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The performance of functional materials is dictated by chemical and structural properties of individual
atomic sites. In catalysts, for example, the thermodynamic stability of constituting atomic sites is
a key descriptor from which more complex properties, such as molecular adsorption energies and
reaction rates, can be derived. In this study, we present a widely applicable machine learning (ML)
approach to compute the stability of individual atomic sites in structurally and electronically complex
nano-materials on the fly. Conventionally, we determine such site stabilities using computationally
intensive first-principles calculations. With our approach, we predict the stability of atomic sites in
sub-nanometer metal clusters of 3-55 atoms with mean absolute errors in the range of 0.11-0.14 eV.
To extract physical insights from the ML model, we introduce a genetic algorithm (GA) for feature
selection. This algorithm distills the key structural and chemical properties governing the stability
of atomic sites in size-selected nanoparticles, allowing for physical interpretability of the models and
revealing structure-property relationships. The results of the GA are generally model and materials
specific. In the limit of large nanoparticles, the GA identifies features consistent with physics-
based models for metal-metal interactions. By combining the ML model with the physics-based
model, we predict atomic site stabilities in real time for structures ranging from from sub-nanometer
metal clusters (3-55 atom) to larger nanoparticles (147 to 309 atoms) to extended surfaces using
a physically interpretable framework. Finally, we present a proof of principle showcasing how our
approach can determine stable and active nanocatalysts across a generic materials space of structure
and composition.

1 Introduction
The working principle of a vast variety of material classes is gov-
erned by atomic-scale features, such as low-coordinated sites,
point defects and other complex atomic arrangements at the
sub-nanometer scale. Prominent examples of such materials are
heterogeneous catalysts1–3, molecular catalysts4–6, semiconduc-
tors7, molecular electronics8, bio-engineered materials9, and en-
zymes10. To date, meaningful computational studies of such ma-
terials require complex atomic-scale models combined with high-
accuracy first-principle calculations.1,4 The knowledge generated
by such studies paves the way for the rational design of high-
performance materials.
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Catalysis, 2575 Sand Hill Road, Menlo Park, California 94025, USA; E-mail:
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† Electronic Supplementary Information (ESI) available. See DOI:
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An enduring challenge in the rational design of materials is the
computationally guided design of nanostructures which are syn-
thesizable in practice. These nanostructures include small clus-
ters, nanoparticles, nanorods, and ultra-thin layers. The first step
towards gauging the synthesis feasibility of any in silico-designed
material is to evaluate its thermodynamic stability. Prevailing
computational paradigms to assess the thermodynamic stability
of nanomaterials are generally limited by at least three key re-
quirements. First, these paradigms should enable predictions of
thermodynamic stability with atomic-site level resolution. Sec-
ond, these paradigms should be generalizable across the vast
structural (sub-nm to 10 nm), morphological, and composi-
tional (p-, d-block elements) space typical to most nanomaterials.
Third, for improved transferability and realistic speed of high-
throughput efforts, these paradigms should use inputs that are
obtained on the fly. Such inputs can, for example, include ba-
sic chemical information of constituting elements, coordination
numbers, and other structural properties.

An efficient and accurate evaluation of atomic site stabilities
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has implications beyond simply finding stable nanoparticles. Re-
cent experimental11–13 and theoretical studies14–17 have shown
that the stability of atomic sites is a robust descriptor for ad-
sorption energies of reaction intermediates. These studies intro-
duce generalizable correlations between the stability of adsorp-
tion sites and adsorbate binding energies. Since these adsorp-
tion energies are, in turn, linked to reaction rates through the
Sabatier volcano,18–20 computing atomic site stabilities permits
us to estimate reaction kinetics. These emerging correlations be-
tween stability and reactivity complement existing volcano-based
screening of reaction kinetics, such as those based on adsorption
energies1,21–24 and Brønsted-Evans-Polanyi25,26 relations. Using
site stabilities as descriptors therefore opens up the possibility to
screen catalytic properties across a large set of materials.

In the last decade, machine learning (ML)-aided high through-
put screening has accelerated materials discovery.27–29 These
methods have, however, predominantly been applied to periodic
bulk materials.20,27,28,30–34 To predict properties of materials us-
ing machine learning, the atomic structure information should
be transformed into a format that is digestible by an ML algo-
rithm. This process is called featurization. Featurization meth-
ods such as Voronoi tessellation30,35, are well developed for per-
fect bulk materials. These methods, however, have not been
widely employed for complex sub-nanometer structures or non-
crystalline/amorphous structures.

Features for individual sites should reflect the physical and
chemical properties of the local environment. For this reason, sev-
eral site-specific features, broadly categorized into (1) electronic
and (2) geometric features have been previously used. Promi-
nent examples for electronic structure features are the d-band
center36,37 and moments of the d-band distribution38. These
features can be computed via density functional theory (DFT) or
the tight-binding model.39 Computing electronic structure fea-
tures requires careful selection of the electronic structure method
(e.g. tight-binding vs. DFT vs. DFT + Hubbard U40 vs. higher-
level first principles methods. Once established, these elec-
tronic structure-based featurization schemes have limited com-
putational efficiency and limited generalization potential in ma-
terials space.

In terms of geometric features, notable featurization schemes
include the coordination-based alloy stability model (ASM)41–44,
generalized coordination numbers (GCN)45–48, and orbital-wise
coordination numbers49. The alloy stability model partitions en-
ergies of metal atoms into contributions arising from individual
metal-metal bonds formed. The parameters reflecting these con-
tributions are fitted using a limited set of DFT calculations (as few
as 6 DFT calculations per metal). The model explicitly consid-
ers the coordination numbers of nearest neighboring atoms while
composition effects are treated in a mean-field approach. Streibel
et al.43 have shown how the effects of strain can be incorporated
into the alloy stability model thus making the model more ac-
curate in the finite-size regime. This simplistic deconstruction
of metal-metal interactions is valid because long-range interac-
tions are effectively screened out by d-electrons.50,51 Even with
this simple linear model, mean absolute errors (MAE) of 0.10 eV
(extended surfaces) and 0.21 eV (147 atom nanoparticles) are

achieved.
The coordination-based models described above generally

work best for ordered systems, such as nanoparticles > 2nm in
diameter and extended crystal planes. Since the coordination-
based models have been derived from bulk and surface structures,
they generally lose accuracy for disordered structures and sub-
nanometer particles, which are affected by finite- and quantum-
size effects.52–56 Such effects can, amongst others, result in the
discretization of electronic states, giving rise to the well-known
odd-even effects52,57.

Hence, encoding local atomic geometries of nanoparticles re-
quires more sophisticated schemes such as the smooth overlap
atomic position (SOAP) approach39. This approach compares
materials sections using a similarity kernel. Jinnouchi et al.58,59

successfully used this approach to predict adsorption energies on
RhAu nano- and sub-nanometer particles. The authors, how-
ever, needed to include small nanoparticle data in their train-
ing set and could not use calculations on extended surfaces to
accurately predict energetics of nanoparticles. The accuracy for
RhAu sub-nanometer particles remained limited with MAEs be-
tween 0.2-0.4 eV. For kernel methods, such as the SOAP method,
the prediction performance systematically improves by increasing
the number of training data to cover all possible local structures.
However, since kernel methods scale unfavorably with training
set size, the SOAP approach becomes computationally demand-
ing when higher accuracy or better generalizability is required.
Furthermore, the model needs to be re-parameterized for every
new bimetallic composition in consideration.

Non-linear machine learning models have successfully pre-
dicted chemical adsorption energies based on geometric and
electronic structure features.28,60–65 For example, Alexandrova
and coworkers developed a featurization scheme based on elec-
tronic structure features.66–69 As mentioned before, however, us-
ing features derived from electronic structure is computationally
demanding and reduces the efficiency of re-training the model
for new structures. For an in-depth overview on featurization
schemes and machine learning techniques in computational het-
erogeneous catalysis, the reader is referred to our recent review
on this topic.70

The key challenges in predicting the site stabilities, and there-
with materials stabilities generally, are: First, to use "cheap and
fast" features based on basic chemical and structural proper-
ties. Second, to develop approaches that are applicable to non-
crystalline, non-periodic complex structures commonly found in
materials with nano-scale functionality. Third, to ensure model
transferability across the vast space of materials in terms of size
scale (sub-nm to extended surfaces) and composition (metals, ox-
ides, etc.). Finally, to formulate physically interpretable machine
learning models, which can be integrated with physics-based ap-
proaches.

In this study, we present machine learning algorithms to pre-
dict the site stability of metal structures ranging from atomic
clusters, to sub-nm nanoparticles, to extended surfaces with site-
by-site precision. We begin by discussing a site-specific featur-
ization scheme relying only on basic chemical and geometric in-
formation. For a given site, this scheme generates a set of fea-
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tures including both the local chemical environment and non-
local, system-wide features. The generated features, when em-
ployed in conventional linear and non-linear ML models, achieve
high-accuracy predictions for atomic site stabilities. We further
present a genetic algorithm for feature selection to obtain phys-
ical insights from the ML algorithms. We successfully predict
atomic site stabilities of atoms in sub-nm nanoparticles, achieving
MAEs as low as 0.1 eV using only the 5 most important features.
By examining the relative importance of features with increas-
ing nanoparticle size, we show that the physical insights revealed
by the machine learning models are consistent with the physics-
based ansatz of the alloy stability model. Taken together, both
the machine learning and physics-based models present a uni-
fied framework for determining catalyst stability for structures
ranging from sub-nm clusters to extended surfaces. We conclude
with a proof of principle demonstrating the utility of our model in
screening stable and active catalysts with atomic level precision
across different nanoparticle size regimes. All data handling, fea-
turization, and feature selection functionalities used in this work
are provided to the community in open-source python modules.
(github.com/schlexer/CatLearn)

2 Results
The Results section is structured as follows: We will first show
how to featurize atomic sites in 3-13 atom clusters, use machine
learning to predict atomic site stabilities, and present a genetic
algorithm for feature selection in the section 3-13 atom clusters.
The genetic algorithm furnishes an in-depth understanding of
the importance of different features. In the sections Nanoparti-
cles and Surfaces, we apply the scheme to 55-atom nanoparticles
and extended surfaces, respectively. We then demonstrate in the
section Determining Catalyst Stability from sub-nm Nanoparticles
to Extended Surfaces that a unified approach combining machine
learning models and the physics-based alloy stability model accu-
rately predicts atomic site stabilities across different nanoparticle
size regimes ranging from atomic clusters to extended surfaces.
Finally, in the section Applications of Site Stabilities in Screening
Stable and Active Catalysts, we discuss how efficient predictions
of site stabilities accelerate the screening of stable and active
nanoparticles having diverse sizes, shapes, and compositions.

2.1 3-13 atom clusters

2.1.1 Featurization of atomic sites

We generated mono- and bimetallic sub-nanometer clusters as de-
scribed in the Computational Details. All possible unique combi-
nations of AxBy with A, B ∈ {Ni, Cu, Pd, Ag, Pt, Au} and (x+y)
∈ {3, 4, 5 . . . 13} were computed. Briefly, atomic positions were
pre-optimized using the EMT potential in combination with the
genetic algorithm from ASE.71 We emphasize that the ASE algo-
rithm is different from the GA we developed for feature selection;
github.com/schlexer/CatLearn. The best candidates were then
further relaxed using DFT.

This relaxation procedure yields stable minima of nanoclusters.
Notwithstanding the development of global optimization meth-
ods like genetic algorithms and simulated annealing, determin-

ing global minima for sub-nm nanoclusters remains a formidable
challenge. Computationally predicted global minima should ide-
ally be verified with experimental synthesis. This verification is
difficult because of the sensitivity of the nanocluster structures
to the synthesis method employed. The objective of this machine
learning study is to map site-specific structural features to the sta-
bilities of individual atoms composing the nanoclusters. Sub-nm
nanoclusters are known to be fluxional under reaction conditions,
i.e., these nanoclusters can alter their structure during an elemen-
tary step of a catalytic cycle72,73.Furthermore, recent studies have
unequivocally shown that the reaction rates on sub-nm nanopar-
ticles arise from a pool of metastable structure, and not one sin-
gle global minimum74. Determining the stability of atoms in
sub-nm nanoclusters will enable direct considerations of the dy-
namic nature of nanocatalysts under reaction conditions. Hence,
we employ structure-stability relations to predict the atomic site
stability across a variety of nanoclusters, regardless of them be-
ing metastable or global minima. Our goal is not to use these
structure-stability relations to find the global minimum of a given
nanocluster.

Examples of selected nanoclusters are shown in Figure 1 (a).
We computed the formation energies, i.e. cohesive energies, of
all clusters, as defined in the supporting information, section
DFT details. The results are shown in Figure 1 (b), where the
monometallic clusters have a black circle and bimetallic clusters
are bi-colored according to their composition. As expected, we
observe a steady decrease in cohesive energy with increasing clus-
ter size.

We then randomly selected atomic sites from the set of all possi-
ble atoms of all monometallic and bimetallic sub-nanometer par-
ticles, and computed their site stability, according to the reaction
illustrated in Figure 1 (c), and defined in the supporting informa-
tion, section DFT details. We plotted the distribution of the site
stabilities based on the chemical identity of the site in Figure 1
(d). As expected, the coinage metals Ag and Au bind weaker than
the other elements, and also show a tighter distribution. Ni and Pt
show the strongest site stabilities and also show a larger variance
of their site stabilities depending on their chemical environment.

In order to predict the stability of these atomic sites, we an-
alyze their features, i.e. properties. We can conceptually dis-
tinguish between system-specific features (e.g. stoichiometry of
the nanoparticle, particle size (# atoms)), and site-specific fea-
tures (e.g. the coordination number or chemical environment
of the site). Furthermore, we can distinguish between physi-
cal/chemical and structural features. Physical/chemical features
are for instance atomic numbers, valence electrons, or electroneg-
ativity, whereas structural features entail metrics of inter-atomic
distances, angles, or coordination numbers.
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Fig. 1 Cohesive energies and site stabilities of 3-13 atom clusters. (a)
A selection of optimized clusters. (b) Cohesive energies of all defect-free
clusters. For example, a green dot surrounded by a red circle denotes
a Pt-Ag bimetallic cluster. The cluster size is x+y, where x (y) is the
number of atoms of element A (B), and black circles denote monometallic
clusters. (c) Computing atomic site stabilities: Negative energies denote
exothermic site stabilities. (d) Boxplots of site stabilities by element of
site.

Our goal is to predict site stabilities from features that are
determined in a computationally efficient way. We therefore
manually chose a set of features that consists only of struc-
tural (distances, angles, coordination numbers, etc.) and basic
chemical information (atomic number, valence electrons, stoi-
chiometric coefficients, etc.). These features are selected to re-
flect the local structural and compositional environments of the
first and second coordination shells. The well-established near-
sightedness of d-electrons implies that perturbations beyond the
third-coordination shell will be effectively screened out.53,55 This
choice results in 28 unique features. We abstain from using the
EMT site stability as a feature since the EMT potentials are avail-
able for only a limited set of elements. The features are summa-
rized in Figure SI-4 and Table 1. There are several methods to
featurize active sites of transition metals. These methods include
SOAP39,58, coordination-based models17,41–44, moments of the
projected d-states19,28, and converting active site environments
into graph based representations35. While these models describe
active sites in different ways, they generally demonstrate accura-
cies on the order of 0.1 to 0.2 eV in predicting adsorption ener-
gies of small molecules and metal atoms. Two distinctive aspects
of our featurization method are: (1) we employ features which
can be computed on-the-fly without additional inputs from first
principles, (2) we aim to unravel how the most important fea-
tures listed in Table 1 evolve with increasing nanoparticle size.
This discussion is presented in sections Feature importance analy-
sis, Nanoparticles, and Determining Catalyst Stability from sub-nm
Nanoparticles to Extended Surfaces.

2.1.2 Model selection: Algorithms and features

Having introduced our featurization schemes, we now investi-
gate the performance of various machine learning models to pre-

dict site stabilities. The models include ordinary linear regression
(also referred to as ordinary least squares, OLS), Gaussian process
regression75 (GPR), neural networks (NN), random forests (RF),
and extreme gradient boost76 (XGB) decision trees. Further de-
tails about these models are in the supplementary information. To
ensure that our training set is sufficiently large for all of these al-
gorithms, we tested the convergence of our performance metrics
with training set size, see supporting information Figure SI-5. All
models reach a plateau in performance after 300-400 data points.
We split our data in a training/test ratio of 958/240, therewith
achieving a sufficiently large training set to produce meaningful
results for our problem of interest. We optimized the model using
4-fold cross validation (4f-cv) on the training set, in combination
with hyper-parameter optimization using python.

Considering all 28 features and fitting the most promising mod-
els on the full training set, we predict atomic site stabilities with
MAEs between 0.14 and 0.27 eV. The results are shown in Figure
2. Clearly, the neural network and the extreme gradient boost
decision trees are the best performing models with an R2 on the
test set of 0.94 and 0.95, respectively.

Fig. 2 Performance of various models on the test set (training/test =
958/240) using all 28 features, all MAEs are in eV. (a) Ordinary linear re-
gression model (OLS). (b) Gaussian process regression (GPR) with 95%
confidence interval based on posterior distribution. (c) Neural network
(NN). (d) Random forest (RF). (e) Extreme gradient boost (XGB).

2.1.3 Feature importance analysis

Besides evaluating different ML models, our objective is to in-
vestigate structure-stability relationships for bimetallic nanopar-
ticles. By determining the most important features, we can work
towards a physical interpretation of the model and investigate re-
curring trends in terms of structure-stability relations. The well-
established role of screening effects by d-electrons in transition
metals50,51 implies that minimalist models containing a small fea-
ture set will suffice. We aim to identify the most relevant features
from the pool of 28 features in Table 1. Hence, instead of rank
ordering all 28 features in terms of their importance, we will iden-
tify the 2-5 most important features which describe nanoparticle
stability. Feature importances can be model dependent, especially
if the features show correlation, as depicted in Fig. SI-4. That be-
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Table 1 Features of AN1 BN2 binary systems. n denotes the number of features in this category, t denotes the category type: s denotes site-specific,
g denotes "global", i.e. system-specific. *x can be mean, min, max or the standard deviation (σ)

Feature(s) Description n t
Ntot Total number of atoms in the system 1 g
N1, N2 Stoichiometric coefficients of A or B 2 g
Z1, Z2 Atomic number of A or B 2 g
Zmean Mean of atomic numbers of all atoms 1 g
Val1, Val2 Valence electrons of A or B 2 g
Valmean Mean of valence electrons of all atoms 1 g
Zsite Site atomic number 1 s
Valsite Site valence electrons 1 s
CNsite Site coordination number 1 s
Zx,neigh. Metrics x of neighbor atomic numbers* 4 s
CNx,neigh. Metrics x of neighbor coordination numbers* 4 s
γx Metrics x of the angles between the atomic site and each unique pair of two neighbors* 4 s
dx Metrics x of the distances between the atomic site and each neighbor* 4 s

ing said, we can investigate general trends in the features which
hold across different models and diverse cluster sizes.

In this study, the property of interest is the stability of the site.
However, the machine learning + genetic algorithm approach can
be applied to any kind of property. The physical interpretability
of the machine learning model furthermore enables a direct com-
parison to the physics-based ansatz of the alloy stability model.
We begin the feature analysis with linear models to inform our
understanding on individually relevant features, i.e. disregard-
ing synergies between 2 or more features. In order to analyze
the importance of features, we generated a model for every possi-
ble combination of 2 features and determined each model’s mean
R2 in 4-fold cross-validation (4f-cv) on the training set. We then
ranked the resulting models according to their 4f-cv performance
and subsequently analyzed the features used by the best mod-
els. Since every model uses only two features, we can compute
the number of times each feature was used by the set of models
which perform best. In other words, we analyzed the occurrence
probability of each individual feature across all models perform-
ing in the top 5% of 4f-cv R2. The top 5 most occurring features
are shown in Figure 3 (upper left panel). We repeated the process
for models with additional features, i.e. every possible combina-
tion of p ∈ {2,3,4,5} out of ptot = 28. The results are shown in
Figure 3.

0 10 20
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dmean
CNsite
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max

2 feature model

0 10 20
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max
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0 10 20
Occurrence probability (%)
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Fig. 3 Feature importance in ordinary linear regression (ORL) models.
Using the genetic algorithm, we analyzed populations of models con-
taining between 2 and 5 features, respectively. Shown are the feature
occurrence probability (%) in the sub-set of linear models with a mean
4f-cv R2 in the top 5 percentile of the population.

Across all reduced order linear models, the number of valence
electrons of the element constituting the site (oxidation state 0),
Valsite, is the most frequently occurring feature with an occur-
rence probability of 10-20% in the top 5% of models. The sec-
ond most frequent feature in all cases is the coordination num-
ber of the site, CNsite. Thus, accounting for linear correlation of
a feature with the target only, the number of valence electrons
in combination with the coordination number shows great pre-
dictive power. Other important features represent measures of
distances and angles. In this feature space, the mean distance of
the site to its neighbors dmean and the maximum angle between
two neighbors and the site γmax stand out as important features.
The ansatz for the linear alloy stability model, inspired by the ef-
fective medium theory77 also uses the site composition and site
coordination number as the two main features. Thus, the fea-
ture importance obtained through the machine learning model is
consistent with physical principles.

Some features are linearly correlated, such as the dis-
tance measures (dmin/dmax/dσ ) and angles/coordination
numbers(γmean/γmax/γσ /CNsite), see Pearson correlation matrix in
the supporting information Figure SI-4. Therefore, the solutions
of ordinary linear regression (and those of other models) may
not be unique. These linear correlations are not problematic,

Journal Name, [year], [vol.],1–13 | 5

Page 5 of 13 Physical Chemistry Chemical Physics



though, since our goal is not to identify the best model. Rather,
we identify the most critical features determining site stability
by quantifying the occurrence probability of a given feature in
the top 5% of models. Since we used the linear model in this
analysis, we included all possible combinations of p features, as
fitting the model and determining the performance metrics is
computationally fast. Non-linear models and especially neural
networks are computationally more expensive in training and
prediction.

For a more general analysis of feature importance, we need to
develop a method that is applicable to problems, for which not all
models (feature combinations + algorithm) can be exhaustively
computed. We therefore developed a genetic algorithm (GA) for
model selection. Briefly, the GA creates a population of chromo-
somes. A chromosome is a list of p features, which are called
genes in this context. For instance, a 3-gene chromosome con-
sists of {dmean, γmax, and Valsite}, with the genes being individual
features. The GA determines the fitness of all chromosomes given
a certain regressor class (e.g. XGB or linear model) and selects
the best performing model via evolution over a certain number of
generations. The working principle is described in more detail in
the supporting information. The goal of the genetic algorithm is
to ensure that good feature candidates are enriched in the popu-
lation. We may already have great feature combinations from the
start, but this cannot be guaranteed and may depend on random
chance, as we select the initial feature population randomly. The
features which are accumulated throughout evolution can be re-
garded as important features. These features are generally model
and material dependent.

We chose to investigate models containing 5 features (genes)
to reduce overall feature correlation while allowing higher-order
feature interactions in non-linear models. Most feature combina-
tions with p=5 exhibit a sum of pairwise feature correlations >
1, Figure SI-6. As the NN and the XGB performed best when we
used all features (Figure 2), we ran the GA with these two mod-
els. We generally used a population size of 200 and an offspring
size of 20. In the case of the neural network, we decreased the
offspring size to 10 to make the computation faster. The larger
the offspring size, the faster the algorithm evolves.

Fig. 4 Genetic algorithm evolution of feature selection process using the
XGB regressor. (a) Solid line: Max fitness (fitness = mean 4f-cv R2 of
best performing chromosome). Dashed line: mean population fitness.
Dotted-dashed line: Homogeneity (a value of 0 indicates that all possible
28 features are available in the population). (b) Evolution of feature
occurrence probability. At Generation 0, all features show an occurrence
probability close to 1/28 ≈ . 3.57%. During evolution strong features
become more probable, and weak features become less probable. (c)
Best performing 5 feature model after evolution, achieving a R2 of 0.92
(MAE=0.18 eV) on the test set. (d) Feature importances based on the
average gain of splits of the XGB model used in (c).

An in-depth analysis of the GA process using the XGB-based
process is summarized in Figure 4. In Figure 4 (a), the mean and
max 4f-cv R2 throughout the GA evolution are shown. At gen-
eration 0, the population consists of 200 unique random chro-
mosomes, which all show different fitness measured by the mean
4f-cv R2. At generation 0, the best performing chromosome (5-
feature model) shows a fitness close to 0.9 (solid line) and the
population shows a mean fitness of around 0.7 (dashed line). We
furthermore follow the homogeneity, which indicates whether all
features are still in the population. A value of 0 means that all
features are available in the population. The exact definition of
homogeneity is given in the supporting information.

During the GA evolution, the population performance in-
creases, consequently improving the mean population fitness
shown in Figure 4 (a). At the same time, the occurrence fre-
quency of features changes noticeably in Figure 4 (b). At genera-
tion 0, all features show an occurrence probability of around 1/p
= 1/28≈ 3.57%. Given the randomly created starting population
of the chromosome generation, we see a tight distribution around
the ideal value of 1/28. In the initial phase of the GA evolution,
weak feature combinations are depleted while stronger combi-
nations are enriched, thus broadening the Gaussian distribution.
In the later phase of the evolution (generations 25-50) the dis-
tribution becomes asymmetric with a broader tail towards larger
occurrence probabilities (6-16%). After 50 generations, a small
broad peak at around 15% appears. This peak represents the
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most relevant features.
After an evolution of 50 generations, the best XGB model

(chromosome) using 5 features (genes) achieves an R2 of 0.92
(MAE=0.18 eV) on the test set, see parity plot in Figure 4 (c).
The 5 features used by this model are shown in Figure 4 (d), to-
gether with their feature importance. The best neural network
model using 5 features achieves a R2 of 0.89 (MAE=0.20 eV)
on the test set. The parity plot shows that reduced order 5 fea-
ture models identified through the genetic algorithm retain their
predictive accuracy. These 5 feature models also in principle, re-
quire smaller training sets as compared to the 28 feature models.
The final population feature occurrence probability breakdown is
shown in Figure SI-8.

Based on the occurrence probabilities shown in Figure SI-8,
both the NN and XGB models suggest a chemical feature to be
most important in determining the site stability. For the NN, it is
the site valence electrons (Valsite) and for the XGB the site atomic
number (Zsite). In both cases, the chemical measure is immedi-
ately followed by structural features like the coordination number
of the site (CNsite). This trend in occurrence probabilities was also
found using linear models (compare Figure 3, Figure 4 and Figure
SI-8).

3 Nanoparticles
We have seen that the machine learning models predict atomic
site stabilities in sub-nanometer clusters with impressive accu-
racy. We now investigate if models trained on sub-nanometer par-
ticle data sets are transferable to larger nanoparticles. To address
this question, we created 30 bimetallic, cuboctahedral nanoparti-
cles of stoichiometry AxBy with x=28 and y=27 and A 6= B. We
used the same elements and compositions as for the smaller clus-
ters. For these nanoparticles, we systematically computed the site
stability of structurally distinct surface sites, including corners,
edges, and terraces. The resulting data set has 327 atomic sites
represented by the same set of 28 features discussed above.

To verify model transferability, we predicted site stabilities
on 55-atom nanoparticles with the XGB model trained on sub-
nanometer clusters. However, we only achieve a R2 of 0.44 and a
MAE of 0.47 eV using the complete 55-atom nanoparticle data
set. The other ML models yield similarly high MAEs, indicat-
ing that the structure-property dependencies are inherently dif-
ferent for clusters made up of sub-nm clusters vs. nano-particles.
These differences in feature importance with nanoparticle size
arise because the finite- and quantum-size effects are strongly
size-dependent. he large error suggests that the models must be
re-trained on the 55-atom nanoparticle data set. This error is
not surprising because the influence of quantum- and finite-size
effects on the 3-13 atom clusters is too pronounced to capture
the properties of the larger, 55-atom nanoparticles. Fortunately,
based on our training set convergence tests, we anticipate that
training a ML model on a few hundred data points for a respec-
tive material class should be sufficient to obtain a performance
for practical use. We refitted machine learning models on the 55-
atom nanoparticle data set. We split the data set into training/test
sets with a ratio of 261/66. The performance metrics may show
a larger variance since the data set is small. To quantify the vari-

ance, we computed the mean and standard deviation on the R2

in a 5-fold cross-validation on the training set. As the random
forest (RF) and the extreme gradient boost (XGB) algorithm have
proven fast and accurate for the sub-nanometer particles, we will
continue our study with these algorithms only and abstain from
performing an in-depth model comparison.

Training the random forest (with cross-validation based hyper-
parameter optimization) using all 28 features gives a R2 = 0.95
(MAE=0.14 eV) on the test set. Interestingly, the 5 most impor-
tant features are mainly related to the chemistry of the site and
the nanoparticle stoichiometry (Valsite/Val1/Zsite/Valmean/CNsite).
We verified this outcome using different random states for the
training set.

The XGB algorithm outperforms the RF with a R2 of 0.97
(MAE=0.11 eV) on the test set. The parity plot and the feature
importance are shown in Figure 5 (a-b).

Fig. 5 Model performance and feature importance of the extreme gra-
dient boost regressor (XGB), training and predicting on the nanoparticle
data. (a) Parity plot of hyper-optimized XGB using all features. MAE
given in eV. (b) Top 5 features of model from (a). (c) Parity plot of
hyper-optimized XGB using only 5 features (best model from genetic al-
gorithm evolution). (d) Feature importances based on the average gain
of splits of the XGB model used in (c).

In alignment with the RF model, the XGB model uses various
chemical parameters as the most important features. This find-
ing shows how an increase in nanoparticle size makes chemical
features more relevant at the expense of complex structural de-
tails. This transition in the relative importance of chemical ver-
sus structural features converges with the physics-based ansatz
the simple coordination-based alloy stability model derived for
larger nanoparticles and surfaces.42 However, we note that for
sub-nanometer particles too, chemical information (like atomic
number and valence electrons) has always ranked as top feature,
followed by structural features.

As the chemical features used by the best models have low cor-
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relation, see supporting information Figure SI-4 and SI-6, we an-
ticipate that reducing the feature space could give similarly pre-
cise results. We performed an evolutionary selection of 5-feature
models using the genetic algorithm introduced in the sections
Computational Details and 3-13 atom clusters. After 50 genera-
tions of evolution, the best performing model using only 5 fea-
tures achieves an R2 of 0.97 (MAE=0.11 eV) on the test set,
shown in Figure 5 (c-d). The best 5-feature model performs just
as well as the 28-feature model. Hence, by leveraging the ge-
netic algorithm, we can build accurate models for predicting site
stabilities with fewer features which are easier to train.

Furthermore, the best 5-feature model for the 55-atom
nanoparticles has a similar ranking of feature importance as that
of the 3-13 atom clusters, with the site atomic number being the
most important feature, followed by structural parameters. How-
ever, the relative importance of the structural features changes,
compare Figure 4 (d) and Figure 5 (d). In fact, the importance
of structural features decreases with increasing system size. The
decreasing importance of structural features can be rationalized
by the comparatively less structural variability of surface atoms
in 55-atom nanoparticles. Thus, the main distinction lies within
the chemical identity of the site of interest and its neighbors. We
will show in the section Determining Catalyst Stability from sub-
nm Nanoparticles to Extended Surfaces that nanoparticles larger
than 55 atoms are modelled with adequate accuracy through
the coordination-based alloy stability model (ASM). This physics-
based ansatz employs only two site specific features namely the
site composition and the site coordination number.

Overall, the accuracy of the machine learning model on 55
atom nanoparticles is encouraging despite the relatively small
data set. Our analysis with the 55-atom nanoparticles reveals
that the featurization scheme works for materials that are differ-
ent from the sub-nanometer particles. Our featurization scheme
can, in principle, be transferred to other material classes, such
as oxides, carbides, or two-dimensional materials. The software
is publicly available for the scientific community to perform such
studies (github.com/schlexer/CatLearn).

4 Surfaces
We now use the machine learning approach to predict site stabili-
ties on extended surfaces. Atoms embedded in extended surfaces
have less structural variability because of the periodic lattice. As
discussed in the introduction, the alloy stability model15,41,42

works well on extended surfaces. A key strength of the alloy sta-
bility model is that this model employs a small training set of
only 6 DFT calculations per metal. Moreover, being an analyti-
cal model, it is more intuitive than ML-based models. We have
nonetheless demonstrated in this study how GA-based feature se-
lection lends physical interpretability to ML models. The main
differences in the two approaches are that ML models require in-
creased data availability while not needing DFT-derived features,
whereas the CN-based models require limited, DFT-based training
sets and are less automated in terms of training and validation.

Here, we construct a ML model for determining site stabil-
ities on extended surfaces. We computed the site stability of
atoms at chemically distinct surface sites in (111), (211), and

(100) surfaces of Ag, Au, Cu, Pd, and Pt. As we considered only
monometallic systems, we removed features representing binary
interactions Zmean, Valmean, Zmax,neigh., etc. from the ML models.
The resulting data set consists of 70 site stabilities and 16 fea-
tures. This data set is split into a training/test ratio of 56/14. As
this data set is very small, we compared the performance of all
models (XGB, RF, NN, ORL) using all features. The tree-based
models were trained using hyper-parameter optimization via 10-
fold cross-validation on the training set.

The best performing model is the XGB with a
R2

XGB = 0.79±0.08 (MAE = 0.42 eV). We anticipate that
performance metrics will improve significantly with larger
training set sizes. Importantly, the alloy stability model has a
MAE of 0.09 eV on test sets of mono- and bimetallic surfaces.42

The physics-based functional form of the the alloy stability model
results in relatively smaller training sets than needed by machine
learning models. On the other hand, the data-heavy machine
learning models accurately represent the fluxionality of sub-nm
nanoparticles, but require larger data sets for high accuracy.
In the next section, we discuss how combining the machine
learning and alloy stability models accurately predicts atomic
site stabilities across different nanoparticle size regimes ranging
from sub-nm nanoparticles to larger nanoparticles and extended
surfaces. We also illustrate how the feature importance systemat-
ically varies with nanoparticle size, ultimately converging to the
physics-based model in the limit of large nanoparticles.

5 Determining Catalyst Stability from sub-
nm Nanoparticles to Extended Surfaces

This work shows how machine learning can predict atomic site
stabilities efficiently in sub-nm nanoparticles. The training sets
for the machine learning models contain on the order of 102 DFT
calculations. While such training set sizes are computationally
feasible for nanoparticles in the sub-nm size range, such exten-
sive training sets become intractable for larger nanoparticles (e.g.
147 or 309 atoms). We now discuss an approach to predict atomic
site stabilities across different nanoparticle size regimes ntegrat-
ing the machine learning framework shown here with the physics-
based alloy stability model.42 In the sub-nanometer regime of 3-
55 atoms, the ML models outperform the alloy stability model,
since their featurization explicitly considers the non-crystalline
structure. In Figure 6 we obtain residuals (absolute errors) of
0.10 to 0.15 eV on the test set consisting of 3-55 atom nanopar-
ticles. Although the residuals in Figure 6 are calculated using the
28-feature model, we show in Figure 4 that the five-feature model
obtained using the genetic algorithm yields similar accuracy.

We examine the accuracy of the physics-based alloy stability
model on larger nanoparticles (147 to 309 atoms). This model
is trained to (211), (111), and (100) crystal planes using two
features; namely the site identity and coordination number. We
obtain MAEs of 0.29 eV (147), 0.16 eV (Half-309), and 0.31
eV (309) using the alloy stability model fitted to extended sur-
faces;41 with the nanoparticle size in atoms in parenthesis. The
corresponding parity plots are shown in the Supporting Informa-
tion. These relatively high errors suggest that the alloy stability
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model originally fitted to extended surfaces is less accurate on
nanoparticles, possibly because of residual quantum- and finite-
size effects in nanoparticles between 147 and 309 atoms. To
increase the model accuracy, we can simply re-optimize the pa-
rameters of the alloy stability model by re-training the model to
specific nanoparticle sizes. A leave one out cross validation yields
lower MAEs of 0.22 eV (147), 0.13 eV (Half-309), and 0.15 eV
(309) for this re-optimized model. We note that on extended
surfaces in the test set, the original alloy stability model predicts
atomic site stabilities with a low MAE of 0.08 eV.41,42 The broad-
est possible pool of compositions represented in Figure 6 includes
monometallic and bimetallic structures of Ni, Cu, Pt, Ag, Pd, and
Au. Our previous studies have shown that the mean average er-
rors are independent of the composition for late transition metal
systems.41,42 Further details about the test sets on nanoparticles
and extended surfaces used with the alloy stability model are pre-
sented in the Supporting Information. Re-parametrizing either
the machine learning or the alloy stability model beyond the com-
position space stated above is a straightforward task. Through
the genetic algorithm, we identify reduced order 5 feature mod-
els which are, in principle, easier to train as compared to the 28
feature ones. We have also conceptualized an accelerated scheme
to parameterize the alloy stability model for monometallic struc-
tures44. This scheme can be extended to bimetallic alloys.

Fig. 6 Accuracy of real-time predictions using both the machine learning
and the alloy stability model (ASM) across different nanoparticle size
regimes. Distribution of residuals (absolute errors) in eV for structure-
optimized metal systems. The box plots show outliers (1.5*inter-quartile
range) as dots. The machine learning (ML) models use the full set of 28
features and achieve MAEs of 0.14 eV and 0.11 eV for 3-13 atom clusters
and 55 atom nanoparticles, respectively. For larger nanoparticles, we
obtain MAEs between 0.08-0.18 eV using the ASM. *Calculations with
309 particles are single-point because relaxations are computationally
intensive.

To accurately predict atomic site stabilities in different
nanoparticle size regimes, we can combine the machine learn-
ing model (3-55 atoms), re-optimized alloy stability model (147
- 309 atoms) and the alloy stability model (> 309 atoms). Figure
6 shows that this combined approach yields residuals well within
0.2 eV across these size regimes, which is within the error of high
throughput screening models. To the best of our knowledge, this
work presents among the few computational frameworks that can
predict atomic site stabilities for nanoparticles in different size
regimes. In the section Applications of Site Stabilities in Screening

Stable and Active Catalysts, we show how predictions of atomic
site stabilities facilitate designing active and stable nanocatalysts
with active site-specific precision. Before discussing how site sta-
bilities enable catalyst design, we first elucidate in Figure 7 how
the most important features of these three models systematically
evolve with nanoparticle size.

We distill the most important features using a genetic algo-
rithm, thus allowing physical interpretability of the machine
learning model. For 3-13 atom clusters (sub-nm in diameter),
a combination of features like the site identity (Zsite), the coor-
dination number (CNsite), and structural features have high im-
portance. The enhanced accuracy of the ML model is due to the
comprehensive feature space considered together with non-linear
feature interactions. Moving on to 55 atom nanoparticles (1.1 nm
in diameter), we find the relative importance of the site identity
(Zsite) increases while the importance of structural features de-
creases. This change is not unexpected because larger nanopar-
ticles have a lower tendency for structural reconstructions. For
nanoparticles in the 147 to 309 atom size regime (1.8 - 2.5 nm
in diameter), the site identity (Zsite) and the coordination num-
ber (CNsite) are sufficient to estimate the site stability. Resid-
ual quantum- and finite-size effects prevalent in these nanopar-
ticles are accounted for by re-parameterizing the model for a spe-
cific size. This analysis demonstrates the progressive changes in
feature importance with nanoparticle size ultimately converging
to the features used by the physics-based alloy stability model.
These results reveal the powerful physical insights that can be ex-
tracted by interpreting features of machine learning models in the
context of existing physical theories.

Fig. 7 Evolution of best-preforming models and features with particle
size. In the sub-nanometer to nanometer size regime, the best performing
models are ML models using information about the site identity, chemical
identity of nearest neighbors (Zsite, Zmin,neigh), the site coordination num-
ber CNsite, and structural features, such as dmean, dmin, γx and Ntot. With
increasing nanoparticle size, the relative importance of structural features
diminishes. The features ultimately converge to only the site identity and
site coordination number as shown by the alloy stability model (ASM).

6 Applications of Site Stabilities in Screen-
ing Stable and Active Catalysts

The Sabatier volcano has emerged as the workhorse for in-silico
catalyst design, especially for bimetallic systems. While volcano
plots permit accelerated screening of reactivity and selectivity,
similar accelerated approaches to determine catalyst stability re-
main elusive. Modeling capabilities that can determine catalyst
surface energies instantaneously will thus close the gap between
candidate catalysts identified through the Sabatier volcano and
their inherent synthesizability. In the section Determining Cata-
lyst Stability from sub-nm Nanoparticles to Extended Surfaces we
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augment machine learning with physical principles to determine
atomic site stabilities of bimetallic nanoparticles in different size
regimes. We now discuss a proof of principle showcasing how
our approach determines stability and reactivity metrics directly.
Computations of nanoparticle cohesive energies aid in determin-
ing the most stable bimetallic nanoparticle morphology contain-
ing a given number of atoms. This unified approach is equally ac-
curate for both sub-nanometer clusters and larger nanoparticles
alike. Segregation energies in bimetallic nanoparticles are simply
the differences in cohesive energies as atoms are shuffled. Our
machine learning and physics-based frameworks can determine
the tendency of a bimetallic nanoparticle to segregate in different
nanoparticle size regimes. Segregation effects, when evaluated
directly, explicitly consider the dynamic nature of bimetallic sys-
tems under reaction conditions. By calculating metal atom en-
ergies on-the-fly, our machine learning and physics-based models
increases the efficiency of workflows evaluating nanoparticle dy-
namics like sintering. Current sintering models considering both
particle migration and Ostwald ripening78 mechanisms are com-
putationally intensive. The principle hurdle is requiring a priori
knowledge of metal diffusion energetics. Because of their lack
of generality, such studies have primarily been performed on the
most common catalysts like monometallic Pt. Our framework
computes energies of metal atoms in a nanoparticle using a set
of features determined by the nanoparticle size. These energies,
in turn, reveal the thermodynamic barriers of elementary steps
in particle diffusion and Ostwald ripening processes. Since our
model determines such thermodynamic barriers instantaneously,
these barriers can be readily inputted into existing kinetic Monte
Carlo and mean field sintering models,78 enabling sintering eval-
uations across a broad space of structures and compositions.

Fig. 8 We first featurize adsorption sites of a given nanoparticle in step 1.
In step 2, we compute atomic site stabilities (e.g. Cu) using appropriate
models as determined by the nanoparticle size. The atomic site stabilities
are then inserted into site-specific scaling relations to calculate binding
energies of Cu-CO* complexes in step 3. From these binding energies,
we extract binding energies of CO*, which are catalytic descriptors. In
step 4, catalytic descriptors are inputted into volcano plots (e.g. CO2 hy-
drogenation) to evaluate reactivity metrics. Since all steps are evaluated
on-the-fly, we can construct heat maps depicting reactivity trends with
site-by-site resolution.

Computing atomic site stabilities directly has applications be-
yond simply evaluating stability metrics. Atomic site stabilities
are inherently linked to reactivity metrics as predicated by exper-
iments and illustrated by the alloy stability model. In Figure 8 we
present a workflow that connects atomic site stabilities with reac-
tion rates through the Sabatier volcano. Figure 8 contains a fam-
ily of site-specific scaling relations connecting binding energies
of metal-adsorbate complexes (Cu-CO*) with binding energies
of atomic sites (Cu*). These simple, yet powerful linear trends
unify different bulk morphologies, nanoparticles, extended sur-
faces, and chemical environments. To compute catalytic descrip-
tors of a generic bimetallic nanoparticle, we present an on-the-fly
scheme that first computes atomic site stabilities using machine
learning or physics-based models and then leverages simple linear
correlations to extract catalytic descriptors. In Figure 8, we illus-
trate a four step process that links active sites of generic bimetal-
lic nanoparticles to reactivity descriptors. We first featurize active
sites in terms of global and site-specific properties indicated in
Table 1. Next, based on the nanoparticle size, we select the ap-
propriate machine learning or physics-based model to compute
active site stabilities. In the third step, these site stabilities are
inserted into the family of linear correlations connecting bind-
ing energies of atomic sites (e.g. Cu*) to the binding energies of
metal-adsorbate complexes (e.g. Cu-CO*). We can then extract
binding energies of CO* as ∆E(Cu-CO) - ∆E(Cu). CO* binding
energies are popular catalytic descriptors for C1 conversion reac-
tions like thermal and electrochemical CO2 reduction.18,79 These
catalytic descriptors can be inputted into existing volcano plots
to estimate reactivity metrics. Our scheme directly connects basic
structural and chemical properties of generic nanoparticles to re-
activity trends using atomic site stabilities as a conduit. Taken to-
gether, this comprehensive approach can determine stability and
reactivity metrics directly in different nanoparticle size regimes.
This work represents an important step towards closing the ma-
terials gap between model catalysts and their dynamic structures
under reaction conditions.

7 Conclusions
In this study, we present a robust scheme to compute stability
and reactivity metrics on-the-fly for bimetallic catalysts ranging
from sub-nm nanoclusters to extended surfaces. We transform
atomic structure data into global and site-specific features that
can be fed into any common machine learning (ML) algorithm.
Training various ML models on DFT-based site stabilities, this ap-
proach predicts site stabilities of sub-nanometer and nanometer
bimetallic particles instantaneously and with high accuracy (MAE
0.11-0.14 eV).

We extract physical insights from ML models using a genetic
algorithm-based feature selection. Our feature analysis shows
how the importance of structural versus chemical features in-
creases as we transition from sub-nm nanoclusters, to nanoparti-
cles, to extended surfaces. Specifically, we establish that a chemi-
cal feature (site valence electrons (Valsite or the site atomic num-
ber (Zsite)), immediately followed by structural features (such
as the site coordination number (CNsite), distances and angles)
represents a powerful feature combination across all models and
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nanoparticle sizes. The physical insights interpreted from our fea-
ture selection scheme highlight that quantum- and finite-size ef-
fects in nanoparticles are likely governed by structural features,
since their importance diminishes with increasing nanoparticle
size.

Scientific insights obtained from the feature selection scheme
are wholly consistent with the physics-based alloy stability model
in the limit of large nanoparticles. By integrating both the ma-
chine learning and the alloy stability model, we estimate stability
metrics in different nanoparticle size regimes with mean aver-
age errors of 0.15 eV. We obtain such accuracies only because
our model synergistically combines numerous structural features
needed to describe fluxonial nanoclusters in the sub-nm regime
with a conceptually simpler physics-based model in the limit of
larger nanoparticles. We use a proof of principle to demonstrate
how our unified model computes stability and reactivity metrics
of bimetallic nanoparticles directly. Our scheme sets the stage for
a new generation of Sabatier volcanos that yield catalytic prop-
erties on-the-fly with active site specific precision while concur-
rently determining stability metrics for candidate catalysts.

Our machine learning workflows including the featuriza-
tion and feature analysis tools are directly transferable for
high-throughout screening of complex, amorphous, and sub-
nanometer materials that exhibit diverse structural variety.

8 Computational Details
First-principles calculations were performed using Quantum
ESPRESSO80 within the Atomic Simulation Environment
(ASE)81. We created and optimized atomic structures of mono-
and bimetallic sub-nanometer 3-13 atom clusters, cuboctahedral
nanoparticles of 55 atoms, and extended surfaces ((100), (111),
(211)) using ASE. Further details about structure generation are
in the Supporting Information. Total energies were computed us-
ing the BEEF-vdW functional82. Core states were represented
by ultrasoft Vanderbilt pseudopotentials83. We computed to-
tal energies using a k-point grid generated with the Monkhorst-
Pack method84. We introduced a dipole correction for extended
surfaces that eliminated spurious interactions between periodic
images.85 Additional electronic structure details like the energy
cutoffs and numerical convergence criteria are in the Support-
ing Information. The featurization scheme and the genetic al-
gorithm feature selection are explained in detail in the Support-
ing Information. The source code for the featurizer and the ge-
netic algorithm based feature selection is open-source available
at: github.com/schlexer/CatLearn. The alloy stability model was
originally parameterized using the RPBE functional86 by Roling
et al.41,42. One objective of this work is to bridge the phys-
ical interpretations obtained by the genetic algorithm for sub-
nm nanoparticles with the physics-based alloy stability model fit-
ted to extended surfaces. To facilitate this integration across di-
verse nanoparticle length scales, we performed additional calcu-
lations on cuboctahedral nanoparticles containing 13, 55, 147,
truncated-309, and 309 atoms, together with (100), (111), (211)
crystal planes. In the Supporting Information, we show that the
alloy stability model parametrized with either BEEF-vdW or RPBE
total energies reveals similar MAEs of under 0.05 eV.
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