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Stereodynamic control of cold rotationally inelastic
CO + HD collisions

Pablo G. Jambrina,®* James F. E. Croft,” Naduvalath Balakrishnan,? F. Javier Aoiz®*

Quantum control of molecular collision dynamics is an exciting emerging area of cold collisions.
Co-expansion of collision partners in a supersonic molecular beam combined with precise control
of their quantum states and alignment/orientation using Stark-induced Adiabatic Raman Passage
allows exquisite stereodynamic control of the collision outcome. This approach has recently been
demonstrated for rotational quenching of HD in collisions with H,, D,, and He and D, by He.
Here we illustrate this approach for HD(v = 0, j = 2)+CO(v = 0, j = 0)—HD(V = 0, j/)+CO(/ =
0, j/) collisions through full-dimensional quantum scattering calculations at collision energies near
1K. It is shown that the collision dynamics at energies between 0.01-1K are controlled by an
interplay of L =1 and L = 2 partial wave resonances depending on the final rotational levels of
the two molecules. Polarized cross sections resolved into magnetic sub-levels of the initial and
final rotational quantum numbers of the two molecules also reveal a significant stereodynamic
effect in the cold energy regime. Overall, the stereodynamic effect is controlled by both geometric
and dynamical factors, with parity conservation playing an important role in modulating these

contributions depending on the particular final state.

1 Introduction

The extraordinary progress achieved in the last couple of decades
in creating dense samples of cold and ultracold molecules has
transformed our ability to control and interrogate the outcome
of molecular collisions"Z, This progress has led to new applica-
tions of cold and ultracold molecules in precision molecular spec-
troscopy, quantum sensing, quantum information and computa-
tion, and quantum control of chemical reaction dynamics®L,
Ultracold molecules in their absolute rovibrational and motional
ground states trapped in optical tweezers allow the realization
of quantum engineering of molecular assembly for many-body
dynamics1213 new quantum matter with exotic properties and
molecular qubits for quantum computation and simulation>114,

Ultracold molecules offer unique opportunities to explore
molecular collisions in the deep quantum regime. One such el-
ementary molecular processes is a rotation-translation energy ex-
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change in which a rotationally excited molecule undergoes re-
laxation (quenching) in collisions with an atom and the energy
released is transferred to the relative translation of the collision
partners. Such processes have been extensively studied in the
literature for many neutral and ionic molecular systems, includ-
ing the simplest molecule H,12!18 Collisions of H, and HD with
He are important for modeling gas densities in astrophysical en-
vironments where non-equilibrium populations prevaill®17, At
thermal energies, many partial waves contribute and the collision
outcome is generally less sensitive to fine details of the interac-
tion potential. However, at the lowest temperatures of interest
in the interstellar medium (~4 K), only a few partial waves con-
tribute for light systems such as He+H,, He+HD, and H, +H,. In
this regime, collision outcomes are severely influenced by small
changes in the interaction potential and isolated resonances due
to tunneling through angular momentum barriers.

Currently there is much interest in studying inelastic and re-
active molecular collisions near 1K as well as in the mK (cold)
and uK (ultracold) regimesi®2  Quantum effects are ampli-
fied in these regimes and quantum control of molecular colli-
sions using external electric and magnetic fields becomes feasi-
bled"Z, While such control is most promising in the ultracold
regime where only a single partial wave contributes, collision
energies near 1K are also of interest as collision outcomes are
dominated by a few partial waves. The energy regime between
1 mK-1K has been the focus of many experiments involving co-
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expansion and merged beam techniques in which sen-
sitive measurements of isolated resonances have been reported
for Penning ionization of molecules such as H, and HD by rare
gas atoms in excited electronic states. The regime near 1K has
also been the focus of a series of experiments by Perreault et
al. in which rotational quenching of HD by H,, D, and He has
been reported1822, The experiment involves co-expansion of
the molecular species in a supersonic beam combined with se-
lection of the initial orientation of the molecular rotational an-
gular momentum through Stark-induced adiabatic Raman Pas-
sage (SARP). The SARP method allows stereodynamic control of
the collision process by selecting a given projection (m;) of the
molecular rotational angular momentum j on the relative colli-
sion velocity vector or preparing a molecular state in a coherent
superposition of m; states. For collision partners such as H, and
HD or HD/D, and He, the co-expansion can achieve a narrow
distribution of relative molecular velocities corresponding to col-
lision energies in the vicinity of 1 Kelvin, drastically limiting the
number of angular momentum partial waves. Yet, experimental
results do not provide explicit energy resolution and theoretical
studies are needed to identify specific partial wave resonances
that contribute to distinct features in the experimental angular
distribution or collision mechanism28%., Computational studies
have been critical in yielding mechanistic insights into recent ex-
periments on HD(v =1, j =2 —V =0, j/ = 0) quenching by H,
and He23H25129]

Calculations have also demonstrated that stereodynamic con-
trol extends to cases where there are overlapping resonances from
multiple partial waves284% making it possible to disentangle the
resonance pattern. Moreover, calculations have also identified
strong stereodynamic preference in the m; —m resolved integral
and differential cross sections in the ultracold s-wave regime for
rotational quenching of HD by He22

So far, the experiments on state prepared HD with He and
H,/D; involved no change in rotational levels of the collision part-
ners (H,/D,) limiting the number of partial waves in the outgo-
ing channel and complexity of the collision dynamics. However,
it is not clear whether stereodynamic control of the collision out-
come is still possible when both collision partners change their
rotational states. Here, we consider HD(v = 0, j = 2)+CO(v =
0, j=0)—HD(/ =0, j/)+CO( =0, j/) collisions in which rota-
tional levels of both molecules are altered during the collision
leading to more intricate collision dynamics. Moreover, and un-
like HD+H,/He systems, the interaction potential for CO+H, is
deeper and more anisotropic, offering a more stringent case for
stereodynamical control in the cold regime. However, the differ-
ence of mass between the two partners will likely limit the access
to sufficiently low collision energies due to the difference of ter-
minal velocities between CO and HD in co-expansions as those
used in SARP experiments. A judicious choice of initial velocity
for either species might mitigate this problem.

Collisions of molecular hydrogen with CO are important pro-
cesses in astrophysical environments and has attracted consider-
able experimental and theoretical attention in recent years#">1,
Its importance stems from the fact that CO is the second most
abundant molecule in the interstellar medium after H, and is of-

2| Journal Name, [year], [voI.],1

ten used as a tracer of H, in dense interstellar clouds due to its
dipole moment. Several theoretical studies have reported temper-
ature dependent rate coefficients for rotational and rovibrational
transitions in CO due to H; collisions of interest in astrophysical
media#346>1 Highly accurate measurements of CO rotational
excitation cross sections by H; have also been reported allowing
direct comparisons with theoretical predictions40r48l200211 - The
most recent full-dimensional potential energy surface (PES) for
the Hy-CO complex#2>ll has yielded rotational excitation cross
sections in close agreement with experiment4820 as well as high
accuracy spectroscopic data#244. While CO+H, collisions have
been extensively studied, CO+HD collisions have received lim-
ited attention, and we are not aware of any prior theoretical stud-
ies. The experimental measurements have reported anomalously
large rate coefficients for vibrational relaxation of CO(v = 1) by
HD compared to H, and D, collision partners22>4, Here we fo-
cus on rotational relaxation of HD(v =0, j =2) by CO(v=0, j =0)
in which the HD molecule is prepared in various stereodynamic
alignment/orientations.

2 Theoretical Approach

2.1 Scattering calculations

Scattering calculations were performed in full-dimensionality us-
ing a modified version of the TwoBC code >3 which implements
a time-independent close-coupling formalism yielding the scatter-
ing § matrix=°. This approach has has been outlined in detail else-
where27%? While excited vibrational levels are included in the
basis set we only examine transitions between rotations levels in
the ground vibrational manifold and as such, for convenience, we
label each asymptotic channel by the combined molecular state
o = ji jo, where j is the rotational quantum number. In this work
the subscript 1 refers to HD and 2 to CO. The integral cross section
for state-to-state rotationally inelastic scattering is given by,

Ca—a’ =

T 2

: ) 221+1| watj, |
Qi+ D)+ Dk T4 (7 Lz, oL

€

where k2, = 2UEq1 /h? is the square of the initial relative wave
vector, Eq is the collision energy, u is the reduced mass, 77 =
1—587, ji» = j1 + j», L is the orbital angular momentum quantum
number, and J the total angular momentum quantum number
where J =L+ jp».

For the PES we used the recent high-accuracy 6D CO+H; po-
tential reported by Faure et al.©20l. This potential was chosen as
it reproduces the proper physical inverse-power dependence with
the intermolecular distance, R, at long range which is crucial for
low energy collisions. To account for the difference in centre of
mass between H, and HD a coordinate rotation was implemented
as described in Ref. |62l Jacobi vectors were employed to describe
the relative positions of the atoms with 7} (r;, 7) denoting the vec-
tor connecting H with D, 7(r,,#,) denoting the vector connecting
C with O, and R(R,R) denoting the vector joining the centers of
mass of the two molecules. The angular dependence of the po-
tential was expanded as

U(7i,73,R) = Y Ay (r1,r2, R)Y) (P1, 72, R), )
p)
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with

3 (P12, R) = Y (Aimi doma | Miamia) Yy g (1) Yagm, (P2)Y3 (R),
m

3)
where A = A1 1,1, and m = mymymy,. For the scattering calcula-
tions A; was restricted to 0—4 while A, was restricted to 0-8.

The coupled channel equations were propagated from 2 to
92 ag with a radial step size of 1.25 x 10! ¢ using a log-derivative
method®?, The number of points in the radial coordinate for each
dimer for the discrete variable representation was 18; the num-
ber of points in the angular coordinate 6 between R and 7# for
each dimer for the Chebyshev quadrature was 12; the number
of points in the dihedral angle between 6, and 6, for the Gauss-
Hermite quadrature was 8. The quadratures are the same as used
by Yang et al. to study H, + CO collisions*Z. The basis set for
the CO dimer included vibrational levels 0 and 1 with rotational
levels up to 8 and 2 respectively, while for HD rotational levels up
to 4 were included. Scattering calculations were performed for
each parity for J < 12.

To ensure convergence with respect to the basis set and radial
propagations, calculations were repeated for J < 5 using an ex-
panded basis and a larger radial propagation (see Supplementary
material for further calculations). As it is shown in Fig. S1, no
appreciable difference is observed between the two set of calcu-
lations, and the low energy behavior is correctly reproduced.

2.2 Stereodynamics

To compute the differential cross sections (DCS) we need first to
compute the scattering amplitude (f, m, +m; ). From a given
o — o transition, the scattering amplitude in the helicity repre-
sentation is given by®%

L L’+1dJ (9)

myy,m'12

1
fml,mgﬁm’l,m’z = EZ(Z‘,_’_ 1) Z

J Jr2sdyao Ll
xTéLma,L,, (j1om' s, J — ml|L'0) (j1amya,J —m12|LO) @

X (jim\y, jamb| jiamha) (jimy, jama| jramia)

where miy = my +my, m\, = m| +m) (otherwise the last two Cleb-
sch Gordan coefficients are zero), and where o and «’ have been
omitted for the sake of clarity. In Eq. [4] 6 is the scattering angle,

l{m m, (@) is Wigner’s reduced rotation matrix, and (...|...) is a
Clebsch-Gordan coefficient. The DCS can be calculated as:
do 1
DCS= 0 = T DR TT ) D AR A

m mzm m

5)
Similarly, three-vector correlations can be calculated in terms of
the polarization dependent differential cross sections (PDDCS) 63
Specifically, for the k-j,-k’ correlations, where k and k’ are the
initial and final relative velocities, the corresponding reactant’s

Physical Chemistry Chemical Physics

PDDCS (or j-PDDCSs), Uq(,k> (0), can be calculated as follows 65l,

(k) 1
vey= —
O R &L, B It
X (jimy,kq|jimi +q) ©6)

where k and ¢ are the rank and the component of the PDDCSs,
and it is assumed that reactant 1 (HD) is polarized, while reactant
2 (CO) is unpolarized. These PDDCSs are those that are needed
to simulate a SARP experiment where one of the reactants is po-
larized.

As described in Ref. [65] if one of the reactant partners is pre-
pared in a directed state, |j m = 0), its internuclear axis can be
aligned along the laboratory quantization axis, which is usually
the light polarization vector®®. It is possible then to change the di-
rection of the quantization (laboratory-fixed) axis with respect to
the scattering frame, defined by k and k’. The various directions
of the polarization vector lead to different relative geometries of
the reactants. In particular, the internuclear axis distribution for

a given preparation is given by©>/0Z
Lyy (* .
P00 = X ¥ @+ 1] Chy(B.0)| Ciy(6r0). (D)
k g=—k

where 8 and « are the polar and azimuthal angles that define the
direction of the laboratory quantization axis with respect to the
scattering frame, 6, and ¢, define the direction of the relevant in-
ternuclear axis in the scattering frame. Cy, (8, «) (and Ciy (6, ¢r))
are the modified spherical harmonics, and %<k) are the polar-
ization parameters that define the preparation in the laboratory
frame.

In this scenario, the DCS for a given preparation of j is:

B 2 (k)
[ } ZZZkH U0, B0 ®

k=0g=—k

To obtain the integral cross section for the different experimen-
B
. . s . (o
tally achievable preparations, it is necessary to integrate [%}

o
over both 6 and the azimuthal angle (for details see the ap-

pendix). Accordingly, the observable cross section depends only
on B and will be denoted as c¥.

As shown in the appendix, if the initial rotational state for re-
actant 1 in the laboratory frame is the pure |jm = 0) state, hence
the polarization parameters are given ,%(k) = (j0jO|kO) and it is
possible to express the (f, o) DCS directly in terms the scattering
amplitudes:

).-

3 Results and Discussion

We will start this section showing the excitation function (cross
section as a function of the collision energy) for the different
final rovibrational states that can be produced in the collisions
between HD(v=0,j=2) and CO(v=0,;=0) at cold energies, be-

2

Z Z‘ZCJI”’H ﬁ o fm1 mv%m m2 (9)

mymly My " my

2]2+1
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Fig. 1 Cross section as a function of the collision energy for HD(jup=2) +
CO(jco=0) — HD(j};p=0,1) + CO(ji-,=0-5) collisions. Results for ji;,=0
are shown in the top panel and those for jj,,=1 are shown in the bottom
panel.

tween 1 mK and 10 K. Due to the large difference in the rotational
constants of HD and CO (B.=64.2K and 2.8 K for HD and CO, re-
spectively) only jj;,=0-1 are energetically accessible for HD but
many different CO rotational states can be populated in this en-
ergy regime. Throughout this manuscript, we will divide the final
states according to the value of jj;,. The first endoergic channel
corresponding to (jip=2, jco=1) opens above 1 K, and has been
omitted in our discussions.

Results displayed in Fig. (1| show that collisions leading to
Jip=1 (Ajup =-1) have larger cross sections than those lead-
ing to ji;p=0 (Ajup = -2). For a given jj, collisions leading
to jioo=1 are predominant, especially for E¢,; < 10 mK, but that
difference drops as the energy rises. This indicates that HD ro-
tational energy is not efficiently transferred to CO. The most rel-
evant feature of the excitation function is the presence of a res-
onance at around 0.1 K. The resonance peak is especially note-
worthy for ji;p=1, but it is present for almost every final state.
Further analysis (see Fig. S2 and S3 in the supplementary ma-
terial) demonstrated that this is a shape resonance mostly asso-
ciated to L=2. The contribution of L=1 seems to be due to an
“above-the-barrier” resonance.

To understand the origin of the resonance, and to determine
the extent of control that can be achieved, we will focus on 4
different final states: (jj;p=0, jio=0) for which the effect of
the resonance, if any, is almost negligible, and (jp=1, joo=1),
Uiap=1, jeo=2), Uip=1, joo=3), the three states that are pref-
erentially formed around the energy of the resonance. In the top
panels of Fig. [2] we show the cross sections for these four states,
and also the contribution of L=0-3 to the cross section. As ex-
pected, at low energies only L=0 contributes to the cross section,
but with increasing collision energies contributions from other L
become important. Around 0.1 K, the energy of the resonance

4| Journal Name, [year], [vol.],1

peak, L=1 is the partial wave with the largest cross section, even
for (jjp=0, jop=0). Interestingly, the contribution of L=2 is
rather different: for (jyp=1, jip=1, 3) the contribution from
L=2 to the resonance is about 50% that for L=1; however, for
Uip=1L jco=2), (ip=0, jto=0) its relevance is significantly
smaller. We can anticipate that the analogies between (jj=1,
Jjeo=1,3) will also manifest when we analyze both ¢/ and their
behavior upon alignment of jyp.

In the two lower panels of Fig.|[2| we show the partial cross sec-
tions for a given total and orbital angular momentum values. The
results for L=1 and L=2 are displayed in the middle and bottom
panels, respectively. The sum over all J, i.e. o(E;L), are shown
as dashed lines. Parity (P = (—1)/#p*icotL) conservation implies
that not all (L,J) combinations are possible for (jj;;=0, jio=0)
product channel. In this particular case, L'=J, hence parity is
( 71)1 . Accordingly, only (L=even, J=even) and (L=o0dd, J=o0dd)
combinations are possible, but combinations such as (L=1, /=2)
are forbidden. For this state and L=1, J=1 and J=3 show simi-
lar cross sections at energies below the resonance, but /=3 pre-
vails around the resonance. For the other three final states, the
contribution from (L=1, J=1) is very minor, while those from
(L=1, J=2) and (L=1, J=3) are similar. It is worth mentioning
that while for (jip=1, jro=2), o(E;J =2,L =1) is larger, for
Jeo=1,3 0(E;J =2,L =3) prevails.

For L=2 differences between the four studied final states are
substantial. For (jj;,=0, joo=0) parity conservation forbids the
(J=1,3) channels, and the dominant term is (L=2, J=4). For
Jup=1 states, the relative cross section of (L=2, J=4) is simi-
lar, and these peaks coexist with those observed for /J=1,3. For
Jiap=1, the peak associated with ol=2 exhibits a double maxi-
mum, the first associated with J=1, and 4, and the second with
J=2, and 3. The position of these peaks does not depend on
the final state, although the relative contribution of L=2 to the
resonance plays an important role (see above). For the inelastic
collisions between H + HF Jambrina et al.28 also observed differ-
ent maxima for a given L, each of them associated with a different
value of J. However, in the present case, the peak associated with
a given J occurs at the same energy and their position does not
depend on the final state.

It is also worth emphasizing that the relevant intensity of the
partial cross sections for (L=2, J=1,3) depends on the final state.
For (jyp=1, jop=1,3) the J=1 peak is higher than that of /=3,
especially for j-,=1. On the contrary, for (jip=1, jcno=2) the
J=3 peak is more intense than /=1 with a simultaneous increase
in the intensity of the /=2 peak. As a result, the second maxima
associated with L=2 is slightly higher than the first one, unlike
what was observed for ji.,=1,3. Again, the overall behavior of
the ji.;=1,3 partial cross sections is different from that of ji.5=2.

To see if the intensity of the resonance peaks can be tuned by
selecting the direction of the HD rotational angular momentum
(hence of the internuclear axis) prior to the collision, we calcu-
lated the excitation function for different values of f3, the angle
between the polarization vector of the SARP laser and the initial
relative velocity vector (see Fig. [B). With §=0° collisions will be
preferentially head-on, while §=90° implies a side-on geometry.
In fact, B=0° is equivalent to selecting m; = myp=0. Between
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Fig. 3 Cross section as a function of the collision energy for HD(jup=2)
+ CO(jico=0) — HD(ji;p) + CO(jio) collisions for four specific final states
and three different preparations of the HD intermolecular axis,  =0° (dot-
ted red line), B =90° (dashed blue line), and the magic angle (solid olive
line). The isotropic preparation (in the absence of external alignment) is
shown in black

these two geometries, we will also calculate the excitation func-
tions for “the magic angle” (f = mag), the angle for which the
second Legendre polynomial is zero, that is, f = arccos(v/3/3) ~
54.74°, and hence contribution of k=2, ¢=0 term in Eq. van-
ishes).

The alignment-dependent excitation functions display three
different patterns depending on the final state considered, as
shown in Fig. For (jip=0, jco=0), for which the effect of
the resonance is very minor, the cross section is clearly enhanced
for =0° (head-on) collisions, in particular around the 0.1 K
resonance, as well as above 1 K. It should be emphasized that
as E.o — 0, the integral cross section becomes insensitive to
changes in the relative alignment of the reactants.®® In fact, if
we only had L=0 (s-wave) encounters, there would not be any
stereodynamical preference regardless of the initial and final state
considered. Side-on (f=90°) collisions lead to slightly smaller
cross sections, but the effect is not as noteworthy as for head-on
encounters. If § = mag is selected, the cross section is nearly the
same as if HD were not aligned (isotropic distribution).

The situation is different for j;p=1 states, for which the reso-
nance has a salient effect. For these states, the stereodynamical
control is strongly influenced by the resonance, and at energies
above and below the resonance the relative alignment of HD has a
negligible effect on the cross sections. Moreover, regardless of the
final state, the cross section around the resonance drops for f=0°
collisions, reaching its minimum value at around 0.6 K, beyond
which it rises to the isotropic value. Again, there is a clear dif-
ference between jio=1,3 and j,=2. For (jip=1, joo=2), the
cross section at the resonance is enhanced by the f=90° prepa-
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Fig. 4 (E;J,L) partial cross sections as a function of the collision energy for HD(jup=2) + CO(jco=0) — HD(jjp=1) + CO(jo=3) collisions for different
preparations of the HD intermolecular axis. Results for L=1 are shown in the top panels and those for L=2 are shown in the bottom panels. Results for
the isotropic distribution are identical to those depicted in Fig. and are only shown here for the sake of comparison.

ration, while B = mag has only a very minor effect. However, for
Jeo=1,3, it is B = mag that leads to a significant enhancement
of the cross section. of=9%, in turn, is somewhat smaller at the
resonance peak and is shifted towards slightly higher collision en-
ergies.

To understand the origin of the different stereodynamical pref-
erences, we show in Fig. [4] the o/ for the different HD align-
ments discussed above. In this case, we will focus on one partic-
ular final state, (jyp=1, jio=3). B=0° leads to a smaller L=1
cross section. This is due to the absence of (L=1,/=2) term which
is not compatible with f=0° (due to parity conservation). For
L=2, f=0° leads to a modest increase of the cross section asso-
ciated with J=2 and J=4, but it makes the terms associated with
J odd vanish (again imposed by conservation of the parity). Al-
together, it explains the decrease of the reactivity associated with
B=0° for jip=1 states. It also explains why f=0° leads to an
increase of the partial cross section for (jj;,=0, jio=0). Conser-
vation of parity requires that for (jj;p=0, j-,=0) the S-matrix
element associated with (L=o0dd, J=even) or (L=even, J=o0dd)
must be zero, regardless of the collision partner’s polarization.
These are the elements that are zero for §=0° (since they do not
contain m; =0), so the only effect of this preparation is to enhance
the contribution of the elements that are not zero by parity con-
servation, hence leading to an increase of the cross section for
Uhp =0, jco=0)-

Back to (jp=1, jco=3), B=90° enhances the influence of
(L=1, J=2) but decreases that of (L=1, J=1). The effect on L=2
is more important, as $=90° is not compatible with (L=2, J=1).
Consequently, states for which the latter term was important show
smaller cross sections for f=90°. Besides, the enhancement of
the (L=2, J=3) element displaces the resonance peak to slightly
higher energies. The reason behind the disappearance of (L=2,
J=1) for B=90° can be found in Eq. (@). For j;=2, L=2, and
J=1, the second Clebsch-Gordan in Eq. 4] is zero unless mj;=1.
And for mj;=1 and B=90° the cross-section is necessarily zero
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(see Eq.[24]in the appendix).

Finally, B =mag is compatible with all possible combinations of
(J, L) and the term that is affected the most by this preparation
is (L=2, J=1), whose cross section is significantly larger. As a
result, cross sections for those final states for which (L=2, /=1)
is important are enhanced by a 8 = mag preparation.

The main theme that emerges from these discussions is as fol-
lows. An anisotropic preparation of the reactants leads to the
modification of the intensity of each J-L combination. However,
how the stereodynamic preparation changes these terms depends
on geometric factors and not on the final state, or any dynamical
aspects. Nevertheless, the relative weight of every J-L contri-
butions in the isotropic distribution has a dynamical origin. In
particular, dynamical quantum effects such as resonances are re-
sponsible of sudden and important changes in the modulus of
particular S-matrix elements. In the present case, the effect of the
resonance is very sensitive to the final state considered, leading
to different stereodynamical preferences. In other words, by mea-
suring the cross section for different experimental preparations, it
could be possible to disentangle the importance of the different
J-L partial waves.

So far, we have only focused on how the different alignments
affect the integral cross section. To see how they affect the DCS,
in Fig. [5] we show the DCS and the scattering angle-recoil veloc-
ity polar maps at 0.1 K that could be experimentally measured
detecting the HD rovibrational state. As mentioned above, the
energy difference between two adjacent CO rotational states is
considerably smaller than that between consecutive HD rotational
levels. Therefore in the polar maps we observe two rings: one ex-
ternal (higher recoil velocities) associated with th=O and an in-
ternal ring (lower recoil velocities) associated with j’HD =1. Since
the cross section for jyp=1 is almost one order of magnitude
larger than that for j;p=0, the intensity of the internal ring is
much higher. Along with the DCS and the polar maps, in the two
upper panels of Fig. 5| we show the alignment-dependent excita-
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Fig. 5 Top panels: Integral cross sections as a function of the collision energy for HD(jup=2) + CO(jco=0) — HD(jj;p=0,1) + CO(jo) collisions
summed over all ji, and different stereodynamical preparations. Middle panels: Differential cross sections at the peak energy of the resonance
(0.1 K) for ji;,=0 (left panel) and jj;,=1 (right panel) summed over all j, states. The abrupt changes in the intensity with the scattering angle for the
various internuclear axis preparations are in stark contrast with the relatively featureless shape of the isotropic DCS. Four Lower panels: Scattering
angle-recoil velocity polar maps at the same collision energy for the indicated internuclear axis preparations. Notice that DCS for = mag and o=0°
differs from B = mag and a=180°, and therefore there is no azimuthal symmetry about the incoming relative velocity. The preparation for $=90° has
also no azimuthal symmetry but the DCS for «=0° and a=180° are the same.
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tion function for jf{D=0, and 1 (summed over all final CO rota-
tional states). The alignment-dependent DCS are also shown in
the two middle panels of |5| As can be seen, they exhibit a series
of maxima that are not present in the almost featureless isotropic
DCS, in particular for jip=0. For jj;,=1, the most salient fea-
tures are the sideways peaks that can be observed for =90°,
o=0° and for f=mag, o=180°. These peaks can be also appre-
ciated in the polar maps. For §=90°, a=0, 180° and =mag,
a=0,180° there is a net increase of the cross section, for both
Jup- As discussed in prior studies 9 for B=mag, a=0,180° the
polar map is no longer symmetrical about the relative velocity,
and the two hemispheres are different. In the figure, a sideways
peak is clearly appreciated for jj;,=1, in the “a=180° ” hemi-
sphere, while a broader distribution is observed in the “a=0°
” hemisphere. It must be stressed that the integration over the
scattering angle in the (8, o)-DCSs does not correspond to the f3-
dependent cross sections shown in the two upper panels. Except
for =0, there is no azimuthal symmetry and, as shown in the
Appendix, to reproduce the of cross sections integration over all
possible values of a (the azimuthal angle) is also required. As ex-
pected, the effect of the stereodynamical preparation on the DCSs
is much more significant than on the integral cross section.

To gain more insight on how specific features of the DCS is
modified by the resonance, in Fig.[f|we show the DCS calculated
as a function of the collision energy and the experimental prepa-
ration for both jj;,=0, and 1 (summing over all final CO rota-
tional states). Even though the ICS at low energies is largely in-
dependent of f3, the features of the DCS changes significantly with
B. Moreover, for ji;,=1, we observe distinct features at the ener-
gies of the resonance, which are strongly influenced by changing
the relative alignment of HD angular momentum.

4 Conclusions

In this manuscript, we have studied the dynamics and stereo-
dynamics of the inelastic collisions between HD(v=0,;=2) and
CO(v=0,j=0) in the cold energy regime, i.e. for E, between
1 mK and 10 K. The main feature of the excitation functions (the
energy dependence of the integral cross section) is the presence
of a resonance at E.,;= 0.1 K, which is particularly relevant for
Jyp=1 final states, that are more likely to be formed than their
Jiyp =0 counterparts.

Regardless of the final state considered, L=1 is the dominant
partial-wave at the energy of the resonance peak. The relative
population of L=2 at this energy depends on the final state con-
sidered, and for most of the final states the resonance is observed
for both partial waves. When the L-J resolved cross sections
(6X) are examined, we observe that many L-J combinations
contribute to the resonance peak, and the relative intensity of
these L-J partial waves depends on the final state considered.
It is the interplay between contributions from these L-J partial
waves that determines the preference towards one particular ex-
perimental preparation or another. In particular, for (ji,=1,
j’CO=2) higher cross section at the resonance are obtained for
B=90° while B=mag is preferred for (ji;p=1, joo=1,3). In fact,
the constraints imposed by the extrinsic alignment are similar to
those imposed by parity conservation, making zero the cross sec-
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tions for some combinations of L and J.

While at the integral cross section level, changing the polariza-
tion of jyp only causes significant changes around the resonance,
these changes are paramount when the DCS are analyzed, and the
DCS features a series of peaks, which are appreciable in a scatter-
ing angle-recoil velocity polar map and depend on the particular
preparation used.

As a whole, our results show that by tuning the polarization of
one of the reactants it is possible to modify the effect of a reso-
nance in the cold energy region for a process in which the two
partners change their rotational states. Moreover, since the J-
L partial waves are very dependent of the final state considered
and will ultimately determine the extent of stereodynamical con-
trol, it is possible to modify to some extent the relative population
of some of the product channels. While the influence of the dif-
ferent polarizations on the J-L partial wave is purely geometrical,
the contribution from these partial waves on the isotropic cross
section is solely determined by dynamics. Therefore, the overall
effect of the polarization on the intensity and width of the reso-
nance will depend on both geometrical and dynamical effects.

Appendix

The general expression for DCS for a given preparation of j; while
Jj»=0 or unpolarized, is®>

do1f 2 &
{ﬁ} =Y Y e+ 0N u0)c;,B.w). (10)
o k=0g=—k

Inserting the expression for the PDDCS, given by Eq. (6), in
Eq. yields,

k

{da}ﬁ_z y <2k+1 )%(k)%(ﬁ’a) Y O G ka1 )

do a % g——k 2j1 +1 3
(1mn
whereZ071
1
le% = 2jo+1 Z mela’nZ‘}m/l y fl%l-,mz—mz’l.,m’z (12)

! /
mym, M2

If the initial prepared state in the laboratory frame is | j; 0), where
it is assumed that j is integer, then %(k> = (j10k0|j;0), and

do 1P o2k 41
{%L :m;% O iy ;q;k<2j1 +1)

X <j10k0|j10> (j1m1 kq\jlrm)C,fq(&a). (13)
Changing the order of the C.-G. coefficientsZ2:
. . L2 N2
— (—1)J!
(10k0Lj10) = (=17 (S5 ) (h0q10ko)  (14)
. . fmy (201 1N12 S
(jimy kq|jymp) = (—1)"—m™ (211(174_1) (j1my j1 —mlk —q) (15)
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Fig. 6 Contour plots showing the collision energy dependence of the DCS for HD(jup=2) + CO(jco=0) — HD(ji;p)+ CO(j¢o) collisions with different
preparations of the HD internuclear axis. Results are summed over all ji, and are shown for jj;;=0 (top panels) and j;;,=1 (bottom panels).

and taking into account that

[Dho(e.B.0)] = Ciy(B. @), (16)

Cy(Bot) = (~1)9Ciy(B.e) = (~1)7 [P (@ B.0)] . (17)

we obtain
do B 2j1—m+q . .
ol = Y (-1 Oy iy 3710 j10[k0)
a ml,iﬁ] k

% Grm ji =k —g) [0 o(@.8.0)] (8)

where g = —m;.

Considering the identityE:
Dyioas, Paipas, = LML Mo T3 M3) (1M M5 | J3M3) Dy

5
o))

ile =Jz=j1,.]3 =k,M1 =M2 =M3 =0,Mi =m1,M£=—ﬁ1 and
My =my —m =—q

(i) [P7n0] = X710 100N s il —q) [ ]
' (20)

or
(=1)™ Cjym, (B, @) C;, i, (B, ) =

;(j10j10|k0>(j1 my ji —mlk —gq) [Dliqo]*
2n

Substituting in Eqn. (I8) and bearing in mind that

(—1)21—2m+2m — 4] for integer j, one obtains :

do]P o
do a: Z Oy iy Cjami (B @)C s, (B, o) =
1

22
2jp+1 (22)

2
) M) WP N A—

S !
mymy My -y

In those cases in which the experiment is carried out under
conditions that imply azimuthal symmetry, Eq. ought to be
integrated over the azimuthal angle o if the k-k’ plane is taken as
the reference or over ¢ — « if a different reference plane is chosen.
The resulting expression is

2 do B
/0 da [_] = Z Z”Sml,ffu leﬁlcjlml (ﬁvo)cjlﬁl (B,0)

do], my,iny

2
=27} Oy | Cim (B,0)] (23)
my
Additional integration over cos 6 leads to the ‘directional’ integral
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cross section for one of reagents prepared with internuclear axis
along f:

of — //2” (cos 6) d(x{d} Zoml [Cum, (B, o)] 24)

where o, is the integral cross section for the m; state, averaged
over my and summed over m} and m)

1
:m Z Zcmlmz%m’lm’z'

/
my,my M2

(25)

Om,

It should be stressed that Eqns. (22)—(24) are only valid as long
as the prepared state is |j; 0).
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