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Unsupervised Machine Learning for Unbiased Chemical 
Classification in X-ray Absorption Spectroscopy and X-ray 
Emission Spectroscopy
Samantha Tetefa, Niranjan Govindb, Gerald T. Seidlera,†

We report a comprehensive computational study of unsupervised machine learning for extraction of chemically relevant 
information in X-ray absorption near edge structure (XANES) and in valence-to-core X-ray emission spectra (VtC-XES) for 
classification of a broad ensemble of sulphorganic molecules. By progressively decreasing the constraining assumptions of the 
unsupervised machine learning algorithm, moving from principal component analysis (PCA) to a variational autoencoder (VAE) to t-
distributed stochastic neighbour embedding (t-SNE), we find improved sensitivity to steadily more refined chemical information. 
Surprisingly, when embedding the ensemble of spectra in merely two dimensions, t-SNE distinguishes not just oxidation state and 
general sulphur bonding environment but also the aromaticity of the bonding radical group with 87% accuracy as well as 
identifying even finer details in electronic structure within aromatic or aliphatic sub-classes. We find that the chemical information 
in XANES and VtC-XES is very similar in character and content, although they unexpectedly have different sensitivity within a given 
molecular class. We also discuss likely benefits from further effort with unsupervised machine learning and from the interplay 
between supervised and unsupervised machine learning for X-ray spectroscopies. Our overall results, i.e., the ability to reliably 
classify without user bias and to discover unexpected chemical signatures for XANES and VtC-XES, likely generalize to other 
systems as well as to other one-dimensional chemical spectroscopies.

1. Introduction
The emergence of modern data science techniques, along 

with improved theoretical tools addressing physical 
observables and open access online databases, has led to new 
and insightful interpretation of experimental results. Thus, 
machine learning (ML) has proliferated throughout chemistry, 
materials science, and chemical engineering 1, 2. Large 
databases, such as the Materials Project 3, Inorganic Crystal 
Structure Database 4, 5, and QM9 6, along with open access 
packages for ML, have all contributed to this rise in popularity 
and reliability of machine learning analysis of data 7. Recent 
work includes the use of ML to develop a way to represent 
molecular structures 8, 9, to study charge transport at the 
nanoscale level 10, or to automate chemical predictions from 
atomistic simulations 11.

X-ray absorption spectroscopy (XAS), an important chemical 
speciation technique, has seen impressive recent developments 
using ML 12-32. Briefly, XAS encompasses both X-ray absorption 
near edge structure (XANES) and extended X-ray absorption 
fine structure (EXAFS) and involves interrogating the 
unoccupied electronic states by a core photoelectron. On the 
other hand, X-ray emission spectroscopy (XES) interrogates the 

occupied electronic density of states by relaxing from an excited 
state to a ground state 33-35. Furthermore, recent developments 
of reliable lab-based spectrometers in multiple energy ranges 
have facilitated an increase in accessibility of both XAS and XES 
measurements 36-40.

Both XAS and XES are manifestly element-specific, as either 
the excitation or the deexcitation energy, respectively, selects 
the species of interest. These methods appear in a plethora of 
subfields in chemistry, physics, materials science, and earth and 
planetary sciences, with representative contemporary research 
in renewable energy 41, electrical energy storage 42, 43, protein 
structure and function 44, terrestrial and lunar basalts 45, 
chemical catalysis 46 in biomolecules 47, and photochemical 
dynamics 48. In such applications, the experimenter seeks to 
understand local electronic and atomic structure, elucidating 
properties of the selected species such as oxidation state, bond 
lengths, ligand identity, and coordination symmetry and 
numbers. 

Several decades of effort has resulted in theoretical 
approaches that reliably solve the forward problem, i.e., the 
prediction of XAS and XES spectra from known structures 33, 49, 

50. However, the inverse problem of obtaining structural, 
electronic, or chemical information from spectra is ill-posed and 
demands the use of prior information. Although formal 
statistics have been occasionally applied to address the 
imposition of the experimenter’s constraining physical 
knowledge on the system 51-54, prior knowledge is more 
commonly implicit via the user interaction with the standard 
tools for interpretation of EXAFS 55, 56 or XES spectra 57. 
However, the analysis of XAS – and of XES, as seen here – is 
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seeing rapid development, which is both exciting for the XAS 
community and potentially informative for other 
spectroscopies. We propose that these efforts can address 
broader questions of the encoding of chemical information via 
physical measurement. 

In a seminal work, Timoshenko, et al. 27 used supervised ML 
to train a neural network on an ensemble of differently 
coordinated nanoparticles to extract geometric information 
from merely the X-ray absorption near-edge structure (XANES), 
the first ~50 eV of XAS. This work exemplified how prior 
information could be encoded via the selection of structures for 
the training data set as well as showcasing a supervised 
machine learning model that performed better than human 
researchers, who would instead require the entire EXAFS 
spectrum to obtain similar information. Working 
contemporaneously, Zheng et al. 31 took a different direction. 
Instead of seeking inferences about fine structural parameters, 
they developed an algorithm to match unknown materials with 
known materials in a large database, showcasing its 
effectiveness by predicting oxidation and coordination from the 
material’s XAS spectra.

Subsequent ML work aimed at a better interpretation of XAS 
has sought to identify important energy regions or features of 
spectra that contribute most prominently to specific properties 
12, 20, 29. Moreover, supervised ML has seen use in classifying 
coordination and local chemical environments 14, 16 and the 
oxidation state 19 of 3d transition metals, and used to extract 
geometric properties 30, especially during high-throughput 
experiments 17 in real-time 26. As another example with a 
pragmatic application, ML has recently been implemented for 
fitting XANES spectra 18. Further work utilizing artificial 
intelligence for fitting EXAFS data is also actively being 
developed 24, 25. Finally, and by means of closure by returning to 
the forward problem, Rankine et al. utilized machine learning to 
quickly predict Fe XANES spectra given local geometric 
parameters 22. Other efforts to utilize machine learning to 
predict XANES spectra, either from structural parameters or 
from the partial density of states, include Carbone et al. 13 and 
Kiyohara, et al. 15, respectively.

In the present manuscript, we take a new direction in the 
use of ML methods in X-ray spectroscopies. Not only is this the 
first analysis of valence-to-core XES (VtC-XES) using ML 
methods, but we apply unsupervised ML to identify chemically 
relevant classes based on both XANES and VtC-XES. 
Furthermore, instead of using unsupervised ML to force a 
correlation of certain geometric regressional properties of a 
system of interest to specific dimensions of a reduced 
dimensional representation of XANES spectra, as seen in the 
recent work of Routh, et al. 23, which we believe is the first 
application of unsupervised ML in XAS, we fully examine 
clustering in this reduced dimensional space for unbiased 
discovery of chemical classes and thus the extent of encoded 
information in spectra.

As a secondary consequence of our choice to investigate 
both XANES and VtC-XES, we are also able to test the common 
qualitative assertion that the methods are “complementary” 
because of their respective sensitivity to unoccupied and 

occupied electronic states 58, here quantitatively addressing 
whether the chemically relevant information in XANES and VtC-
XES is indeed complementary or is instead highly coincident 59-

61.
Based on our results, we propose that chemical 

classification problems are best addressed with unsupervised 
ML methods at least as a precursor analysis method 11, an 
approach that may enrich or suggest refinement of prior 
structure-specific inferential work in XAS 14, 16, 17, 26, 27, 31 and 
similar work in a wide and rapidly growing range of other 
spectroscopies in chemical sciences 62-64. This distinction is 
nontrivial. Subject only to the imposition of prior information 
through the choice of the training domain of materials or 
molecules, unsupervised learning serves to identify the extent 
of the underlying and scientifically useful chemical properties 23 
for a given spectroscopy without user bias. These methods 
allow any spectral similarities, and thus classes, to emerge from 
the algorithm and then researchers can a posteriori interpret its 
chemical relevance. This ensures that unanticipated encodings 
of chemical information are not overlooked. An unsupervised 
ML approach is, we feel, especially suitable for X-ray 
spectroscopies exactly because of the challenges presented by 
the ill-posed nature of the inverse problem. Hence, both our 
motivations and our methods are distinct from prior work using 
data science and ML methods in X-ray spectroscopies.

We now define our system of interest and the methods that 
will be used for classification. Our training domain encompasses 
a very wide range of sulphorganic molecules chosen because of: 
(1) their rich diversity of bonding environments; (2) the 
considerable evidence for sensitivity of both XANES and VtC-XES 
of the S K-edge to chemical bonding in this family 60, 65, 66; and 
(3) the prior demonstration of good agreement between 
experiment and time-dependent density functional theory (TD-
DFT) 66 calculation of XANES 67 and VtC-XES 66, 68-70.

For chemical context, the five “Types” of molecules used in 
our study are shown in Fig. 1. They are: (1) sulphides, (2) 
thiocarbonyls, (3) thiols, (4) sulphoxides, and (5) sulphones. 
Type 1, or sulphides, are compounds with C-S-C bonds. This 
includes S in cyclic sulphides, such as thiophenes and thiazoles, 
along with sulphides where the S is bonded to two separate 
functional groups. Type 2, or thiocarbonyls, have S double 
bonded to a single C. Type 2 includes variations such as 
isothiocyanates and thioureas. Type 3 are thiols, also known as 
mercaptans, and have an SH functional group bonded to a C 
atom in some radical. Types 1, 2, and 3 all have a sulphur 
oxidation of -2. Type 4, or sulphoxides, have S double-bonded 
to O and single bonded to two C atoms. Type 4 has a sulphur 
oxidation of 0. Finally, Type 5 are sulphones, which have S 
double-bonded to two oxygens and single bonded to two C 
atoms. Type 5 also includes sulphonamides. Type 5 has an 
oxidation of +2. Every Type is additionally divided into 
subcategories based on whether the S is a member of a 
conjugated system, e.g., in an aromatic ring, or not, i.e., is 
aliphatic. There are similarities and differences in these 
classifications compared to Yasuda and Kakiyama 65 and Holden, 
et al. 66. Specifically, we have somewhat expanded the core 
“Types” compared to that prior work but have retained the use 
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of oxidation state and aromaticity as additional refining 
parameters.

Fig 1. Schematic representation of the five types of 
sulphorganics investigated, along with sub-categories.

Here we investigate three different classification schemes 
that follow the general rubric of dimensionality reduction, 
followed by cluster identification. We report a critical 
comparison of (1) Principal Component Analysis (PCA), which is 
a fully linear method with an underlying Euclidean metric, (2) a 
Variational Autoencoder (VAE), which is a deeply nonlinear 
method that still has a local metric, and (3) t-distributed 
Stochastic Neighbour Embedding (t-SNE), a nonlinear, non-
parametric embedding that is inherently non-metric. In all 
cases, the accrued benefit is the ability to see clustering in the 
reduced dimensional spaces from which we then assign 
chemical descriptors and, in turn, infer the general character of 
chemical information that is encoded within XANES and VtC-
XES.

We find surprisingly strong absolute and comparative 
performance for t-SNE, which draws attention to a shared core 
weakness of PCA and VAE in the present context. In those 
methods, the similarity of spectra is only quantified after 
dimensionality reduction, i.e., only after information has 
necessarily been lost. This is in contrast with t-SNE, where the 
original spectra drive the creation of a probabilistic description 
of similarity (with no necessary loss of spectral information) and 
then a subsequent embedding in a lower dimension is 
determined. t-SNE thus has significant heuristic benefits for 
classification, albeit at the cost of losing any meaningful metric 
properties in the resulting embedding. On the other hand, the 
retention of formal mappings and metrics for PCA and VAE 
allows for applications that require tracking the trajectory of 
evolving chemical systems, such as in high-throughput 
synchrotron experiments.

2. Methods
2.1 Electronic Structure Calculations

Our data generation pipeline is shown schematically in Fig. 
2. A list of sulphorganic compounds was created from a wide 
variety of sources, starting with the compounds in Yasuda and 
Kakiyama 65 and Holden et al.66, so as to make best contact with 
those prior experimental studies of classification of VtC-XES. 
First, in all cases, structures (in the form of .mol files) were 
downloaded from the PubChem database 71 via the MolView 
API 72. All ground state structures, XANES 73, and VtC-XES 74 

computations were performed with the open-source NWChem 
computational chemistry program 75, 76. In total, 769 molecules 
are included in this work.

Fig. 2. Schematic depiction of the data generation pipeline.

The existence of single, internally-consistent energy scales is 
due to the self-consistent field (SCF) DFT solution that is solved 
for each system, which serves as the reference for the TDDFT-
based X-ray spectroscopy calculations. In the case of XANES, we 
compute the ground-state SCF solution as the reference, while 
for the XES we compute the core-hole SCF solution, as indicated 
in Fig. 2.”

The geometry optimizations utilized the 6-31G* basis sets 73, 

74, 77, 78 and the B3LYP exchange correlation functional 79. The 
XANES and VtC-XES spectra were then computed using the 
Sapporo QZP-2012 and Sapporo TZP-2012 basis set 80, 
respectively, for S, while the remaining atoms were represented 
using 6-31G* basis set, and PBE0 exchange correlation 
functional 81. In cases where compounds contained heavier 
atoms than S, such as bromine and chlorine, an effective core 
potential was substituted for the atom, specifically the Stuttgart 
RLC ECP 82. 

Because our linear-response TDDFT-based XANES spectra 
are computed from stationary Kohn-Sham DFT states, a 
broadening must be applied to account for the finite lifetime of 
the electronic states. Thus, an energy-dependent linear 
broadening scheme was applied to the XANES transitions, 
similar the scheme in Mijovilovich et al. 83. Pre-edge transitions 
until the whiteline were Lorentz broadened at a full-width half-
maximum (FWHM) of 0.6 eV, to be consistent with the core-
hole lifetime. Then a linear increase in the FWHM broadening 
was applied, starting from the whiteline at 0.6 eV and increasing 
to 4.0 eV FWHM at 15 eV past the whiteline, to account for 
inelastic scattering effects at higher energies. This broadening 
scheme reproduced spectral features well 83. In this case, the 
energy-dependent broadening values of the transitions were 
chosen arbitrarily such that they most accurately depicted 
experimental features 60, 84. Finally, the spectra were 
individually normalized by dividing their total Kα intensities and 
an energy shift of -53.3 eV was applied to all XANES transitions 
to align the theoretically calculated transitions with experiment.

For the VtC-XES, the calculated transitions were all shifted 
by -18.6 eV to align to experiment 65, 66. Additionally, a Lorentz 
broadening of FWHM of 0.6 eV in addition to a Gaussian 
broadening of FWHM of 0.3 eV was added to each transition, 
which represents the core-hole lifetime and the best possible 
experimental resolution (limited by the bent crystal analyser), 
respectively. We found no significant changes in the clustering 
upon qualitative examination of the reduced-dimensional 
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spaces using less broadening. This is likely due to the loss in 
information upon compression to just two dimensions, where 
sharpening features, or the emergence of small new peaks, will 
not compete with the most prominent characteristics of the 
spectra. Thus, we chose to use experimentally motivated 
broadening. The resulting spectra were also normalized by their 
total Kα intensity to achieve a common intensity scale per S 
atom.

2.2 Supervised ML Methods

To pre-process our spectra, the intensity was represented 
pointwise with 1000 linearly spaced energy values along a 
consistent energy range across the entire ensemble. The 
training and test set consist of 717 and 52 molecules, 
respectively, and were both scaled such that they were peak 
normalized to the highest intensity value of the training set; this 
ensured spectra had intensity values between 0 and 1 in 
addition to preserving overall transition amplitudes.

All neural network models in this study were implemented 
in Python using the Keras 85 package with a Tensorflow 
backend 86. As a benchmark for defining “good” accuracy when 
compared to the dimensionally reduced spaces, we performed 
classification via supervised machine learning by passing the 
original high-dimensional spectra into a fully connected neural 
network classifier. The fully connected neural network for the 
three classification schemes for the VtC-XES had one hidden 
layer with dimension 512, ReLU activation, L2 kernel 
regularization, and 5% dropout. It was optimized via Keras’s 
default ADAM using binary cross entropy loss, with a softmax 
output activation function. The network architecture for the 
XANES had all the same hyperparameters as the VtC-XES, except 
it had a hidden dimension of 1024 instead of 512. The resulting 
confusion matrices for VtC-XES and XANES for all classification 
schemes are given in Fig. S3 (Scheme 1: Oxidation), Fig. S3 
(Scheme 2: Type), and Figs. S4 and S5 (Scheme 3: Aromaticity 
within each Type, henceforth simply “Aromaticity”). The 
benchmark accuracies for classifying the VtC-XES spectra were 
100%, 96%, and 71% for Oxidation, Type, and Aromaticity, 
respectively, for the 52 compounds of the test set. And the 
benchmark test accuracies of classifying the XANES spectra 
were 100%, 85%, and 69% for Oxidation, Type, and Aromaticity, 
respectively.

We applied supervised machine learning on the reduced 
dimensional spaces by implementing K-Nearest Neighbours 
(KNN) classification with scikit-learn using 20 nearest 
neighbours for classification Schemes 1: Oxidation and 2: Type, 
and with 10 nearest neighbours for Scheme 3: Aromaticity 
(within each Type). KNN is a supervised classification algorithm 
that categorizes data points based on the other data points in 
the vicinity, specified by this number of neighbours (k) 
hyperparameter. While it is perhaps unfortunate that we are 
comparing accuracies obtained from different models – a neural 
network versus KNN – we chose KNN to evaluate the reduced 
spaces because it mimics the nearest neighbour behaviour of t-
SNE and requires fewer hyperparameters to be tuned. 
Furthermore, the predicted classification boundaries on the 

reduced spaces between KNN and a neural network trained 
were similar and thus both methods are comparable.

2.3 Unsupervised ML Methods

Our VAE model took the spectra as input, where each 
spectrum was represented by 1000 points of intensity as 
indicated above. This model was also implemented in Python 
with Keras and Tensorflow. The network was trained using 
a batch size of 50 and had two hidden layers of dimension 512 
and 128 respectively, with ReLU activation. Additionally, L2 
kernel regularization was added to each layer, and a dropout of 
10% was applied after every layer, both of which were 
implemented to help prevent overfitting and encourage 
generalizability. The encoder and decoder were then 
symmetric, although the output layer of the decoder had a 
sigmoid activation function. An almost identical model 
architecture and hyperparameters were used to train the VAE 
for both the VtC-XES and XANES spectra; however, the XANES 
model had a dropout of 15% and the second hidden layer had 
dimension 246 instead of 128. Both models were optimized via 
the default settings of the optimizer ADAM in Keras. The VAE 
and fully connected classifier neural networks were verified on 
a validation set via the model loss and reconstruction efficacy 
to check for overfitting. See Fig. S1. The trained VAE models, 
analysis code, and datasets are available on GitHub 87.

We applied Principal Component Analysis (PCA), along with 
the t-distributed stochastic neighbour embedding (t-SNE), 
independently to the XANES and VtC-XES spectra using the 
scikit-learn 88 package in Python. The optimal 
hyperparameter for t-SNE, perplexity (which roughly represents 
cluster size), was found by searching through perplexity values 
between 5 and 50, with perplexity equal to 18 yielding the 
qualitatively most distinguishable yet believable clusters on the 
training set. All two-dimensional reduced spaces were linearly 
scaled to be between 0 and 1 for each axis.

3. Dimensionality Reduction Algorithms
Given the novelty of unsupervised ML in the context of x-ray 

spectroscopies, it is useful to give a detailed overview and 
comparison of the methods used here. To begin, dimensionality 
reduction not only helps determine which features in data are 
most “evident” or variational, but by doing so in a data-driven 
matter, it also removes biases imposed by the researcher. Of 
central importance here, lower dimensional representations 
often yield better classification by addressing the curse of 
dimensionality, i.e., everything in a high dimensional space 
looks far away, so it may be difficult to quantify similarity of 
points in a high dimensional space 89. However, selecting the 
best dimensionality reductional algorithm is, as investigated 
here, closely dependent on both the constraints inherent to the 
method and the underlying variance of the training data. The 
question is whether progressive weakening of constraints on 
the algorithm, such as by removing the requirements of 
linearity or a quasi-metric mapping, in fact better preserves 
information content and thus allows for more robust 

Page 4 of 16Physical Chemistry Chemical Physics



Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 2021 J. Name., 2013, 00, 1-3 | 5

classification. While this is an appealing hypothesis, it is by no 
means a certain outcome: one might find that the constraints 
are needed to suppress overamplification of spectral features 
that do not have physical importance.

To this end, we will compare linear and nonlinear forms of 
dimensionality reduction where both algorithms perform 
formal mappings between the original high-dimensional space 
(where the calculated ensemble of spectra live) and learn a 
mapping to a lower-dimensional representation. Then, we will 
compare these mapping-based algorithms to a probabilistic, 
non-parametric embedding algorithm that, instead of learning 
a formal mapping function from a higher- and lower-
dimensional space, creates a lower-dimensional representation 
by preserving a similarity metric of the original spectra. The 
results of this work elucidate the chemically relevant 
information content in XANES and VtC-XES, allow a comparison 
of their relative information content, and suggest possible 
methods for real-time monitoring of high-throughput 
experiment. 

We begin with the two mapping algorithms, as opposed to 
the embedding. The dominant linear method for dimensionality 
reduction is Principal Component Analysis (PCA). 90 Nonlinear 
dimensionality reduction can be achieved via unsupervised 
machine learning, specifically here, via the VAE neural network 
model 91. Given that there is very scarce prior work using VAE’s 
in spectroscopies, e.g., optical-wavelength spectroscopy in an 
astrophysical study 92, we will especially discuss the key 
differences between PCA and VAE. For work detailing the use of 
just an autoencoder (AE) for XANES analysis, see Routh et al. 23. 
With this in mind, we will additionally discuss the difference 
between an AE and VAE, and the additional properties inherent 
to a VAE. 

To begin, in Fig. 3a, we envision a scenario of synthetic data 
in three different clusters in a parameter space of some 
unknown dimension, here shown in two dimensions for ease of 
presentation. If the data distribution is well-represented by a 
simple N-dimensional (hyper)ellipsoid, PCA would successively 
choose orthogonal axes in a new coordinate system that 
consecutively encompassed the most variability contained 
within the high dimensional data set. Equivalently, PCA chooses 
an orthonormal basis to represent a lower dimensional 
(hyper)plane such that the distance the data travels to be 
projected onto this PCA (hyper)plane is minimized. Thus, data 
can be represented using only the first few basis vectors, or 
dimensions, that explain the most variation within the data. 

Fig. 3. (a) Clusters where nonlinear dimension reduction 
routines, such as from a neural network, might yield better 
clustering than a linear dimension reduction like PCA. (b) 
Architecture of a simple autoencoder (AE) with one hidden 
layer, demonstrating the dimension reduction utility of the AE 
via its nonlinear latent space. (c) Schematic of how t-SNE uses 
the probability that data points are sampled from the same 
distribution to determine their similarity.

However, whether in two dimensions, as in Fig. 3a, or in 
some higher dimensional realization, dimensionality reduction 
for complex data that spans multiple qualitative classes is 
frequently poorly suited to decomposition via purely 
orthogonal axes and Euclidean-preserving metrics in the host 
high-dimensional space. This is where less restrictive coordinate 
transformations often have superior dimensionality reduction 
en route to classification. VAEs have not previously been used 
in X-ray spectroscopies, although they have been shown to be 
superior to PCA in several other contexts 92-95.

In Fig. 3b, a schematic of a simple autoencoder 
demonstrates how a coupling of two neural networks – an 
encoder and a decoder – performs nonlinear dimensionality 
reduction. The encoder takes in d-dimensional input, reduces it 
down to a nonunique lower dimensional representation called 
a latent space, and then the decoder expands the dimension 
back to the original d dimensions. The nonlinear activation 
functions in each neuron give the mathematical freedom for 
deforming the metric. The autoencoder learns, through 
iterative training, how to encode data to a lower dimension by 
trying to match the input and output – ensuring that maximal 
information is retained as the data is passed through this 
information bottleneck layer, or latent space. Because no 
predetermined classes or labels are given to the network, 
clustering in the latent space is inherently unsupervised – hence 
we neither impose prior knowledge that, for example, oxidation 
state will create useful spectral distinctions, nor limit ourselves 
to discovering only a few prescribed categories of chemical 
information.

Autoencoders, however, suffer from overfitting that 
reduces their ability to generalize or generate new data and 
thus have limited utility for classifying unseen data. To resolve 
this concern, an autoencoder can be modified into a variational 
autoencoder (VAE) 91. VAEs have almost the same model 
architecture as autoencoders, except instead of learning an 

Page 5 of 16 Physical Chemistry Chemical Physics



ARTICLE Journal Name

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2021

exact latent space encoding, they learn a latent space 
probability distribution, which is described in more detail in the 
SI. Points in the latent space are instead sampled from a learned 
normal distribution. This sampling creates perturbations in the 
latent space, which helps prevent overfitting and allows the 
latent space to be complete, continuous, and regularized, 
leading to the generation of new data. Most importantly, the 
probabilistic sampling ensures that similar spectra are in fact 
mapped to similar locations in the latent space, and the decoder 
will be able to decode points in the latent space it has not 
previously seen, both of which are imperative for classification.

Returning to Fig. 3a, the benefits of the VAE’s nonlinear 
dimensionality reduction are illustrated by the thick blue line, 
representing a possible first coordinate axes of a VAE latent 
space. The nonlinearity of the VAE allow it to weave and thus, 
imagining the data in Fig. 3a in a higher dimensional space, 
create a manifold that would better capture variance of the 
data domain with fewer reduced dimensions. Hence, while the 
nonlinearity of the VAE prohibits its use for linear superposition 
analysis of composition – a common application of PCA in XAS – 
we posit that VAEs, or other nonlinear dimensionality reduction 
methods, might provide special advantages for classification 
problems, i.e., for grouping data with respect to the underlying 
chemically-relevant information in XANES and VtC-XES spectra.

We will demonstrate the utility of unsupervised methods, 
either linear (PCA) or nonlinear (VAE), to not only analyse the 
information retained by a reduced-dimensional representation, 
but most importantly, to generate a mapping to the reduced-
dimensional space. That is, both PCA and VAE create a 
functional mapping from the high-dimensional space of spectra 
to the derived two-dimensional spaces that can be saved and 
used later, without modification, to subsequently map new data 
onto the derived spaces. Thus, they are tools to store data. 
Moreover, this ability allows us to quantify the quality of 
mapping by calculating the accuracy of classification on a 
subsequent test set. However, if the final scientific goal is 
understanding the connection between spectral features and 
information content in an ensemble, then the imposition of a 
well-behaved mapping may be unnecessary and may in fact 
over-constrain and hence degrade performance toward 
chemical classification. This brings us to use of embedding 
algorithms.

The t-distributed Stochastic Neighbour Embedding (t-SNE) 96 
is performed by calculating a pairwise similarity matrix over the 
entire dataset by creating a joint conditional probability 
distribution. For example, imagine the three points, called X1, 
X2, and X3 in Fig. 3c, exist in the original high-dimensional space 
that fully characterizes the spectra, i.e., each such point 
corresponds to a full spectrum. Here, X1 and X2 are clearly more 
alike than X3. When t-SNE compares similarities between high-
dimensional points, it assumes all data points are sampled from 
an inherent Gaussian distribution such that data that are more 
similar have a higher probability of being sampled from the 
same distribution, while dissimilar data have a lower probability 
of being sampled from the same distribution. 

Therefore, similar data points should be closer together in a 
reduced representation, i.e., closer to the assumed mean of the 

inherent joint distribution, and dissimilar data points are farther 
away. To obtain the lower dimensional embedding, t-SNE then 
randomly projects the data to a lower-dimensional space and 
computes an analogous pairwise conditional probability 
distribution function (now assuming points are sampled from a 
t-distribution to encourage spread). Through an iterative 
minimization process, t-SNE tries to match the pairwise 
conditional probabilities from the lower dimensional space to 
the one calculated in the high dimensional space. 

Thus, similarity relationships between data points in the 
original high-dimensional space should be maintained by t-SNE 
in this reduced space. This contrasts PCA and VAE, which project 
the spectra onto a low-dimensional space via a simple basis 
using a Euclidean metric (PCA) or else an adaptive metric (VAE), 
and for which the issue of the similarity of data is only addressed 
after this inherently lossy compression process.

4. Results and Discussion
4.1 Dataset and Dimensionality Reduction 

It is useful to consider a qualitative presentation of variance 
of the XANES and VtC-XES spectra – both within and across 
compound Types. Hence, in Fig. 4, we show the VtC-XES and 
XANES spectra for a representative sampling of the molecules 
in this study. Beyond energy shifts, there are some interesting 
variations within Types for each of VtC-XES and XANES. For 
example, the Type 2 XANES has far more variation than the VtC-
XES. Conversely, the Type 3 VtC-XES has far more variation than 
the XANES. Such details encourage the use of unsupervised 
learning en route to a chemical explanation.

We now report on unsupervised dimensionality reduction 
for this data set. In this, we primarily focus on PCA, VAE, and t-
SNE, but also include several competing linear algorithms for 
completeness. These results are then used for classification in 
Section 4.2.

Page 6 of 16Physical Chemistry Chemical Physics



Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 2021 J. Name., 2013, 00, 1-3 | 7

Fig. 4. VtC-XES (left) and XANES (right) spectra for all 
organosulphur compounds, displayed by compound type. Some 
spectra have been arbitrarily scaled or randomly removed for 
display purposes.

4.1.1 Principal Component Analysis
The most important measure for the utility of PCA is the 

proportion of variance explained by a PCA basis, in order of 
most important principal component to least, which is shown in 
Fig. 5 (averaged over the entire dataset). The basis elements 
have been sorted so that the eigenvectors corresponding to the 
largest eigenvalues are considered first; in other words, the first 
principal component (PC) is the most important as it explains 
the most variance of the data. For both the XANES and VtC-XES 
data, a point of diminishing returns is found at ~ 6 – 8 principal 
components.

Fig. 5. Scree plot of PCA effectiveness for both VtC-XES and 
XANES. The vertical axis is the fraction of variance explained by 
each PC, e.g., the 10th PC.

Fig. 6. Spectra reconstructed with increasing number of 
principal components (PCs) kept, for both VtC-XES and XANES 
of 2-thiazolidinone sulphone (Type 5) (top two panels) and 4-
thiazoleaceticacid (Type 1) (bottom two panels). 

To illustrate this fact, we show in Fig. 6 the gradual 
convergence with increasing number of PCA basis elements for 
two representative molecules, one from Type 5 and the other 
from Type 1. By increasing the number of PCs kept, more 
information is retained. For example, for 4-thiazoleacetic acid 
(bottom), starting at 2 PCs at the top and increasing downward 
to the original spectra at the bottom, the VtC-XES spectra clearly 
evolves from two peaks to three. For the XANES, the small peak 
in the valley at 2476 eV starts to appear around 8 PCs. However, 
the increase from 10 PCs to 12 PCs does not provide any 
distinguishable change in the spectra. For 2-thiazolidinone 
sulphone (top), the XANES pre-edge features (or lack thereof) 
are not accurately represented until about 8 PCs, whereas just 
2 PCs captures most of the spectral features for the VtC-XES. 
Again, the principal components were determined using the 
entire training data set for both XANES and VtC-XES.

The first two PCs can also be visualized by projecting the 
data onto a two-dimensional space using the corresponding 
eigenvectors, as shown in Fig. 7. Here, we color-coded the data 
via two chemically relevant classification schemes: “Scheme 1” 
(oxidation state) and “Scheme 2” (molecular moiety “Type”). 
Note how the oxidation state of the compounds clearly 
dominates the PCA of XANES (due to energy shifts, as expected), 
and thus the PCA of VtC-XES has better distinction between 
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Types as it is not being over-dominated by oxidation. That said, 
there is considerable mixing of chemically different compounds 
in the XES projection – for example, the blue Type 2 
thiocarbonyls mixing with the yellow Type 5 sulphones, and the 
purple Type 1 sulphides mixing with the dark green Type 3 
thiols.

Fig. 7. Principal Component Analysis (PCA) projection for two 
dimensions, color-coded by the two different property 
classification schemes: Scheme 1 is by oxidation and Scheme 2 
is by sulphur bond type. 

To summarize, PCA is a linear dimension reduction method 
that, when applied to both the XANES and VtC-XES of our 
ensemble on compounds, can accurately reconstruct spectra 
when a suitable number of PCs are retained. However, even just 
two PCs capture oxidation state, seen most obviously for 
XANES, and significant hints of sulphur bonding environment via 
the VtC-XES under the Type classification scheme.

However, the question now arises as to whether the 
orthogonalization and use of a Euclidean metric by PCA is 
optimal for the problem of chemical classification, especially if 
strongly limiting the number of principal components. This 
opens two questions. First, it is fair to ask if another linear 
algorithm could prove superior to PCA. This is investigated with 
Fast Independent Component Analysis (FastICA)97, Factor 
Analysis (FA)98, 99, and Non-negative Matrix Factorization 
(NMF)100, as shown in Fig. S6. These three methods are other 
common linear dimensionality reduction routines and have 
been compared to PCA in other systems101. See the SI for further 
information on those methods. By initial visual inspection, some 
seem to perform comparable PCA but are not categorically 
superior. Second, one must inquire, with linear dimensional 
reduction algorithms exhausted, if there is improved 
performance by using a nonlinear unsupervised method – 
either creating a nonlinear mapping (VAE) or merely a 
embedding (t-SNE).

4.1.2 Variational Autoencoder
We again present in Fig. 8 a reduction to a two-dimensional 

space, but now via the latent space of a trained VAE. Before 

comparing these results with the PCA-derived two-dimensional 
space in Fig. 7, it is useful to establish some basic properties of 
the VAE training and resulting latent space.

Fig. 8. Latent space representation in two dimensions via a 
Variational Autoencoder (VAE), color-coded by the two 
different property classification schemes: Scheme 1 is by 
oxidation and Scheme 2 is by sulphur bond type.

First, in Fig. 9 we demonstrate the agreement between 
input and decoded spectra – this is roughly analogous to the 
consideration of the number of retained PCs for PCA as shown 
in Fig. 6. The five spectra-pairs shown are for randomly selected 
compounds of each Type. Qualitative agreement is seen with a 
limited number of dominant spectral features, as would be 
expected given the inherent blurriness of decoded data from a 
VAE in two dimensions. Errors are largely restricted to features 
that are spectrally small or (especially) to spectra with 
numerous peaks. In some cases, this includes information-rich 
features, such as the first peak in the XANES of protionamide or 
the loss of the triple-peak structure in the immediate region 
near the Fermi level in the VtC-XES for 1,3-thiazol-4-ylacetic 
acid.
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Fig. 9. Reconstruction of XES (left) and XANES (right) spectra 
from a two-dimensional latent space via a VAE. From bottom to 
top, the compounds are from Type 1, 2, 3, 4, and 5. The black 
dashed line represents the original inputted spectra, and the 
solid-colored line is the decoded spectra after it has been 
passed through the VAE. 

Second, while the VAE is nonlinear, the resulting mapping is 
still continuous and regular, such that similar spectra are 
mapped to nearby points in the latent space and, conversely, 
nearby points in the latent space decode to similar spectra. In 
Fig. 10a, the spectra for tetrabromothiophene and 
tetrachlorothiophene are very similar, and they are in fact 
mapped to a similar location in the latent space. Looking at the 
corresponding oxides in Fig. 10b, there is again a close location 
mapping of chemically related compounds of similar VtC-XES 
spectra. This indicates that the VAE is correctly mapping similar 
data to nearby locations, and therefore the latent space is in 
fact regularized, continuous, and complete. These three 
properties allow for data generation, where the VAE can decode 
points in the latent space it has not previously seen. We return 
to this subtle consequence of the good, if non-Euclidean, 
behaviour of the VAE latent space in section 4.3.

Fig. 10. Chemically similar compounds are nearby in the latent 
space. (a) The latent space location of tetrabromothiophene 
and tetrachlorothiophene, with the corresponding XES spectra 
on the right. (b) The same structures but oxidized to form 
tetrabromothiophene oxide and tetrachlorothiophene oxide.

As a final point of interest for the fidelity of the VAE latent 
space, it is interesting to investigate outliers in the VAE latent 
space, i.e., those molecules that substantially escape from the 
cluster associated with their oxidation state or Type. In Fig. 11 
we identify both fipronil (only the relevant part of the structure 
is shown) and ethylene sulphoxide as two Type 4 sulphoxides 
with nominally zero oxidation state that are unexpectedly in the 
sulphone +2 oxidation state cluster. The corresponding VtC-XES 
spectra and molecular structures are shown at the bottom of 
the figure. For fipronil, one of the carbons bonded to the S is 
special in that it is bonded to three fluorine, whose 
electronegativity also makes the carbon electronegative and 
thus the sulphur has an effective +1 oxidation, which might 
explain the grouping with the positive oxidation cluster. For 
ethylene sulphoxide, the abnormal triangle shape and unusual 
bond angles and lengths might contribute to its grouping with 
the +2 oxidation cluster.
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Fig. 11. A closer look at the outliers: the two “neutrally oxidized” 
compounds distinctly in the sulphone (+2 oxidation) cluster.

Moving now to the relative merits of the two-dimensional 
PCA representation (Fig. 7) and the VAE latent space (Fig. 8), the 
superior performance of the nonlinear method is an important 
result of the present study, and there are three details that 
require further discussion. First, note how the latent space of 
the VtC-XES has very clear clustering of chemically related 
compounds in both classification schemes. In fact, the VtC-XES 
has better clustering than the XANES in Scheme 2 as Types 1, 2, 
and 3 are more distinguishable via VtC-XES. Also note that more 
similar compounds, such as Type 1 sulphides and Type 3 thiols, 
which have the same oxidation and very similar sulphur bonding 
environments, are closer together in the latent space for both 
XANES and VtC-XES when compared to the more chemically 
different Type 4 sulphoxides and Type 5 sulphones.

Second, the fact that there is better clustering of different 
oxidation states than for different sulphur bonding types is 
expected. The appearance of peaks due to the introduced 
oxygen bonds, in addition to the blueshift of the high energy 
tail, makes oxidation state correlate to the most pronounced 
differences in VtC-XES spectra. On the other hand, the XANES 
latent space is dominated by the oxidation state because of the 
multi-eV blue shift of the whiteline as oxidation state increases. 
However, the XANES has less-distinct clustering between Types 
1, 2, and 3, all which have the same oxidation state, because the 
XANES spectra, in general, have less variation, both within 
individual Types and across them (recall Fig. 4). Hence, the fact 
that the VAE, at least when limited to a two-dimensional latent 
space, cannot as clearly distinguish sulphides (Type 1) from 
thiols (Type 3) in XANES, indicated by the large overlap in the 
purple and green dots, is expected; the sulphur local 
environment in both those Types is similar enough that there is 
large overlap.

Third, the VAE latent space of the VtC-XES has two very 
distinct Type 3 clusters (not clearly seen in the PCA two-
dimensional representation), whereas the XANES has grouped 
all Type 3 compounds together. These clusters in the VtC-XES 
spectra are directly correlated to whether the sulphur in the 
thiol functional group belongs to a conjugated system 
(aromatic) or a non-conjugated one (aliphatic), as shown in Fig. 
12. Here, we have color-coded spectra within types to indicate 
aromaticity, following Yasuda and Kakiyama 65, who first 
noticed the sensitivity of sulphur VtC-XES to aromaticity. This 
separation is chemically reasonable as researchers have long 
known XAS to be sensitive to aromaticity for the carbon edges 
102, and have also observed sensitivity to aromaticity in a ligand, 
e.g. the sulphur K edge of sulphides 60, 65.

Fig. 12. Compounds with aromatic sulphur versus aliphatic 
sulphur, in the latent space (VAE) for both VtC-XES (left) and 
XANES (right).

As shown in Fig. 13, the greatest difference in the VtC-XES 
spectra for Type 3 occurs at the highest energy peak, a 
consistent finding with the observations mentioned in Yasuda 
and Kakiyama 65, which notes the aromaticity of the compound 
increases the energy but lowers the intensity of that peak, likely 
due to the presence of the π bonding system. Conversely, the 
XANES spectra, on average, have only a small (< 1 eV) energy 
shift between the aromatic and aliphatic compounds for Type 3 
without any substantial change in the overall spectral features.

Fig. 13. Residuals between the average of the aromatic and 
aliphatic spectra of Type 3 (thiols).

This brings us naturally to the final section of raw results, 
where we use an algorithm that diverges even further from any 
metric constraint and instead emphasizes measuring similarity 
of the spectra prior to reducing the dimensionality of the 
problem.
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4.1.3 t-SNE, Clustering Without Mapping
In Fig. 14a, we show the two-dimensional embedding 

generated by the t-distributed Stochastic Neighbour Embedding 
(t-SNE), color-coded by Type, for the same training data sets as 
was used for PCA and the VAE, e.g., that resulted in the 
mappings in Fig. 7 and Fig. 8. Recall that although the closeness 
of points t-SNE embedding does correlate to similarity, the 
distances separating clusters in t-SNE does not necessarily 
represent the relative similarity of the clusters themselves – t-
SNE is, again, inherently non-metric. The clustering is clearly 
tighter and, more importantly, there is less overlap between 
clusters corresponding to the different Types. In Fig. 14b we 
show the additional sub-classifications by conjugation of the 
radical group bonded to the sulphur, i.e., aromaticity. Notice 
that, as with the VAE, the VtC-XES clearly distinguishes the 
aromaticity of the Type 3 thiols. Moreover, there is a clearer 
separation between aromatic and aliphatic compounds for all 
Types. Another observation in the t-SNE VtC-XES that was not 
present in PCA or VAE results is that the blue Type 2 group by 
the yellow Type 5 cluster consists of isothiocynates, which are 
distinct from the other Type 2 thioketones.

Fig. 14. t-SNE for VtC-XES (left) and XANES (right). (a) is color-
coded by Type, while (b) is color-coded by aromaticity within 
each Type.

Some sensitivity to aromaticity could have been expected 
(although whether it would be seen in just a two-dimensional 
representation was definitely uncertain), given the prior work 
by Yasuda and Kakiyama 65 on VtC-XES and by Qureshi et al. 60 
on XANES. Here, because t-SNE is unbiased, we can explore 
clustering in more detail to look for unexpected chemical 
classifications, an issue that we explore in Fig. 15 for XANES. 
First, we examine the further splitting of the Type 1 aromatic 
compounds as shown in Fig. 15a. On average, the spectra of the 
bottom cluster have about a 50% increase in the intensity of the 
whiteline. These compounds all have either a chlorine or 
bromine bonded to the aromatic ring with the sulphur. On the 
other hand, the top cluster is typically thiazoles, or compounds 
where there is a nitrogen within the aromatic system containing 

the sulphur. Since chlorine and bromine are more 
electronegative than sulphur, it is chemically reasonable that 
they will dominate the compositions of the transitions close to 
the Fermi level and thus increase the whiteline intensity 
whereas the nitrogen in the ring will have the reverse affect.

Next, looking at the red aliphatic Type 5 compounds in Fig. 
15b, it appears that they are grouped on either the left or right 
side of the overall Type 5 cluster. The cluster on the right, on 
average, has a slightly lower intensity and energy of the 
whiteline, with ~0.5 eV redshift. About 75% of the compounds 
in this cluster have the sulphur as part of a non-conjugated ring, 
compared to the sulphur being a member of chain-like 
compounds, as on the left side of the Type 5 cluster.

Finally, examining the split of the green Type 4 compound in 
Fig. 15c, we see clear partitioning based on aromaticity. 
However, upon identifying compounds in which one R group 
bonded to the sulphur is aromatic and the other R group is 
aliphatic, labelled as “mixed,” we see these in fact create the 
bridge between the two clusters as they share chemical 
characteristics with both groups. Thus, t-SNE has clearly 
identified real chemical (and thus spectral) trends in the XANES 
data.

Fig. 15 (Main) A closer look the the subclusternig in the XANES 
t-SNE plot. (a) Separation of Type 1 aromatic compounds based 
on inclusion of chlorine or bromine in the aromatic system. (b) 
Separation of Type 5 aliphatic compounds based on bond strain 
via the inclusion of sulphur in a ring versus a chain. (c) Type 4 
compounds with one R group aromatic and the other aliphatic 
share characteristics of both and thus form the bridge between 
the two custers.

4.2 Classification

Hence, our initial qualitative inspection of the relative 
efficacy of PCA, VAE, and t-SNE for classification strongly 
supports the use of the least restrictive algorithm consistent 
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with one’s overall goals. We now seek quantitative assessment 
of the accuracy of classification via these algorithms. Based on 
K-Nearest Neighbours (KNN) partitioning on the reduced spaces 
for both VtC-XES and XANES, we derived the classification 
accuracies for the three primary methods of this study as well 
as the auxiliary linear methods FastICA, FA, and NMF, as shown 
in Fig. 16. For t-SNE, because of its nature as a non-parametric 
embedding rather than a mapping, the test data was folded into 
the initial embedding, so the entire dimension reduction and 
test accuracy were applied in one step, although the KNN was 
only trained on the training dataset. For all other methods, 
training included both fitting the dimension reduction mapping 
to the training dataset, and then applying KNN on the two-
dimensional space using that training data projection. To assess 
accuracy, the test data was then passed through the mapping 
to lower dimensional and subsequently through the fitted KNN 
partitioning.

Fig. 16. Accuracy of KNN classification schemes on all 
dimensionally reduced spaces for both VtC-XES (top) and XANES 
(bottom).

Regarding classification Scheme 1 (Oxidation), most 
methods performed extremely well (above 95% accurate) and 
were comparable to the benchmark accuracy obtained from the 
fully connected neural network classifier, as shown in purple in 
Fig. 16. Applying KNN to achieve classification accuracy using 
Scheme 2 (Type) on all reduced spaces for both XES and XANES 
is also shown in Fig. 16. For the VtC-XES spectra, VAE, FA, and t-
SNE performed the best (with FA having surprisingly high 
accuracies) and closest to the benchmark, while for the XANES 

spectra, all methods (besides FA) performed comparably. 
Finally, we applied KNN to the spaces for classification Scheme 
3 (Aromaticity). All methods performed comparatively to each 
other as they performed on the Type classification, and 
accuracies were comparable for both the VtC-XES and the 
XANES, despite the clear Type 3 separation in the VtC-XES. 
However, t-SNE applied on the XANES spectra clearly 
dominated, achieving a notable accuracy of 87% for aromaticity. 
Moreover, of the three classification schemes for both the VtC-
XES and XANES, the VAE and t-SNE outperformed or matched 
the benchmark accuracy 75% of the time. This is extraordinary, 
as these reduced spaces were constrained to merely two 
dimensions.

Some other things to note overall: (1) t-SNE and the VAE 
were much more consistent and robust than the linear 
algorithms, whose accuracies greatly depended on both the 
chosen dataset and classification scheme and thus seem more 
volatile than the nonlinear methods (all KNN spaces can be 
viewed in Figs. S7 to S12); (2) the performance of VAE is 
comparable to t-SNE for oxidation state and Type (although not 
for aromaticity or finer speciation), but has an additional benefit 
in that it is a mapping and can thus be used to efficiently store 
future spectra, discussed in more detail below; and (3) the VtC-
XES and XANES had extremely similar overall categorical 
sensitivity to electronic structure.

4.3 Summary and Outlook

We have focused here on three chemical classification 
schemes, determined from clusters in a reduced representation 
of the dataset. Although identifying similarities of XANES 
spectra via clustering was introduced in Kiyohara, et al. 20, which 
used a decision tree to interpret the results of hierarchical 
clustering of small ensemble of XANES spectra, they could not 
directly obtain characteristic information corresponding to each 
cluster. On the other hand, our routines created clusters that 
were directly interpretable into chemical classes. It would be 
interesting in the future to evaluate more fully the VAE and t-
SNE reduced spaces for other potential properties of interest, 
such as bond length, that can be used for prediction via 
regression. Furthermore, expansion of the dataset to include 
ligands other than carbon or oxygen would be another 
beneficial investigation, which has been shown to be 
challenging in other systems 59. Additionally, the extension of 
our methods to other classes of organic and inorganic systems 
would not only help to understand the spectral encoding of 
chemically relevant information in those other systems but will 
also further illuminating the differences, or lack thereof, in the 
information content of VtC-XES and XANES.

On a different point, the observation that some of the 
dimension reduction routines performed comparably to the 
benchmark accuracy indicates that they are ripe, either in their 
current condition or with some more tuning, for compressing 
high dimensional spectra with minimal informational loss, and 
thus provide classification accuracies close to an upper bound, 
limited only by the aleatoric variation of the dataset itself. 
Moreover, classification accuracies can be further improved by 
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keeping more dimensions when projecting onto these reduced 
spaces, along with more training data, if available, such as 
augmenting the dataset to include noise or impurities to better 
mimic experimental data. Further tuning of these methods, 
especially modelling spectral artifacts and realistic experimental 
conditions in the training dataset to increase robustness, would 
allow for potential use in encoding high dimensional spectral 
data in high throughput experiments.

As a case in point, recall that in section 4.1.2, and especially 
in Fig. 10, we discussed the regularized, continuous, and 
complete nature of the VAE latent space. These characteristics 
allow for both the encoding of additional spectra into the latent 
space and, conversely, allow the VAE to decode points in the 
latent space that do not correspond to previous observations. 
We propose that this capability might be useful for the growing 
number of high-throughput XAS experiments that require real-
time data encoding, although the same may of course also hold 
for other one-dimensional spectroscopies. For example, in 
operando XAS catalysis studies are a high-throughput effort that 
observes progressive changes in spectral features and then 
seeks to understand the corresponding local chemical changes. 
A latent space mapping of such chemical evolution might be at 
least qualitatively useful to the experimenter.

In Fig. 17a we show the evolution from goitrin (oxidation 
state -2) to thiophene oxide (oxidation state 0). In Fig. 17b, we 
have the decoded spectra from the points in Fig. 17a along a 
trajectory corresponding to linear combination of mole fraction 
of the two molecules. A more complete depiction of latent 
space trajectories is shown in Fig. 17c, where we have over 3000 
different combinations of randomly selected species 
evolutions. Because the tracks cross over the regions between 
the clusters, generating or tracking in this region will be reliable, 
whereas the spaces outside these clusters will not yield any 
meaningful interpretation to the latent space encoding.

Fig. 17. As shown in (a), the evolution from goitrin (oxidation -
2) to thiophene oxide (oxidation 0). (b) The linear combination 
of the spectra of thiophene oxide (top) and goitrin (bottom) that 
correspond to the points along the track in (a). (c) Tracks of 3000 
different species evolutions.

A technical point worthy of mention here is that several 
prior ML studies in X-ray spectroscopy have augmented their 
training dataset by including linear combinations of basis 
spectra, e.g., Timoshenko, et al. 27 However, PCA and VAE 
inherently encode these linear combinations into the reduced 
mapping. This attribute is obvious based on how PCA constructs 
its components and was verified in the VAE, where training on 
an augmented dataset resulted in statistically the same latent 
space representation of the pure component spectra. On the 
other hand, properly including linear combinations into a t-SNE 
training set would result in a multivariate t-distribution and 
completely detract from the purpose of applying t-SNE – 
obtaining clusters and identifying similarities. Moreover, our 
dataset included enough variation of our system of interest that 
we did not need to augment our training set to improve results.

5. Conclusions
Using a large family of sulphorganic molecules as a test case, 

we have performed a comprehensive survey of dimensionality 
reduction via unsupervised machine learning (ML) methods 
applied to X-ray absorption and X-ray emission spectroscopy as 
a means toward chemical classification. In this paper, we come 
to three main conclusions. 

First, despite all algorithms being restricted to two 
dimensions, the unsupervised ML methods showed good 
accuracy for most of the relevant chemical information, with t-
SNE somewhat outperforming the supervised benchmark and 
the other methods comparable to it. Particularly, t-SNE appears 
to have surpassed the other methods exactly because it retains 
the similarity measures initially calculated in the original high-
dimensional space of the training data set, avoiding the lossy 
compression inherent to methods that map first and compare 
second.

One might ask if PCA or VAE could find improved 
performance by increasing their reduced dimensionality, where 
these two methods have the benefit over t-SNE of providing 
actual mapping functions, and thus they can more naturally be 
used for real-time interpretation of experimental results. Fig. 
S13 shows the accuracies for PCA, VAE, and t-SNE for a latent or 
embedding dimension of three and four. This figure exemplifies 
the superiority of t-SNE at low dimensions, such as two or three, 
exactly because it solves the “crowding problem” 96 that results 
from the curse of dimensionality. However, at four or more 
dimensions, t-SNE is not only more comparable to the VAE – the 
crowding problem becomes less of an issue then – but the 
computational cost greatly increases. Specifically, an exact 
solution (instead of the Barnes-Hut approximation) 
optimization algorithm must be used for dimensions greater 
than or equal to four. However, the slight increase in accuracy 
for all methods while increasing the reduced dimension (at least 
to four) suggests further tuning could yield even greater 
classification accuracies for all models. These results suggest 
multiple directions forward, particularly for their use not only 
across other chemical systems, but also other one-dimensional 
spectroscopies.
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In Fig. 16, we have shown superior classification 
performance for t-SNE, and as stated earlier, this is likely 
because t-SNE performs a comparison between the full, original 
spectra prior to dimension reduction via embedding, whereas 
PCA and VAE are inherently lossy mappings. 

Second, t-SNE not only had superior performance for 
classifying aromaticity, but also unexpectedly found new 
chemically relevant clusters not seen in any other method, such 
as distinguishing finer sub-classes within the aromaticity of 
sulphides (Type 1), sulphoxides (Type 4), and sulphones (Type 
5). We see considerable future benefit to combining highly 
adaptive unsupervised ML algorithms, such as t-SNE, in tandem 
with supervised ML or with structural parameterization 
questions that have to date been only addressed in XAS using 
supervised ML.

Finally, the above results allow us to formally quantify and 
compare the chemical information content between XANES and 
VtC-XES, an issue which has only seen qualitative discussion. We 
find that XANES and VtC-XES methods each have strengths for 
chemical classification, but that many are the same, at least for 
the question of chemical classification of sulphorganics.
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