will stick
to the surface6. More specifically, the surface of amorphous
water has nanopores that have strong binding sites which allow
adsorption of molecules, such as CO, permitting additional
surface chemistry.7,8 Due to increased flexibility, amorphous
solids can behave as superior catalysts compared to their
corresponding crystalline solid form7. Consequently, interstellar
amorphous solids provide an environment for bringing molecules
together and, subsequently, increasing their reactivity.

Additionally, amorphous solids can exist as ices and provide
the material for forming larger molecules independently.

a Department of Chemistry & Biochemistry, University of Mississippi,
University,Mississippi 38677-1848, United States; Tel: 662-915-1687; E-mail:
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Ultraviolet photolysis of ice analogs consisting of H2O,
CH3, NH3 and CO ultimately produces H2CO3, CO2, CH4,
HCO and more complex molecules in simulated interstellar
environments9–12. These products and other similar small
molecules containing carbon atoms are likely precursors for
forming larger organic and biologically relevant molecules in the
interstellar medium (ISM)6,9,13–19. Some of these compounds
include glycine, alanine, and serine20 with reaction pathways
explored computationally21. Furthermore, previous theoretical
and laboratory work shows that methane, ethylene, and acetylene
ices can undergo radical reactions to produce larger alkanes22.
Therefore, better ice analog characterization can lead to increased
understanding of extraterrestrial environments in which organic
residues form.

While many computational approaches exist for describing
amorphous solids with molecular dynamics and machine
learning23–26, few approaches attempt to use higher-levels of
theory, such as density functional theory (DFT), to describe
amorphous solids due to the high computational costs. Attempts
at combining DFT and machine learning have produced favorable
results for describing ta-C surfaces27; however, a gap exists in
the literature regarding the description of electronic spectra of
small molecule amorphous solids potentially present in the ISM.
Other computational descriptions of ices have utilized B3LYP/6-
31+G** with up to 12 water molecules and implicit solvent
effects to describe water as an ice environment for simulating
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interactions between ammonia and formaldehyde28. Chen and
Woon conclude that increasing the number of water molecules
in the clusters seems to produce infrared modes that start
converging in value with observations28. Other approaches with
DFT investigate interactions with water ices with good agreement
to experimental results29,30. Thus, DFT appears predictive for
interstellar-like clusters in the infrared region.

Previous research on ices in interstellar regions primarily
focuses on vibrational spectroscopy in the infrared region31–34

with less investigation into electronic spectroscopy within the
ultraviolet light region35,36. Infrared spectroscopy of amorphous
CO2 ices has shown that IR can detect mixtures of CO2 with
other small molecules and discern between ice and gas phase
through attention to minor details37,38. While water in the
gas phase has its first vertical excitation at about 7.5 eV, the
amorphous solid is significantly higher in energy due to less
favorable interactions with adjacent water molecules from the
excited state’s smaller dipole moment.36 Due to ionization limits,
each ice has a specific upper-bound energy for the observable
electronically excited states before the energy changes the ice
itself. As such, electronic excited states confined to a region below
the ionization limit provides a region for comparing computation
and experiment. In order to provide a computational description
of the amorphous solids of ammonia, carbon dioxide, and
water, the present work describes a method for generating these
solids computationally and comparing the computed electronic
spectroscopic data with experiment in the literature.35 The
generation of molecular structures uses randomization, and the
optimizations and electronically excited states are calculated
using DFT. After generating clusters of each of these molecules,
the use of DFT for molecular optimizations and electronic
spectroscopy in the current work aims to provide electronic
spectral characterization for small molecule amorphous solids
with application to elucidating the behavior of interstellar ices
both in the laboratory and potentially even in astrophysical
environments.

Computational Methods & Approach

Amorphous solids are computationally generated through a
randomization program written in Python3. The program relies
on two main parameters: number of clusters and number of
molecules per cluster. After building the clusters and running
optimization and electronic excitation calculations, spectroscopic
data is extracted and weighted according to a Boltzmann
distribution of the clusters’ energies. The final output is a
normalized spectrum based on combining all the clusters’ data.

Prior to using the program, the desired molecule is optimized
as a monomer. In the present work, ammonia, water, and
carbon dioxide monomers are optimized with ωB97-XD/6-
31G(d) through Gaussian1639–41. The optimized molecular
geometry and cluster parameters, such as number of molecules
in the system, number of clusters, and size of the box, are then
input into the program. Additionally, differing geometries can be
used with specific ratios to construct mixtures. Regardless of the
parameters, each molecule in the cluster starts at the origin and
undergoes randomized rotations and displacements according to

values generated by the Mersenne Twister series42, which acts as
a pseudorandom number generator. The random rotations occur
in three planes. Then, the molecules are displaced by a randomly
generated three-dimensional vector. In order to ensure that
the molecular geometries do not overlap in the cluster—causing
errors in the optimization calculations—the program checks the
distance between each of the monomers in the system and the
newly added monomer. If the distance is too small, the molecule
undergoes the randomization process again. This cycle continues
until the system contains the specified number of molecules.
Upon completion, the program constructs Gaussian16 geometry
optimization input files with Cartesian coordinates and frozen
internal coordinates of bond length and bond angles within the
individual molecules themselves.

The process described above is conducted for as many clusters
as the user specifies. Next, each optimization calculation
runs with ωB97-XD/6-31G(d) until the constrained molecular
internal coordinates cause the calculation to fail to converge;
however, this optimizes the distance between the molecules
providing a better guess as to the preferred arrangement of
the molecules. The last molecular geometry is extracted and
placed into another Gaussian16 input file without freezing
internal molecular coordinates in order to calculate the optimized
geometry and harmonic frequency zero-point energy for the
cluster. This two step process accelerates the optimization
process and avoids nearly all imaginary frequencies. Then, the
optimized geometries undergo time-dependent density functional
theory (TD-DFT) electronic excitation calculations. Notably,
the current work uses the optimized structures as a reference
geometry for the exploration of different functionals and basis
sets. The methods include B3LYP43, PBE044, ωB97-XD41, CAM-
B3LYP45, and B97D346. The basis sets include 6-311G(d,p) and
6-311++G(2d,2p)47,48.

After the optimizations finish, the program uses a Boltzmann
distribution from the relative energies to acquire a scaling factor.
The scaling factor is used to weight the contributions of each
cluster’s excitations oscillator strengths, which approximates
Beer’s Law. Additionally, the temperature parameter is set by the
user to match the energy levels of the environment. For ammonia,
water, and carbon dioxide, the temperature is calculated through
converting the binding energies of the dimers into units of
temperature. These binding energies come from optimizing the
dimers with ωB97-XD/6-31G(d) and subtracting the energy from
twice the monomer energy. From the Boltzmann distribution, the
more stable clusters will contribute more to the overall spectrum
than the less stable structures. The program then compiles the
excitations into one file for a sub-processed artificial spectrum
broadening program that uses the Gaussian line shape procedure
with a full width at half maximum height (FWHM) variable
of 2 nm to produce a continuous function from the discretely
calculated spectra. To ensure that the broadness is consistent
across all spectra produced by the program, the FWHM is set to
2nm arbitrarily. Finally, a normalized spectrum (compared to the
highest peak) of the oscillator strength is plotted as a function of
energy.

In order to explore the capabilities of generating amorphous
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solid electronic spectra, four datasets are generated comprising
of pure water, ammonia, or carbon dioxide. Since water has the
fewest electrons of the listed molecules, two datasets of water are
analyzed. One dataset comprises of 105 randomized clusters of
32 water molecules, while the other is 30 randomized clusters of
8 water molecules. The datasets for ammonia and carbon dioxide
agree in size with the smaller water dataset of 30 randomized
clusters of 8 molecules.

Results and Discussion

Ammonia

A total of 30 octamer clusters of ammonia are generated with
their spectra compared with experiment. The temperature for the
Boltzmann distribution with ammonia is 1348 K corresponding
to the binding energy of the dimerization which implies that
all of the binding energy will be thermally released into the
amorphous ice. This large assumption ultimately has little effect
on the observed results due to the similarities of the excited
state properties for the various molecular geometries. Initially,
a dataset for several functionals are computed with the 6-
311G(d,p) basis set with 25 electronic states to extend over 10
eV as shown in Figure 1(a). All of the peaks are normalized
to the oscillator strength of the maximum intensity peak from
the CAM-B3LYP/6-311++G(2d,2p) spectrum from Figure 1(c) to
provide a standard normalization factor for comparing relative
intensities of the functionals. The normalization emphasizes
that the number of states calculated does not affect the raw
intensities of an excited state calculation between CAM-B3LYP/6-
311++G(2d,2p) displayed in Figure 1(b) and 1(c).

The relative intensities are reported in Table 1. B3LYP appears
to perform quite well with this basis set at describing the first peak
shown from work by Mason et al.35 while CAM-B3LYP, ωB97-XD,
and PBE0 report higher in energy.

However, in order to better describe the hydrogen bonding
interactions in the amorphous ammonia, diffuse orbitals and
a larger basis set are computed. Figure 1(b) utilizes the 6-
311++G(2d,2p) basis set with the same functionals showing
that all the hybrid functionals are lower in energy. Now, it
appears as though CAM-B3LYP and ωB97-XD are matching the
first peak the best. To extend the spectrum to 10 eV, a spectrum
is built with CAM-B3LYP/6-311++G(2d,2p) and ωB97-XD/6-
311++G(2d,2p) with 125 electronic states producing Figure
1(c). The artificial spectrum matches with the experimental
spectrum very well qualitatively and even semi-quantitatively.
Both peaks of the CAM-B3LYP artificial spectrum match nicely
with regards to relative oscillator strengths to the experimental
solid; while ωB97-XD approximates the relative intensities
with less accuracy. Therefore, 30 randomized clusters of 8
ammonia molecules with CAM-B3LYP/6-311++G(2d,2p) with
125 electronic excited states appears to effectively describe
amorphous ammonia’s UV spectrum.

Finally, the timings for the electronic excited states depend
heavily on the number of states and the basis set size.
The best results from the CAM-B3LYP and ωB97-XD with 6-
311++G(2d,2p) and 125 states take an average of 13.20

and 13.56 hours, respectively, on the local high-performance
computing cluster. With the 6-311++G(2d,2p) basis set and
25 states, these functionals run for an average of 4.67 and 5.17
hours, a reduction in time cost of roughly one-third. Lastly, the
quickest option for these two functionals with 6-311G(d,p) and
25 states required 1.02 and 1.16 hours, which is relatively fast
but produces the worst results. Thus, CAM-B3LYP finishes slightly
faster than ωB97-XD and provides closer energies and relative
intensities when utilizing larger basis sets and number of states.

Carbon Dioxide

Amorphous carbon dioxide is simulated through the creation of
30 randomized clusters of eight carbon dioxide molecules. Since
carbon dioxide interacts with itself much less than ammonia
due to the lack of hydrogen bonding, the binding energy from
the dimerization yields a lower temperature of 457 K for the
Boltzmann distribution. Spectra from several functionals with
6-311G(d,p) are displayed in Figure 2(a). Once again, the two
functionals that match experiment the best are CAM-B3LYP and
ωB97-XD; both predict a smaller peak at around 9 eV and a larger
peak just over 10 eV. However, the relative oscillator strengths do
not match well. B3LYP and B97D3 both have a major peak lower
in energy than experiment and do not display two peaks with this
basis set. Finally, PBE0 has two peaks that are of nearly equal
strength. Therefore, only CAM-B3LYP and ωB97-XD appear to
perform decently with this basis set.

In order to improve the possible physical representation, the
basis set is increased to 6-311++G(2d,2p). While no hydrogen
bonding exists in the carbon dioxide clusters, the oxygen and
carbon atoms do benefit from extra d and p orbitals. The effects
of the basis set are apparent as shown in Figure 2(b). In order to
cover the energy range of the experiment, 50 electronic states for
each functional are calculated. While PBE0 aligns closer in energy
to the experiment with this basis set, the qualitative description
has a large shoulder. This shoulder is merged into the major peak
due to the artificial spectrum broadener; however, the height
for the peak is still too large. For both of the predictive peaks
in CAM-B3LYP and ωB97-XD, the excitation energies are higher
than experiment. However, the curves for CAM-B3LYP and ωB97-
XD match qualitatively well with experiment through a small
peak separated by a much larger peak over 1 eV away. Thus,
the CAM-B3LYP and ωB97-XD functionals describe amorphous
carbon dioxide the effectively but not quite the best as they did
with ammonia.

Water

Two datasets of water are generated at varying cluster sizes
to compare the results with each other. The larger dataset,
105 randomized clusters of 32 water molecules, should better
approximate the reality of amorphous water; however, the
objective is to determine if a smaller dataset, such as 30
randomized clusters of 8 water molecules, can make an equally
valid approximation.

First, a dataset of 30 clusters with eight water molecules
is generated to investigate with the same functionals listed
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Fig. 1 VUV spectra for 30 clusters of 8 ammonia molecules normalized to the maximum oscillator strength in (c)for consistency, and the experimental

plot35 normalized to itself: (a) Basis set: 6-311G(d,p) and States: 25; (b) Basis set: 6-311++G(2d,2p) and States: 25; and, (c) Basis set: 6-

311++G(2d,2p) and States: 125

Method Basis Set Excitation (eV) Oscillator Strength
(Normalized)

B3LYP 6-311G(d,p) 6.79 0.68
PBE0 6-311G(d,p) 7.13 0.88

wB97XD 6-311G(d,p) 7.56 1.37
wB97XD 6-311G(d,p) 9.18 0.28

CAM-B3LYP 6-311G(d,p) 7.32 1.16
CAM-B3LYP 6-311G(d,p) 8.80 0.24

B97D3 6-311G(d,p) 4.79 0.00
B97D3 6-311G(d,p) 6.30 0.31
B97D3 6-311G(d,p) 6.79 0.34
B3LYP 6-311++G(2d,2p) 6.02 0.43
PBE0 6-311++G(2d,2p) 6.23 0.52

wB97XD 6-311++G(2d,2p) 6.59 0.80
wB97XD 6-311++G(2d,2p) 7.66 0.18
wB97XD 6-311++G(2d,2p) 9.39 1.27

CAM-B3LYP 6-311++G(2d,2p) 6.44 0.72
CAM-B3LYP 6-311++G(2d,2p) 7.36 0.14
CAM-B3LYP 6-311++G(2d,2p) 9.32 1.00

B97D3 6-311++G(2d,2p) 5.70 0.25
Exp. Solid 7.00 0.79
Exp. Solid 8.33 0.48
Exp. Solid 9.61 1.00

Table 1 Tabulated format of the ammonia spectra displayed in Figure 1. Experimental data comes from work produced by Mason et al.35. All

computational spectra are normalized to the maximum peak from CAM-B3LYP/6-311++G(2d,2p).
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(a) (b)

Fig. 2 VUV spectra for 30 clusters of 8 carbon dioxide molecules normalized to the maximum oscillator strength of each functional, and the experimental

solid carbon dioxide plot35normalized to itself: (a) Basis set: 6-311G(d,p) and States: 25; and (b) Basis set: 6-311++G(2d,2p) and States: 50;

(a) (b)

(c) (d)

Fig. 3 VUV spectra for 30 clusters of 8 waters (a)(b) and 105 cluster of 32 waters (c)(d) compared with experiment35. All plots are normalized to

themselves: (a) Basis set: 6-311G(d,p) and States: 25; (b) Basis set: 6-311++G(2d,2p) and States: 25; (c) Basis set: 6-311G(d,p) and States: 50;

and, (d) Basis set: 6-311G(d,p) and States: 25
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Method Basis Set Excitation (eV) Oscillator Strength
(Normalized)

B3LYP 6-311G(d,p) 9.16 1.00
PBE0 6-311G(d,p) 9.42 1.00

wB97XD 6-311G(d,p) 9.16 0.80
wB97XD 6-311G(d,p) 10.06 1.00

CAM-B3LYP 6-311G(d,p) 9.07 0.78
CAM-B3LYP 6-311G(d,p) 9.97 1.00

B97D3 6-311G(d,p) 8.39 1.00
B3LYP 6-311++G(2d,2p) 9.25 1.00
PBE0 6-311++G(2d,2p) 9.68 1.00

wB97XD 6-311++G(2d,2p) 9.33 0.02
wB97XD 6-311++G(2d,2p) 10.86 1.00

CAM-B3LYP 6-311++G(2d,2p) 9.14 0.04
CAM-B3LYP 6-311++G(2d,2p) 10.52 1.00

B97D3 6-311++G(2d,2p) 8.31 1.00
Exp. Solid 8.83 0.12
Exp. Solid 9.63 0.60
Exp. Solid 9.70 0.79
Exp. Solid 9.77 0.93
Exp. Solid 9.85 1.00
Exp. Solid 9.93 1.00
Exp. Solid 10.00 0.91

Table 2 Tabulated format of the carbon dioxide spectra displayed in Figure 2. Experimental data comes from work produced by Mason et al.35

above. Figure 3(a) displays the 30 clusters of 8 water molecules
for several functionals with 6-311G(d,p). From this water
dataset, B3LYP and PBE0 appear to perform the best qualitatively
for water, while CAM-B3LYP and ωB97-XD predict a larger
secondary peak that appears to be beyond the energy range of
the experiment. With a larger basis set in Figure 3(b), the
functionals produce peaks lower in energy than experiment.
While all of functionals report lower excitation energies than
experiment, CAM-B3LYP and ωB97-XD report the closest values
along with a secondary small peak as they did with ammonia.
While these qualitative descriptions are in decent agreement with
experiment at the cluster size of 8 water molecules, the energy
and oscillator strength differences between the major peaks and
experiment could be improved. The inaccuracy could be due
to the small molecular weight of the water molecules and the
hydrogen bonding not being fully represented.

Upon increasing the number of molecules from 8 to 32 in a
cluster and the amount of clusters from 30 to 105, the spectrum is
slightly lower in energy than the experimental values as in Figure
3(c). CAM-B3LYP with 6-311G(d,p) and 50 states matches the
experimental spectrum. Alternatively, B3LYP with 6-311G(d,p)
and 25 states as in Figure 3(d) displays a lower energy prediction
as well, albeit not as strong. Regardless, both of these spectra
support the notion that a dataset with more clusters and more
molecules in each cluster better represents reality even with a
smaller basis set.

To compare timings of the two datasets, the clusters with eight
water molecules took an average of 0.51 hours for B3LYP/6-
311G(d,p), whereas the 32 water molecule clusters averaged
15.83 hours for the same method, basis set and number of states.
Additionally, the CAM-B3LYP/6-311G(d,p) with 25 states for the
smaller clusters takes an average of 2.45 hours, while the much
more accurate results with same method and basis set with 50
states takes an average of 31.46 hours per TD-DFT calculation.

Clearly, the larger water cluster produces better results with the
CAM-B3LYP/6-311G(d,p) and 50 states than the CAM-B3LYP/6-
311++G(2d,2p) and 25 states; however, the cost is much higher
but nowhere near prohibitively so.

The datasets presented above indicate that CAM-B3LYP is the
best functional because it produces the best qualitative and semi-
quantitative agreement with experiment. Due to the usage of
DFT, no exact numerical predictions for the peak maximums
are expected; however, the water example of increasing the
cluster size from 8 to 32 molecules shows that larger clusters
can drastically improve the accuracy of the numerical predictions.
Furthermore, the number of states required to build a spectrum
over a desired region will grow with increasing cluster sizes,
atomic numbers of elements, and basis sets due to the increased
number of molecular orbitals contributing to the electronic
excited state calculations. As such and based on the present
results, applying this method to amorphous solids without
comparable experimental data should aim to have n>=8 for the
number of molecules in the clusters and use a basis set size
of at least 6-311G(d,p). Future work will continue to refine
this approach, but the present methodology serves as an initial
means of predicting such spectra. Ultimately, the qualitative
predictions for unknown molecular spectra should be used to
guide experiment.

Conclusions

Ultimately, the methodology implemented herein utilizing a
randomization program along with DFT calculations can produce
predictive electronic spectrum descriptions for amorphous
ices in the ISM or for laboratory analogues based on the
present benchmarks for H2, NH3, and CO2. The usage
of a randomization procedure for generating arbitrary input
geometries and a Boltzmann distribution to weight the excitations
yields high qualitative, and even semi-quantitative, agreement
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Method Basis Set Excitation (eV) Oscillator Strength
(Normalized)

B3LYP 6-311G(d,p) 7.98 1.00
B3LYP 6-311G(d,p) 8.76 0.56
PBE0 6-311G(d,p) 8.31 1.00
PBE0 6-311G(d,p) 9.42 0.51

wB97XD 6-311G(d,p) 8.79 0.86
wB97XD 6-311G(d,p) 10.61 1.00

CAM-B3LYP 6-311G(d,p) 8.48 0.96
CAM-B3LYP 6-311G(d,p) 10.19 1.00

B97D3 6-311G(d,p) 6.82 0.49
B97D3 6-311G(d,p) 7.81 1.00
B3LYP 6-311++G(2d,2p) 7.48 1.00
PBE0 6-311++G(2d,2p) 7.68 1.00

wB97XD 6-311++G(2d,2p) 8.05 1.00
wB97XD 6-311++G(2d,2p) 9.43 0.32

CAM-B3LYP 6-311++G(2d,2p) 7.86 1.00
CAM-B3LYP 6-311++G(2d,2p) 9.15 0.32

B97D3 6-311++G(2d,2p) 6.21 0.49
B97D3 6-311++G(2d,2p) 6.97 1.00

Table 3 Tabulated format of the water spectra displayed in Figure 3(a)(b). Experimental data comes from work produced by Mason et al.35

with experiment for small molecule amorphous solid electronic
spectra. Overall, the best functionals for this application are
CAM-B3LYP and ωB97-XD because both yield high qualitative
agreement with experimental values. While increasing the
basis set size on ammonia and carbon dioxide produces better
results, water requires additional water molecules and larger
number of clusters to resemble reality better, even with a smaller
basis set. Regardless, the solid correlation with experiment in
the UV region provides evidence for these clusters mimicking
amorphous solids as ice and that increasing cluster size improves
the description. Therefore, the method described in this work
effectively characterizes ice analogues through the usage of DFT
and should be able to do so for other ices. Mixtures of molecules
in the ices are, naturally, a next step and will be explored in future
work.
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