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The Formulation of Chemical Potentials and Free Energy Changes 
in Biochemical Reactions  

William R. Cannon, a* and Lionel M. Raff b  

In 1994, an IUBMB-IUPAC joint committee recommended a revised formulation for standard chemical potentials and 

reaction free energies motivated by the fact that, in biochemistry, the reactants and products often exist in multiple charge 

states depending on the pH and pMg of the solution environment. The recommendation involved both the use of (1) a 

mathematical transform with the intent to hold the pH constant, and (2) the formulation of reference chemical potentials 

of ionized isomeric species based on the log sum of the individual standard chemical potentials of each isomeric species. 

Recently, several reports including a 2020 IUPAC report have appeared that challenged the need for such summary 

formulations, arguing that the standard chemical potentials were sufficient with full accounting of each of the different 

charge state isomers involved in a biochemical reaction. This work critically evaluates both the use of thermodynamic 

transforms and the different chemical potential formulations. It is shown that (1) transforms are not necessary to hold the 

pH constant and (2) demonstrates that the two chemical potential formulations are not equivalent. Which formulation is 

appropriate depends on what species are measured experimentally or whether an assumption of equilibrium among the 

charge state isomers is reasonable and desirable.

Introduction  

The laws of thermodynamics are arguably the most important 

physical laws needed to understand biology, from the 

operation of metabolism [1-4] to natural selection [5-7]. While 

thermodynamics provides the principles of how biological 

systems work as dissipative systems, detailed experimentation 

uncovers the mechanisms that implement these principles and 

constrain the solution space. Mechanisms constrain the 

solution space to only those processes that are physically 

feasible, not necessarily thermodynamically optimal. This 

constraint means that, while organisms seek to optimize 

entropy production rates, they can never attain a true 

optimum in the thermodynamic sense. Instead, they compete 

to find better mechanisms that increase their entropy 

production rate and fitness. Understanding mechanisms that 

are both widely used in nature and that limit growth are 

important areas of research. Yet, technical knowledge of a 

mechanism without understanding the thermodynamic 

principles as to why the process is needed does not lead to a 

predictive understanding.  

 

As such, determining the thermodynamics of biochemical 

reactions is essential for understanding how and why 

biological systems operate and why natural selection has 

chosen particular solutions. Not only does thermodynamics tell 

us which reactions are probable and which are not, but 

thermodynamics is also an inferential tool that provides a 

reliable way to estimate parameters needed for modeling 

systems when measurements are too time consuming, 

expensive or simply not technically possible [4, 8, 9]. 

Moreover, statistical thermodynamics is the foundation for 

information theory [10] and formulations of both human [11] 

and machine learning (aka, energy-based models). 

 

As a result of the growing recognition of the central 

importance of thermodynamics in biology, there has been 

considerable focus on appropriate methods to calculate free 

energies of reaction for biochemical systems [12-18]. This work 

has led to significant biological insight [19-22].  

 

Nevertheless, a fundamental, controversial issue and point of 

contention is how to calculate the standard free energy of 

reaction when (1) the system is constrained to a specified pH 

and (2) the reactions involve one or more reactants or 

products that exists in several ionic states. The first issue 

involves the spontaneous ionization of bulk water that results 

in low concentrations of hydronium and hydroxide ions, and in 

a pH greater than zero. In cells and in laboratory experiments 

the pH is regulated either by homeostasis or added buffer, 

respectfully, and as such is controlled such that the pH is 

effectively constant. When analyzing experimental data or 

simulating in vivo conditions, it is important for these 

conditions to be reflected in formulations of free energies and 

entropy. To hold the pH constant in these formulations, it has 
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been proposed, and accepted by IUPAC and IUBMB, that a 

mathematical transform is necessary [12, 23, 24].  

 

The second issue is that at a specified pH, chemical species 

such as metabolites spontaneously ionize to different charge 

states. For instance, ATP potentially forms at least six species, 

neutral ATP, ATP-1, ATP-2, ATP-3, ATP-2Mg+2, ATP-3Mg+2. These 

different ionic forms can be considered charge state isomers 

and have been referred to as pseudo-isomers by Alberty et al. 

[23].  When one considers a reaction involving multiple species 

such as this, the challenge is to then use the appropriate 

thermodynamic formulation for the change in free energy [12, 

23, 25]. 

 

For example, a chemical equation for the elementary reaction 

catalyzed by pyruvate decarboxylase is, 

 
 CH3COCO

2
- +H+⇋CH3CHO+CO2. 1 

 

The equilibrium constant for the reaction is given by the ratio 

of ratios of the equilibrium concentrations, [⋯ ]𝑒𝑞, to a 

reference concentration, [⋯ ]°, of the products to the 

reactants,  

 

 K =  

[CH3CHO]𝑒𝑞

[CH3CHO]° ∙
[CO2]𝑒𝑞

[CO2]°

[CH3COCO2
- ]𝑒𝑞

[CH3COCO2
- ]° ∙

∙ [H+]𝑒𝑞

[H+]°

. 2 

 

In this description, each reference concentration, [⋯ ]° is 

typically the standard reference concentration of 1 M. 

Exceptions occur frequently, however. Solvent reference 

concentrations are typically the concentration of the bulk 

solvent, such as 55.5 M for water. Reference concentrations 

for protons may be 10-7 M (pH = 7.0) or whatever pH at which 

the system of interest is typically studied. Because a chemical 

equation such as Eqn. 1 is written with respect to specific ionic 

states, the determination of the equilibrium constant, such as 

Eqn 2, is straight-forward. 

 

The analogous biochemical equation is typically written as, 

 

pyruvate ⇌  acetaldehyde +CO2. 
 

3 

At any specified pH, two ionic forms of pyruvate coexist, 

CH3COCO2
-  and CH3COCO2H. By analogy to the equilibrium 

constant for elementary reactions, an equilibrium constant for 

the composite reaction of Eqn 3 can be written as, 

 

 𝐾 =  

[acetaldehyde]𝑒𝑞

[acetaldehyde]° ∙
[CO2]𝑒𝑞

[CO2]°

[pyruvate]𝑒𝑞

[pyruvate]°

, 4 

 

where [pyruvate] = [CH3COCO2
- ]+[CH3COCO2H]. In the 

language introduced by Alberty, et al., [12, 24, 25] these 

different ionic species of pyruvate are known as pseudo-

isomers. In the case of carbon dioxide, we will assume for the 

sake of demonstration that the only species is CO2 and not any 

of the ionic states of carbonates or carbonic acid. 

 

Questions have arisen as to whether an ionic state-specific 

chemical formulation, e.g., Eqns 1 and 2, should be used to 

determine the thermodynamics of reactions in metabolism or 

whether the composite approach, e.g. Eqns. 3 and 4, 

advocated in a joint IUBMB-IUPAC recommendation in 1994 

[12, 23, 24] should be used, and whether the two approaches 

give numerically the same result, as claimed in a 2020 IUPAC 

report [26] and elsewhere [16, 17]. Potentially adding 

confusion to both issues, when thermodynamic properties for 

use in biological systems were discussed in the studies [12, 23, 

24], the issues were often addressed all together: the use (1) 

composite species (that is, pyruvate vs. 

CH3COCO2H 𝑜𝑟 CH3COCO2
−), (2) the use of constant pH (and 

ionic strength) and (3) the use of mathematical transforms. As 

such, one might not realize that they are independent issues. 

 

This report critically evaluates both the use of transforms 

which have been proposed to be necessary to hold the system 

at a specific pH and the two different formulations for 

calculating biochemical reaction free energies, specifically the 

method endorsed in 1994  [12, 25, 27], referred to as the 

Alberty method since it was Alberty who first developed it, and 

the method proposed by Iotti, Sabatini, et. al. [16, 17], 

referred to as the Balanced Biochemical Reaction or BBR 

method. Regarding the first issue of constant pH and 

transforms, it is shown that a Legendre transform is not 

necessary, nor does it make holding the pH constant more 

convenient. Instead, this is achieved by the use of a 

thermodynamic bath that is external to the reacting system of 

interest.  

 

Regarding the second issue of formulation of chemical 

potentials for ionic species, it is shown from the perspective of 

statistical thermodynamics that the Alberty and BBR methods 

do not have the same intent and give different results. In most 

cases the differences are small (less than 2.0 kJ/mol) and are 

due to whether equilibrium is assumed among the pseudo-

isomers, or not. While both methods are correct, which 

method is appropriate to use depends on the nature of the 

experimental or in vivo conditions that are being observed. 

Theory 

Transforms of Free energy and constant pH Systems.  

 
In the discussion that follows, only transforms involving pH are 

considered, but transforms involving pMg or any other species are 

treated analogously. To address the issue of formulating free 

energies at constant pH, it has become common practice to employ 

a procedure developed by Alberty [28].  In this procedure, a 

transformation of the Gibbs free 𝐺 energy to a new function, 𝐹𝐴, is 

defined.  This transformation involves the chemical potentials and 
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amounts of both the free and bound protons. The number of free 

and bound protons for a species 𝑗 is (using Alberty’s notation) 

𝑁𝐻(𝑗). If the number of each species 𝑗 is 𝑛𝑗  and the chemical 

potential of a proton is 𝜇𝐻+, then the Alberty transform is, 

𝐹𝐴 = 𝐺(𝑇, 𝑃, 𝑛1, … , 𝑛𝑁𝑆
) − ∑ 𝑁𝐻(𝑗)𝑛𝑗𝜇𝐻+

𝑁𝑆

𝑗=1

 . 5 

 

First, a transform similar to Alberty’s is described but in which only 

the protons free in solution are employed in the transform. It is 

shown that this transform is a Legendre transform of the Gibbs 

energy of an open system. Next, the proposed IUPAC-IUBMB 

transform (aka, Alberty’s transform) is investigated using the 

additional requirement that the transform include both free and 

bound protons. It is clear that the contribution of the bound 

protons does not cancel out due to either taking the derivative in a 

Legendre transform nor necessarily in the integration of the 

differential free energy. In fact, as written, the Alberty transform 

gives incorrect results. However, regardless of whether one uses a 

true Legendre transform, a Legendre transform does not hold the 

concentration of protons free in solution constant. Instead, it is 

necessary to couple the system to an external bath of protons and 

then consider the total free energy of the system plus the bath.   

 

A Legendre Transform of G for Biochemical Systems.  First, it is 

essential to carefully define all symbols to avoid ambiguity. 𝑁𝑆 is the 

total number of species in a system. In this definition, for example, 

PO4
3-, HPO4

2-, H2PO4
- , and H3PO4 are all separate species. As such, 

the total number of particles in the system is 𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑛𝑗
𝑁𝑆

𝑗  where 

𝑛𝑗  is the count/abundance of species 𝑗. It is worth noting at this 

point that water and any other solvent is included as a species.  

 

The total Gibbs free energy is given by, 

𝐺(𝑇, 𝑃, 𝑛1, … , 𝑛𝑁𝑆
) = ∑ 𝜇𝑗𝑛𝑗 .

𝑁𝑆

𝑗=1

 6 

Since the system is assumed to contain free protons in solution, 

free protons are included as a species in 𝑁𝑆 in Eqn 6. 

 

An infinitesimal change in the Gibbs free energy at constant value 

of the independent variables T, P is, 

  

𝑑𝐺(𝑇,  𝑃, 𝑛1, … , 𝑛𝑁𝑆
) = ∑ 𝜇𝑗𝑑𝑛𝑗

𝑁𝑆

𝑗=1

.   7 

 

Let,  

𝐹 = 𝐺 − ∑ 𝑁𝐻(𝑗)𝑛𝑗μ𝐻+

𝑁𝑆

𝑗=1

.  8 

 

As defined, 𝐹 is similar to Alberty’s function. However, in this 

equation 𝑁𝐻(𝑗) is the number/count of protons that have 

dissociated from the neutral species to form the ionic species 𝑗. 

That is, 𝑁𝐻(𝑗) is the number of protons released to solution to form 

ionic species 𝑗. To give a concrete example, consider the 

dissociation of HnA into the ionic species  Hn-2A2-, 

 

HnA ⇌ 2H++ Hn-2A2-. 9 

 

In this case, species 𝑗 is   Hn-2A2- and 𝑁𝐻(𝑗) = 2. Note that as a 

consequence of the conservation of mass, the sum over all species j 

similar to Hn-2A2- including water or other solvents, 

∑ 𝑁𝐻(𝑗)𝑛𝑗μ𝐻+
𝑁𝑆−1
𝑗=1 , is the total number of protons free in solution 

(The sum only goes to 𝑁𝑆 − 1 because the species H+ has no 

titratable protons). In other words, in a closed system the 

conservation of mass dictates that the number of free protons in 

solution is equal to the number of ionization events due to release 

of the proton from the neutral species, 

∑ 𝑁𝐻(𝑗)𝑛𝑗

𝑁𝑆−1

𝑗≠𝐻+

= 𝑛𝐻
+ . 10 

 

However, we will not initially impose this constraint because we 

want to use conjugate variables of concentrations such that the 

conjugate variables are the pairs, 

𝑛𝑗 ,
𝜕𝐺

𝜕𝑛𝑗
, 

and since the derivative is a partial derivative, it is required that 

each chemical species j is independent of other species. In contrast, 

the constraint of Eqn 10 enforces a dependency. 

 

We now address the transform,  

�̃� = 𝐺 − 𝜇𝐻+𝑛𝐻+ . 

As shown below, this leads to the Legendre transform that replaces 

𝜇𝐻+𝑑𝑛𝐻+with 𝑛𝐻+𝑑𝜇𝐻+  while all other 𝑁𝑆 − 1 chemical potentials 

𝜇𝑖  are constant is, 

                        𝑑�̃� = 𝑑(𝐺 − 𝜇𝐻+𝑛𝐻+)   

                                 = ∑ 𝜇𝑗

𝑁𝑆

𝑗=1

𝑑𝑛𝑗 − 𝜇𝐻+𝑑𝑛𝐻+ − 𝑛𝐻+𝑑𝜇𝐻+   

                             = ∑ 𝜇𝑗

𝑁𝑆−1

𝑗≠𝐻+

𝑑𝑛𝑗 + 𝜇𝐻+𝑑𝑛𝐻+ − 𝜇𝐻+𝑑𝑛𝐻+

− 𝑛𝐻+𝑑𝜇𝐻+ . 

 

                                 = ∑ 𝜇𝑗

𝑁𝑆−1

𝑗≠𝐻+

𝑑𝑛𝑗 − 𝑛𝐻+𝑑𝜇𝐻+ . 11 

 

In Eqn 11, 𝑛𝐻+ is not independent of 𝜇𝐻+  but rather is a function of 

𝜇𝐻+ , such that 𝑛𝐻+(𝜇𝐻+) = exp(−(𝜇𝐻+ − 𝜇𝐻+
∘ )/𝑅𝑇). Thus, explicit 

dependence of 𝑑�̃� on 𝑛𝐻+can be removed completely, 

d�̃� = ∑ 𝜇𝑗

𝑁𝑆−1

𝑗≠𝐻+

d𝑛𝑗 − 𝑒−(𝜇𝐻+−𝜇
𝐻+
∘ )/𝑅𝑇𝑑𝜇𝐻+ . 12 

 

Eqns 11 and 12 are appropriate for a system in which changes in the 

pH are addressed by changes in the chemical potential 𝜇𝐻+. The 

changes in 𝑑�̃� that lead to a change in reaction free energy Δr�̃� are 

changes 𝑑ξ due to a reaction coordinate ξ,  

d�̃� = ∑ 𝜇𝑗

∂𝑛𝑗

∂ξ
dξ

𝑁𝑆−1

𝑗≠𝐻+

− 𝑛𝐻+(𝜇𝐻+)
∂𝜇𝐻+

∂ξ
dξ 13 

   = ∑ 𝜇𝑗

𝑁𝑆−1

𝑗≠𝐻+

γ𝑗dξ − 𝑛𝐻+(𝜇𝐻+)
∂𝜇𝐻+

∂ξ
dξ, 14 
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where 𝜕𝑛𝑗/𝜕ξ = γ𝑗 is the signed stoichiometric coefficient for the 

reaction. As such, the Legendre transform is useful in cases when 

(1) the chemical potential changes during a reaction and is easier to 

measure than the pH, (2) the pH needs to be allowed to fluctuate as 

in an open system, or (3) when it is more mathematically 

convenient to work with the chemical potential than concentration. 

Holding the chemical potential for free protons 𝜇𝐻+  constant, 

regardless of whether the reference state for protons is the 

standard state or any other state, gives  

𝑑�̃� = ∑ 𝜇𝑗𝑑𝑛𝑗

𝑁𝑆−1

𝑗≠𝐻+
 

and  

Δ𝑟�̃� = ∑ 𝜇𝑗Δ𝑛𝑗

𝑁𝑆−1

𝑗≠𝐻+

. 

However, working with concentrations that are functions of 

chemical potentials, such as 𝑛𝐻+(𝜇H+)d𝜇𝐻+, rather than chemical 

potentials that are functions of concentrations, such as 

𝜇𝐻+(𝑛𝐻+)𝑑𝑛𝐻+, does not make it easier to hold the system 

constant at a constant reference pH. 

 

Now, consider the differential of 𝐹 of Eqn 8, 

 

             𝐹 = 𝐺(𝑇, 𝑃, 𝑛1, … , 𝑛𝑁𝑆
) − ∑ 𝑁𝐻(𝑗)𝑛𝑗𝜇𝐻+

𝑁𝑆

𝑗=1  

𝑑𝐹 = 𝑑𝐺(𝑇, 𝑃, 𝑛1, … , 𝑛𝑁𝑆
) − 𝑑 (∑ 𝑁𝐻(𝑗)𝑛𝑗𝜇𝐻+

𝑁𝑆

𝑗=1

)  

= ∑ 𝜇𝑗𝑑𝑛𝑗

𝑁𝑆

𝑗=1

 − 𝑑 (∑ 𝑁𝐻(𝑗)𝑛𝑗𝜇𝐻+

𝑁𝑆

𝑗=1

).            15 

Expanding the first sum and taking into account that 

𝑁𝐻+(𝐻+) = 0, 
 

𝑑𝐹 = ∑ 𝜇𝑗𝑑𝑛𝑗

𝑁𝑆−1

𝑗=1

+ 𝜇𝐻+𝑑𝑛𝐻+   − 𝑑 ( ∑ 𝑁𝐻(𝑗)𝑛𝑗

𝑁𝑆−1

𝑗=1

𝜇𝐻+). 16 

Expansion of the differential of the term in parenthesis gives,  

𝑑𝐹 = ∑ 𝜇𝑗𝑑𝑛𝑗

𝑁𝑆−1

𝑗=1

+ 𝜇𝐻+𝑑𝑛𝐻+   − ∑ 𝑁𝐻(𝑗)

𝑁𝑆−1

𝑗=1

𝜇𝐻+𝑑𝑛𝑗

− ∑ 𝑁𝐻(𝑗)𝑛𝑗

𝑁𝑆−1

𝑗=1

𝑑𝜇𝐻+ .  

17 

 

The middle two terms cancel by Eqn 4 such that, 

𝑑𝐹 = ∑ 𝜇𝑗𝑑𝑛𝑗

𝑁𝑆−1

𝑗=1

− ∑ 𝑁𝐻(𝑗)𝑛𝑗

𝑁𝑆−1

𝑗=1

𝑑𝜇𝐻+  = 𝑑�̃�  18 

                    = ∑ 𝜇𝑗𝑑𝑛𝑗

𝑁𝑆−1

𝑗=1

− 𝑛𝐻+𝑑𝜇𝐻+    = 𝑑�̃�. 19 

Equation 19 is identical to Eqn 11. Therefore, 𝑑𝐹 represents a 

Legendre transform of 𝑑𝐺. 

 

The 1994 IUPAC-IUBMB transform (Alberty’s transform). In the 

1994 IUPAC-IUBMB transform, the transformation of G to F to is 

defined to include both free and bound protons, whereas the 

discussion above only uses those protons that are now free because 

of the ionization of a neutral species into an ionized species j. This 

choice was justified by the use of equilibrium and conservation of 

mass arguments (see section 3.3 in reference [25]) to select 

conjugate variables rather than the usual definition of conjugate 

variables of a function 𝐹: a variable x and the partial derivative of 

the function with respect to the variable, 𝑤 = 𝜕𝐹 𝜕𝑥⁄ . 

 

To specifically demonstrate Alberty’s transform as indicated in 

Eqns. 4.1-1 and 4.1-2 in section 4.1 of reference  [25] and the 

discussion around Eqn 3.3-2 in section 3.3, we define a parameter 

𝑁�̃�(𝑗) to be the number of bound H atoms in species j.  Using Eqn 

10, the number of free and bound protons are then, 

∑ 𝑁𝐻(𝑗)𝑛𝑗

𝑁𝑆

𝑗=1

+ ∑ 𝑁�̃�(𝑗)𝑛𝑗 .

𝑁𝑆

𝑗=1

 

 

The transform then uses both free and bound protons, 

   

𝐹𝐴 = 𝐺(𝑇, 𝑃, 𝑛1, … , 𝑛𝑁𝑆
)

− (∑ 𝑁𝐻(𝑗)𝑛𝑗μ𝐻+

𝑁𝑆

𝑗=1

 

+ ∑ 𝑁�̃�(𝑗)𝑛𝑗𝜇𝐻+

𝑁𝑆

𝑗=1

) 

20 

   = ∑ μ𝑗𝑛𝑗

𝑁𝑠

𝑗=1

− (∑ 𝑁𝐻(𝑗)𝑛𝑗μ𝐻+

𝑁𝑆

𝑗=1

+ ∑ 𝑁�̃�(𝑗)𝑛𝑗𝜇𝐻+

𝑁𝑆

𝑗=1

) 21 

         = ∑ μ𝑗𝑛𝑗

𝑁𝑠

𝑗=1

− ( ∑ 𝑁𝐻(𝑗)𝑛𝑗μ𝐻+

𝑁𝑆−1

𝑗=1

+ ∑ 𝑁�̃�(𝑗)𝑛𝑗𝜇𝐻+

𝑁𝑆−1

𝑗=1

), 22 

 

where the last equality follows since 𝑁𝐻(𝐻+) = 0 and 𝑁�̃�(𝐻+) =

0. An incremental change in FA is given by, 

𝑑𝐹𝐴 = ∑ 𝜇𝑗𝑑𝑛𝑗

𝑁𝑠

𝑗=1

− 𝑑 ( ∑ 𝑁𝐻(𝑗)𝑛𝑗𝜇𝐻+

𝑁𝑆−1

𝑗=1

+ ∑ 𝑁�̃�(𝑗)𝑛𝑗𝜇𝐻+

𝑁𝑆−1

𝑗=1

) 23 

= ∑ 𝜇𝑗𝑑𝑛𝑗

𝑁𝑠

𝑗=1

− ∑ 𝑁𝐻(𝑗)𝑑𝑛𝑗𝜇𝐻+

𝑁𝑆−1

𝑗=1

− ∑ 𝑁�̃�(𝑗)𝑑𝑛𝑗𝜇𝐻+

𝑁𝑆−1

𝑗=1

− ∑ 𝑁𝐻(𝑗)𝑛𝑗𝑑𝜇𝐻+

𝑁𝑆−1

𝑗=1

− ∑ 𝑁�̃�(𝑗)𝑛𝑗𝑑𝜇𝐻+.

𝑁𝑆−1

𝑗=1

         

Expanding the first term such that the contribution due to 

protons is explicit in the sum, 

   𝑑𝐹𝐴 = ∑ 𝜇𝑗𝑑𝑛𝑗 + μ𝐻+𝑑𝑛𝐻+

𝑁𝑠−1

𝑗=1

− ∑ 𝑁𝐻(𝑗)𝑑𝑛𝑗𝜇𝐻+

𝑁𝑆−1

𝑗=1

− ∑ 𝑁�̃�(𝑗)𝑑𝑛𝑗𝜇𝐻+

𝑁𝑆−1

𝑗=1

− ∑ 𝑁𝐻(𝑗)𝑛𝑗𝑑𝜇𝐻+

𝑁𝑆−1

𝑗=1

− ∑ 𝑁�̃�(𝑗)𝑛𝑗𝑑𝜇𝐻+

𝑁𝑆−1

𝑗=1

. 

 

24 

The second and third terms in Eqn 24 cancel due the identity in 

Eqn. 10.  This produces, 
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           𝑑𝐹𝐴 = ∑ 𝜇𝑗𝑑𝑛𝑗

𝑁𝑠−1

𝑗=1

− ∑ 𝑁�̃�(𝑗)𝑑𝑛𝑗𝜇𝐻+

𝑁𝑆−1

𝑗=1

− ∑ 𝑁𝐻(𝑗)𝑛𝑗𝑑𝜇𝐻+

𝑁𝑆−1

𝑗=1

− ∑ 𝑁�̃�(𝑗)𝑛𝑗𝑑𝜇𝐻+.

𝑁𝑆−1

𝑗=1

. 

25 

Collecting terms associated with 𝑁𝐻(𝑗) and 𝑁�̃�(𝑗) and finally using 

the identity of Eqn 19 gives, 

 

𝑑𝐹𝐴 = ( ∑ 𝜇𝑗𝑑𝑛𝑗

𝑁𝑠−1

𝑗=1

− ∑ 𝑁𝐻(𝑗)𝑛𝑗𝑑𝜇𝐻+

𝑁𝑆−1

𝑗=1

)

− ∑ 𝑁�̃�(𝑗)𝑑𝑛𝑗𝜇𝐻+

𝑁𝑆−1

𝑗=1

− ∑ 𝑁�̃�(𝑗)𝑛𝑗𝑑𝜇𝐻+

𝑁𝑆−1

𝑗=1

 

 

       = ( ∑ 𝜇𝑗𝑑𝑛𝑗

𝑁𝑠−1

𝑗=1

− 𝑛𝐻+𝑑𝜇𝐻+) − ∑ 𝑁�̃�(𝑗)𝑑𝑛𝑗𝜇𝐻+

𝑁𝑆−1

𝑗=1

− ∑ 𝑁�̃�(𝑗)𝑛𝑗𝑑𝜇𝐻+

𝑁𝑆−1

𝑗=1

 

 

       = 𝑑�̃� − ∑ 𝑁�̃�(𝑗)𝑑𝑛𝑗𝜇𝐻+

𝑁𝑆−1

𝑗=1

− ∑ 𝑁�̃�(𝑗)𝑛𝑗𝑑𝜇𝐻+

𝑁𝑆−1

𝑗=1

.  26 

 

At constant chemical potential for the protons, d𝐹𝐴 = dG̃ −

𝜇𝐻+ ∑ 𝑁H̃(𝑗)𝑑𝑛𝑗 , in contrast to Eqn 18. By including the non-ionized 

sites 𝑁H̃(𝑗) in the transform, the 1994 IUPAC-IUBMB transform fails 

to represent a Legendre transform of the Gibbs free energy.  

 

Total Free Energy Change: Coupling to external bath of protons. 

Although Eqn 19 represents a Legendre transform of the Gibbs free 

energy, a Legendre transform alone is insufficient to address the 

situation in which the pH ∝ log[𝑛𝐻+] is constant. This is because 

holding the proton chemical potential constant instead of 𝑛𝐻+  

allows 𝑛𝐻+  to fluctuate around an average value �̅�𝐻+. 

Consequently, the pH also fluctuates around an average value. In 

order to keep the pH strictly constant, the number of protons 

consumed or produced in a reaction must be balanced by adding or 

removing protons from an external bath of protons. That is, the 

system must be open with respect to the bath. This point has 

previously been discussed by Raff and Cannon [29]. In the 

laboratory, pH buffers play the role of the bath. To differentiate 

protons that are added to the system from the bath from those that 

are in the system, the number/concentration of protons from the 

bath that are added/removed from the system are indicated by 

𝑛𝐻+,𝑏𝑎𝑡ℎ. In addition, we will refer to the differential Gibbs energy 

from Eqn 19 as the system differential Gibbs energy, 𝑑�̃�𝑠𝑦𝑠. The 

chemical potential of the protons in the bath and in the system are 

both given by 𝜇𝐻+. Since the bath just consists of protons, the free 

energy of the bath is 𝐺𝑏𝑎𝑡ℎ = 𝑛𝐻+,𝑏𝑎𝑡ℎμ𝐻+. For an open system, the 

total free energy change is that due to changes in the system plus 

the contribution associated with addition/removal of protons from 

the bath.  That is,  

 

𝑑𝐺𝑇𝑜𝑡𝑎𝑙 = 𝑑�̃�𝑠𝑦𝑠 + 𝑑𝐺𝑏𝑎𝑡ℎ 27 

         = ∑ 𝜇𝑗𝑑𝑛𝑗

𝑁𝑆−1

𝑗≠𝐻+

− 𝑛𝐻+,𝑠𝑦𝑠𝑑𝜇𝐻+ + 𝜇𝐻+𝑑𝑛𝐻+,𝑏𝑎𝑡ℎ . 28 

 

In order to keep the pH of the system constant, the number of 

protons consumed in a reaction (𝑁𝐻(𝑗)𝑑𝑛𝑗 < 0) must be replaced 

by an equal number of protons from the bath such that the change in 

the number of protons in the bath is the same as the number of 

protons consumed in the reaction. Therefore, we must have 

𝑑𝑛𝐻+,𝑏𝑎𝑡ℎ = ∑ 𝑁𝐻(𝑗)𝑑𝑛𝑗
𝑁𝑆−1
𝑗≠𝐻+ . Likewise, the number of protons 

removed from system and added to the bath is equal to the number 

of free protons released from species 𝑗 as it changes from its neutral 

form to it's ionic form. Consequently, 

    

𝑑𝐺𝑇𝑜𝑡𝑎𝑙 =  ∑ 𝜇𝑗𝑑𝑛𝑗 − 𝑛𝐻+,𝑠𝑦𝑠𝑑𝜇𝐻+

𝑁𝑆−1

𝑗≠𝐻+

+ 𝜇𝐻+ ∑ 𝑁𝐻(𝑗)𝑑𝑛𝑗

𝑁𝑆−1

𝑗≠𝐻+

.  

29 

 

Rearranging terms we obtain, 

𝑑𝐺𝑇𝑜𝑡𝑎𝑙 =  ∑ 𝜇𝑗𝑑𝑛𝑗

𝑁𝑆−1

𝑗≠𝐻+

+ 𝜇𝐻+ ⋅ ∑ 𝑁𝐻(𝑗)𝑑𝑛𝑗

𝑁𝑆−1

𝑗≠𝐻+

− 𝑛𝐻+,𝑠𝑦𝑠𝑑𝜇𝐻+ 

 

                          =  ∑ (𝜇𝑗 + 𝜇𝐻+𝑁𝐻(𝑗))𝑑𝑛𝑗

𝑁𝑆−1

𝑗≠𝐻+

− 𝑛𝐻+,𝑠𝑦𝑠𝑑𝜇𝐻+ .  30 

 

When the proton chemical potential doesn’t change, the total free 

energy is given by  

 

𝑑𝐺𝑇𝑜𝑡𝑎𝑙 =  ∑ (𝜇𝑗 + 𝜇𝐻+𝑁𝐻+(𝑗))𝑑𝑛𝑗

𝑁𝑆−1

𝑗≠𝐻+

,  31 

 

and  

Δ𝐺𝑇𝑜𝑡𝑎𝑙 =  ∑ (𝜇𝑗 + 𝜇𝐻+𝑁𝐻+(𝑗))Δ𝑛𝑗

𝑁𝑆−1

𝑗≠𝐻+

 . 32 

 

Consequently, the Eqn 32 represents the total free energy change 

of the system plus bath. The equation is a composite of a Legendre 

transform of the system Gibbs energy plus an additional term, due 

to removal/addition of protons to the bath, required to keep the pH 

constant. 

 

In contrast, adding the free energy of the bath to the 1994 IUPAC-

IUBMB transform gives, 

𝑑𝐹𝐴,𝑡𝑜𝑡 = 𝑑�̃� + μ𝐻+𝑑𝑛𝐻+,𝑏𝑎𝑡ℎ − ∑ 𝑁�̃�(𝑗)𝑑𝑛𝑗𝜇𝐻+

𝑁𝑆−1

𝑗=1

− ∑ 𝑁�̃�(𝑗)𝑛𝑗𝑑𝜇𝐻+ .

𝑁𝑆−1

𝑗=1

 

 

33 

The free energy change obtained by integrating over 𝑑𝐹𝐴,𝑇𝑜𝑡  at 

constant 𝜇𝐻+ gives, 
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Δ𝐹𝐴,𝑇𝑜𝑡 = Δ𝐺𝑇𝑜𝑡 − 𝜇𝐻+ ⋅ ∫ ∑ 𝑁�̃�(𝑗)𝑑𝑛𝑗

𝑁𝑆−1

𝑗=1

, 34 

 

which only gives Δ𝐹𝐴,𝑇𝑜𝑡 = Δ𝐺𝑇𝑜𝑡𝑎𝑙 when the number of non-

titratable hydrogens is conserved between reactants and products. 

For some reactions this is not the case. For example, the pyruvate 

decarboxylase reaction, pyruvate → acetaldehyde +  CO2, has 

three non-titratable hydrogens for the reactant pyruvate but has 

four non-titratable hydrogens for the product acetaldehyde.  

 

Discussion for Transforms and Constant pH Systems. The 1994 

IUPAC-IUBMB transform used equilibrium and mass conservation 

constraints to substitute for the change in proton and magnesium 

ion concentrations in the Gibbs energy equation,  

 

𝑑𝐺 = ∑ μ𝑗𝑑𝑛𝑗 + μ𝐻+𝑑𝑛𝐻+ + μ𝑀𝑔2+𝑑𝑛𝑀𝑔2

𝑁−2

𝑗

. 

 

While it is perfectly legitimate to reduce the number degrees of 

freedom using constraints in such a way, one must keep in mind 

that the constraints are only valid under the specified conditions. It 

is not always obvious when those conditions are violated. These 

constraints were developed by considering equality relations for 

processes at equilibrium [25] and not through the typical procedure 

for a Legendre transform in which the independent variable 𝑥 of 

the function 𝐹(𝑥) is replaced with a co-varying variable 𝑤 of 𝑥 using 

the relationship that 𝐹 varies with 𝑥 as 𝑤 ≡ 𝜕𝐹 𝜕𝑥⁄ . This 

relationship is valid under static or dynamic, equilibrium or non-

equilibrium conditions, as long as the chemical potential can be 

defined. Even when equilibrium conditions hold, the 1994 IUPAC-

IUBMB transform will fail to yield the correct values for Δ𝐺𝑇𝑜𝑡𝑎𝑙 if 

the number of non-titratable hydrogens is not conserved between 

reactants and products. 

 

Rather than reducing the number of degrees of freedom, the point 

of a Legendre transform of a function 𝐹(𝑥) is to replace one 

independent variable of the function with a co-varying variable of 

the function. The transform is convenient when one is concerned 

with the change in  𝐹(𝑥) as a function of 𝑤 rather than 𝑥. This is the 

case when 𝑤 is the measured or modeled variable and not 𝑥. A 

succinct and clear review of the use of Legendre transforms in the 

physical sciences has been published by Zia, Redish and McCay [30].  

 

The astute reader will have realized that the Legendre transform is 

not at all necessary to derive the correct total free energy change of 

the system plus bath. One can see that this is the case by simply 

adding the respective system and bath reactions to get an overall 

reaction, 

HnA ⇌ 2H+(system) + Hn-2A2-  
2H+(system) ⇌ 2H+(bath)                           .                 

HnA ⇌ 2H+(bath) + Hn-2A2- 35 

  

The free energy of the overall reaction is simply given by Eqn 6 in 

which 𝑁𝑆 includes species in both the system and the bath. 

 

Chemical Potentials in the Case of Multiple Charge States  

 

The standard molar chemical potential for a species in aqueous 

solution is the free energy required to form one mole of the species 

from its elements in vacuo, followed by solvation of the species in 

solvent, which in the biological case is water,  

 

𝜇𝑖
∘ = 𝛥𝑓𝐺𝑖 

∘ + 𝛥𝑠𝑜𝑙𝑣𝐺𝑖
∘(𝑤𝑎𝑡𝑒𝑟). 36 

  

Analogously, the chemical potential of a pseudo-isomer is the value 

from Eqn 36 plus the free energy of the acid dissociation/base 

addition step that produces the pseudo-isomer of interest,  

 

 AHn = AHn−m + Hm. 37 

 

The standard free energy of the acid dissociation process from the 

neutral species to the charged species is Δ𝑖𝑜𝑛𝐺∘. For any species 𝑖, 

the pseudo-isomers will be designated by the additional index 𝑗, 

with the neutral pseudo-isomer specifically designated by the index 

𝑗 = 1. If the free energy of the acid dissociation reaction (Eqn 37) 

from the neutral pseudo-isomer 𝑗 = 1 to pseuso-isomer 𝑗 = 𝑗′ is 
symbolized by Δ𝑖𝑜𝑛𝐺𝑖,1→𝑗′, then the molar chemical potential of a 

pseudo-isomer 𝑗′ of species 𝑖 is, 
𝜇𝑖,𝑗′

∘ = 𝜇𝑖
∘ + Δ𝑖𝑜𝑛𝐺𝑖,1→𝑗′

∘ . 38 

 

Starting from these definitions of the chemical potential, the 

Alberty and Iotti et al. formulations are compared. 

 

Alberty’s formulation of chemical potentials and reaction free 

energies. The thermodynamic treatment of isomers that are either 

indistinguishable or treated as a group has been addressed by Smith 

[31] and Straatsma and McCammon [32]. Alberty later used an 

identical treatment for species that differ only by their acid 

dissociation state (pseudo-isomers). If there are 𝑁𝑖𝑠𝑜(𝑖) pseudo-

isomers 𝑗 for a chemical species 𝑖, such as pyruvate, a composite 

standard chemical potential 𝜇𝑖
∘ for the species 𝑖 can be calculated 

from the pseudo-isomer chemical potentials 𝜇𝑖,𝑗
∘  as, 

  

𝜇𝑖
° = −𝑅𝑇 log ∑ 𝑒−

𝜇𝑖,𝑗
°

𝑅𝑇

𝑁𝑖𝑠𝑜(𝑖)

𝑗=1

, 
39 

  

Where 𝑅 is the gas constant and 𝑇 is the temperature in Kelvin. If 

pseudo-isomer 𝑗 𝑜𝑓 species i has a molar concentration of 𝑛𝑖,𝑗, then 

species 𝑖 has a composite concentration 𝑛𝑖 = ∑ 𝑛𝑖,𝑗𝑗 . The 

composite chemical potential is then, 

  

𝜇𝑖 = 𝜇𝑖
∘ + 𝑅𝑇 log 𝑛𝑖 . 

40 

  

If species 𝑖 doesn’t have any pseudo-isomers, then 𝜇𝑖 =  𝜇𝑖. 

 

According to the Alberty formulation, the standard free energy 

change Δ𝑟𝐺𝐴
∘, at constant temperature and pressure is, 

Δ𝑟𝐺𝐴
° = ∑ 𝜈𝑖

𝑁𝑆

𝑖=1

𝜇𝑖
∘,  41 
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with an equilibrium constant 𝐾 = 𝑒𝑥𝑝(− ∑ ν𝑖𝜇𝑖
°𝑁𝑆

𝑖=1 /𝑅𝑇). Likewise, 

the observed free energy change is, 

  

Δ𝑟𝐺𝐴 = ∑ 𝜈𝑖

𝑁𝑆

𝑖=1

𝜇𝑖 , 
42 

 where 𝜇𝑖 is given by Eqn 40.  

 

The contribution of H+ to the free energy change is a constant since 

𝑛𝐻+  is fixed at the reference value. Moreover, by changing the 

reference concentration for protons to concentration controlled at 

the pH of interest, the concentration of protons appearing as a 

reactant or product will simply be that of the reference 

concentration; that is, the proton concentration is at equilibrium 

with respect to the reference concentration. How does this appear 

in Δ𝐺𝐴 = ∑ 𝜈𝑖𝜇𝑖𝑖 ? On one hand, since the hydrogen ion 

concentration is at equilibrium with respect to the reference 

concentration, 𝜇𝐻+ = 𝜇𝐻+
∘ + 𝑅𝑇 log �̃�𝐻+ = 0. Thus, 𝜈H+𝜇H+ = 0 in 

Eqns 41 and 42. But more subtly, the contribution of the reference 

concentration of the proton is implicitly included via Eqn 38 through 
Δ𝑖𝑜𝑛𝐺𝑖,1→𝑗′  at the specified pH. 

 

The Balanced Biochemical Reaction formulation of reaction free 

energies. In the Balanced Biochemical Reaction (BBR) method of 

Iotti, Sabatini et. al [16, 17], the chemical equation is explicitly 

balanced for both mass and charge by treating each pseudo-isomer 

explicitly. This is done by accounting for the concentrations (both 

reference and observed) using equilibrium mole fractions. That is, 

the standard concentration and chemical potential of each pseudo-

isomer is adjusted according to its mole fraction at equilibrium, 

rather than making a composite chemical potential using Eqns 39 
and 40. The equilibrium mole fraction 𝑓𝑖,𝑗

∘  for a pseudo-isomer 𝑗 of 

species 𝑖 is given by [9], 

𝑓𝑖,𝑗
∘ =

𝑒−𝜇𝑖,𝑗
∘ /𝑅𝑇

𝑒−�̃�∘
𝑖/𝑅𝑇

, 43 

  

where 𝜇𝑖,𝑗
∘  is defined by Eqn 38 and 𝜇𝑖

∘ is defined as in the Alberty 

formulation,  

𝜇𝑖
° = −𝑅𝑇 log ∑ 𝑒−

𝜇𝑖,𝑗
°

𝑅𝑇

𝑁𝑖𝑠𝑜(𝑖)

𝑗=1

. 

If species 𝑖 participates in a chemical reaction with an unsigned 

stoichiometric coefficient 𝜈𝑖, then in the BBR method each of its 

pseudo-isomers will be distributed among the reactants or products 

of the reaction according to the scaled stoichiometric coefficients 

such that, 
𝜈𝑖,𝑗   =  𝑓𝑖,𝑗

∘ ⋅ 𝜈𝑖 , 44 

and,  
𝑛𝑖,𝑗 = 𝑓𝑖,𝑗

∘ ⋅ 𝑛𝑖 . 45 

                                                           
† Eqn 46 could have been written as 𝜇𝑖,𝑗

∘,𝑓
= 𝜇𝑖,𝑗

∘ + 𝑅𝑇 𝑙𝑜𝑔 𝑛𝑖,𝑗
∘  by 

using the notation derived from Eqn 45 that 𝑛𝑖,𝑗
∘ = 𝑓𝑖,𝑗

∘ ⋅ 𝑛𝑖
∘. 

However, we use the notation 𝑓𝑖,𝑗
∘  to maintain consistency of 

notation with the use of 𝑓𝑖,𝑗  in reference [26] A. Sabatini, M. 

For standard conditions in which the reference concentration 𝑛𝑖
∘ =

1M for the composite species 𝑖, the standard chemical potential 

𝜇𝑖,𝑗
∘,𝑓

for each pseudo-isomer 𝑗 is then, 

 

𝜇𝑖,𝑗
∘,𝑓

= 𝜇𝑖,𝑗
∘ + RT 𝑙𝑜𝑔(𝑓𝑖,𝑗

∘ 𝑛𝑖
∘)  

= 𝜇𝑖,𝑗
∘ + 𝑅𝑇 𝑙𝑜𝑔 𝑓𝑖,𝑗

∘ . 
46 

 

The second term in Eqn 46 effectively adjusts the reference 

concentration for the pseudoisomer from the standard value of 1 M 
to a new reference concentration of 𝑓𝑖,𝑗

∘  M.†  The full chemical 

potential of pseudo-isomer 𝑗 for species 𝑖 is, 

 

𝜇𝑖,𝑗
𝑓

= 𝜇𝑖,𝑗
∘ + 𝑅𝑇 𝑙𝑜𝑔 𝑓𝑖,𝑗

∘ 𝑛𝑖 ,   47 

or equivalently,  

𝜇𝑖,𝑗
𝑓

= 𝜇𝑖,𝑗
𝑓∘

+ 𝑅𝑇 𝑙𝑜𝑔 𝑛𝑖 .   
 

 

The standard free energy change according the Balanced 

Biochemical Reaction method, Δ𝑟𝐺𝐵𝐵𝑅, is then, 

 

Δ𝑟𝐺𝐵𝐵𝑅
∘ = ∑ ∑ ν𝑖,𝑗𝜇𝑖,𝑗

∘,𝑓

𝑁𝑖𝑠𝑜(𝑖)

𝑗=1

𝑁𝑆

𝑖=1

. 
48 

 

Notice that the use of 𝜇𝑖,𝑗
𝑓∘

 instead of 𝜇𝑖,𝑗
∘  in Eqn 48 ensures that the 

standard free energy change is the condition in which the 

concentration 𝑛𝑖
∘ of the composite compound 𝑖 is at the standard 

concentration of 1 M. Likewise, the condition-dependent free 

energy change of the reaction is, 

 

Δ𝑟𝐺𝐵𝐵𝑅 = ∑ ∑ ν𝑖,𝑗𝜇𝑖,𝑗
𝑓

𝑁𝑖𝑠𝑜(𝑖)

𝑗=1

𝑁𝑆

𝑖=1

. 49 

 

Comparing Eqns 48 and 49 to Eqns 39 and 40, respectively, the 

question is, which is the appropriate method to use? Or, as 

suggested [16, 17], are the two approaches actually equivalent?  

 

What does Statistical Thermodynamics say? In order to understand 

the difference between Alberty’s combining of chemical potentials 

and the use of mole fractions in the BBR approach, it is helpful to 

understand the difference between the probability of two events 

each happening together and the probability of observing one or 

the other of the two events.  

 

If we are considering the probabilities 𝑝𝐴 and 𝑝𝐵 of two 

independent events A and B, the probability that both A and B will 

occur is 𝑝𝐴 ∙ 𝑝𝐵. But if we are interested in the probability that 

either A occurs or B occurs, that probability is  𝑝𝐴 + 𝑝𝐵.  

 

Borsari, G. P. Moss, and S. Iotti, "Chemical and biochemical 

thermodynamics reunification (IUPAC Technical Report)," Pure Appl 

Chem, 2020, doi: doi:10.1515/pac-2019-0908., however with the 

difference that we add the plimsoll symbol ∘ to emphasize that 

equilibrium mole fractions are being used in both cases. 
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Consider now that there are six events that could occur, A, B, C, D, E 

and F. For example, these could be the faces of a die. If after 𝒩 

throws of the die, A appears  𝓃𝐴 times, B occurs 𝓃𝐵 and so on, the 

overall probability (probability density) of observing 

𝓃𝐴, 𝓃𝐵, 𝓃𝐶 , 𝓃𝐷, 𝓃𝐸 , 𝓃𝐹  is, 

  

𝑃𝑟(𝓃𝐴, … , 𝓃𝐹) = 𝒩! ∏
1

𝓃𝑖!
𝑝𝑖

𝓃𝑖

𝐹

𝑖=𝐴

. 50 

 

However, if one face of the die has been damaged and you can’t tell 

if it says E or F, then we combine the counts 𝑛𝐸  and 𝑛𝐹  and only 

consider their combined probability, 𝑝𝐸 + 𝑝𝐹. In this case, all we 

can say about the overall probability is that it is, 

Pr(𝓃𝐴, … , 𝓃𝐹) = 𝒩!
1

𝓃𝐴!
𝑝𝐴

𝓃𝐴
1

𝓃𝐵!
𝑝𝐵

𝓃𝐵
1

𝓃𝐶!
𝑝𝐶

𝓃𝐶
1

𝓃𝐷!
𝑝𝐷

𝓃𝐷

∙
1

(𝓃𝐸 + 𝓃𝐹)!
(𝑝𝐸 + 𝑝𝐹)𝓃𝐸+𝓃𝐹 . 

51 

 

Mathematically Eqn 51 is the case when we have pseudo-isomers 

but don’t explicitly measure each pseudo-isomer – in that case, we 

combine the chemical potentials. Eqn 50 is the case when we 

measure each species completely using mole fractions. Both 

formulations of the probability are correct; they are just used for 

different scenarios.  

 

Statistical thermodynamics is just probability theory applied to 

chemical systems. The probabilities 𝑝𝑖 above are replaced by the 

exponent of the standard chemical potential, 𝑒(−𝓊𝑖
∘/𝑘𝐵𝑇), where 

 𝓊𝑖
∘ = 𝜇𝑖

∘/𝑁𝐴𝑣𝑜 is the standard molecular chemical potential. In this 

expression, 𝜇𝑖
∘ is the standard molar chemical potential and 𝑁𝐴𝑣𝑜 is 

Avogadro’s number. 

 

For a system with 𝑁𝑆 distinct chemical species 𝑖, each with a 

standard molecular chemical potential 𝓊𝑖
∘ and a count of 𝓃𝑖 such 

that there are 𝒩 = ∑ 𝓃𝑖𝑖  total molecules, the free energy of the 

system that is analogous to the probability density is given by,  

  

𝐺(𝓃1, … , 𝓃𝑁𝑆
, 𝑇, 𝑃)

𝑘𝐵𝑇
= − log (𝒩! ∏

1

𝓃𝑖!
(𝑒−𝓊𝑖

∘/𝑘𝐵𝑇)
𝓃𝑖

𝑁𝑆

𝑖=1

), 52 

 

where 𝑘𝐵  is Boltzmann’s constant and 𝑇 is again the temperature. 

This equation is turned into the more common expression of 

classical thermodynamics where 𝐺 = ∑ 𝑛𝑖μ𝑖𝑖  as follows. First, the 

logarithm is expanded and Sterling’s approximation is used in which 

log 𝑛! ≈ 𝑛 𝑙𝑜𝑔 𝑛 − 𝑛, 

𝐺(𝓃𝑖 , 𝑇, 𝑃)

𝑘𝐵𝑇
= log 𝒩! − ∑ 𝑙𝑜𝑔 𝓃𝑖!

𝑁𝑆

𝑖=1

+ 𝓃𝑖  log (𝑒−𝓊𝑖
∘/𝑘𝐵𝑇) 53 

                = −𝒩 log 𝒩 +  𝒩 + (∑ 𝓃𝑖 𝑙𝑜𝑔 𝓃𝑖 − 𝓃𝑖

𝑁𝑆

𝑖=1

)

+ 𝓃𝑖 log(𝑒−𝓊𝑖
∘/𝑘𝐵𝑇),   

54 

where 𝐺(𝓃𝑖 , 𝑇, 𝑃) = 𝐺(𝓃1, … , 𝓃𝑁𝑆
, 𝑇, 𝑃). Using the identity 𝒩 =

∑ 𝓃𝑖𝑖 , the second term 𝒩 cancels the ∑ 𝓃𝑖𝑖  term in the 

parentheses, 

 

 

𝐺(𝓃i,𝑇, 𝑃)

𝑘𝐵𝑇
= −𝒩 log 𝒩

+ ∑[𝓃𝑖 𝑙𝑜𝑔 𝓃𝑖 − 𝓃𝑖   log(𝑒−𝓊𝑖
∘/𝑘𝐵𝑇)]

𝑁𝑆

𝑖=1

   

55 

                     =  ∑ [𝓃𝑖 𝑙𝑜𝑔  
𝓃𝑖

𝒩
+ 𝓃𝑖

𝓊𝑖
∘

𝑘𝐵𝑇
 ]

𝑁𝑆

𝑖=1

 56 

 

As formulated in Eqn 56, the free energy is a function of the extent 
of the system through the counts 𝑛1, … , 𝑛𝑁𝑆

 and the units are units 

of energy, e.g., kJ or Kcal. To make the free energy an intensive 

function such that the units are kJ/mol or Kcal/mol, we require that 

𝒩 = 𝑁𝐴𝑣𝑜 (Avogadro’s number) and Eqn  56 is divided through by 

𝑁𝐴𝑣𝑜 to give, 

  

𝐺(𝑛𝑖 , 𝑇, 𝑃)

𝑁𝐴𝑣𝑜𝑘𝐵𝑇
=  ∑ [

𝓃𝑖

𝑁𝐴𝑣𝑜
𝑙𝑜𝑔  

𝓃𝑖

𝒩
+

𝓃𝑖

𝑁𝐴𝑣𝑜

𝓊𝑖
∘

𝑘𝐵𝑇
 ]

𝑁𝑆

𝑖=1

.  57 

 

Eqn 57 can be expressed in molar units using: (i) moles 𝑁𝑖 =

𝓃𝑖/𝑁𝐴𝑣𝑜, (ii) 𝑁𝐴𝑣𝑜𝑘𝐵𝑇 = 𝑅𝑇,  (iii) substituting in the molar chemical 

potential 𝜇𝑖
∘ = 𝑁𝐴𝑣𝑜𝓊𝒾

∘  and (iv) finally, multiplying through by 𝑅𝑇,  

𝐺(𝑁𝑖 , 𝑇, 𝑃) = ∑ 𝑁𝑖(𝑅𝑇 log 𝑁𝑖 + 𝜇𝑖
∘)

𝑁𝑆

𝑖

 58 

            = ∑ 𝑁𝑖𝜇𝑖

𝑁𝑆

𝑖

, 59 

which is the desired relationship.  

 

Pseudo-isomer situation. Now consider the same system as above, 

however with the chemical species 𝑘, 𝑘 + 1, … , 𝑘 + 𝑙 as pseudo-

isomers of each other. If we know the counts 𝓃𝑘 , … , 𝓃𝑘+𝑙, the free 

energy can then be written as, 

 

𝐺(𝓃i, 𝑇, 𝑃)

𝑘𝐵𝑇
= log (𝒩! ∏

1

𝓃𝑖!
(𝑒−𝓊𝑖

∘/𝑘𝐵𝑇)
𝑛𝑖

𝑘−1

𝑖=1

∙ ∏
1

𝓃𝑖!
(𝑒−𝓊𝑖

∘/𝑘𝐵𝑇)
𝑛𝑖

𝑘+𝑙

𝑖=𝑘

∙ ∏
1

𝓃𝑖!
(𝑒−𝓊𝑖

∘/𝑘𝐵𝑇)
𝑛𝑖

𝑘−1

𝑖=𝑘+𝑙+1

). 

60 

  

If we don’t know the counts of the 𝑙 pseudo-isomers individually 

but only know the total 𝑛𝑘:𝑙 = ∑ 𝑛𝑖 ,𝑘+𝑙
𝑖=𝑘   then we can combine the 

pseudo-isomers such that the free energy is, 

𝐺(𝓃i, 𝑇, 𝑃)

𝑘𝐵𝑇
= 𝑙𝑜𝑔 (𝒩! ∏

1

𝓃𝑖!
(𝑒−𝓊𝑖

∘/𝑘𝐵𝑇)
𝑛𝑖

𝑘−1

𝑖=1

∙
1

𝓃𝑘:𝑙!
(∑ 𝑒−𝓊𝑖

∘/𝑘𝐵𝑇

𝑙

𝑖=𝑘

)

𝑛𝑘:𝑙

∙ ∏
1

𝓃𝑖!
(𝑒−𝓊𝑖

∘/𝑘𝐵𝑇)
𝑛𝑖

𝑘−1

𝑖=𝑘+𝑙+1

) . 

61 
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Notice the middle arguement of the logarithm which addresses the 

free energy contribution of the 𝑘, 𝑘 + 1, … , 𝑘 + 𝑙 pseudoisomers. 

The multinomial expansion of the summation in parentheses is the 

sum over all possible configurations of the pseudo-isomers, 

equilibrium and non-equilibrium. That is, 

(∑ 𝑒−𝓊𝑖
∘/𝑘𝐵𝑇

𝑙

𝑖=𝑘

)

𝓃𝑘:𝑙

= ∑ (
𝓃𝑘:𝑙!

𝓃𝑘! ⋯ 𝓃𝑙!
) ∏

1

𝓃𝑖!
(𝑒−𝓊𝑖

∘/𝑘𝐵𝑇)
𝑛𝑖

𝑙

𝑖=𝑘𝓃𝑘+⋯+𝓃𝑙=𝓃𝑘:𝑙

, 

62 

 

where the sum ∑  𝓃𝑘+⋯+𝓃𝑙=𝓃𝑘:𝑙
 on the left-hand side indicates a 

multi-sum over all values of 𝓃𝑘 , … , 𝓃𝑙 such that 𝓃𝑘 + ⋯ + 𝓃𝑙 =

𝓃𝑘:𝑙. The sum over all possible configurations of pseudoisomers is 

what makes this formulation of the free energy different from the 

Iotti, et. al BBR approach, in which only one configuration of the 

pseudoisomers, the equilibrium configuration, is considered. Both 

formulations are correct, but they are not equivalent. The former is 

used when one knows nothing about the pseudoisomer state and the 

latter is used when  one knows the exact pseudoisomer state.  Just as 

for Eqn 52, Eqn 61 leads to, 

𝐺(𝑛1, … , 𝑛k:l, . . . , 𝑛𝑁𝑆
, 𝑇, 𝑃)

= 𝑛1𝜇1 + ⋯ + 𝑛𝑘:𝑙𝜇𝑘:𝑙 + ⋯ + 𝑛𝑁𝑆
𝜇𝑁𝑆

, 
63 

  

where the molar chemical potential for the pseudo-isomers are, 

𝜇𝑘:𝑙 = 𝜇𝑘:𝑙
∘ + log 𝑛𝑘:𝑙 , 

 

and, 

𝜇𝑘:𝑙
∘ = log ∑ 𝑒−𝜇𝑖

∘/𝑘𝐵𝑇

𝑙

𝑖=𝑘

.  64 

  

Notice that the only time that equilibria between pseudo-isomers is 

used is when calculating the equilibrium property 𝜇𝑘:𝑙
∘ . The free 

energy change for a reaction is then, 

 

Δ𝑟𝐺 = ∑ Δ𝑛𝑖𝜇𝑖

𝑖

. 65 

 

There is no assumption of equilibrium between pseudo-isomers 

needed for a non-equilibrium reaction free energy change in Eqn 65 

beyond that used in calculating the equilibrium property 𝜇𝑘:𝑙
∘  in Eqn 

64. When numerically comparing the BBR free energies to the free 

energies obtained using Eqn 65, the values will usually be very close 

because the equilibrium configuration is the maximum likelihood 

configuration and will contribute the most to the sum in Eqn 62. 

 

The correct version of the free energy to use, the Alberty 

formulation or the BBR method, depends on two conditions: (1) 

what is observable and what is not observable, and (2) whether the 

pseudo-isomers are at equilibrium with respect to one another or 

not. While the assumption that the pseudoisomers are in 

equilibrium is an excellent assumption in the case of metabolism 

since protonation/deprotonation occurs on the picosecond 

timescale [33] and enzymatic reactions generally occur on the 

millisecond to second timescale [34], the assumption alone is not 

necessarily justification for using the BBR formulation. The reason is 

that the values of free energies and entropies, unlike energies, 

depend on which degrees of freedom are measured; when 

comparing reaction free energies, the comparisons must use free 

energies based on the same degrees of freedom, and the Alberty 

formulation without the assumption of equilibrium between 

pseudo-isomers is in common use [14, 35, 36]. However, if the 

equilibrium assumption is well-justified and one is consistent in 

using the BBR approach, then the BBR approach offers a more 

precise value for the free energy because there is no uncertainty in 

the configuration of the pseudo-isomers.  

 

In practice for measurements or modeling, whether the numerical 

difference is significant will depend on how far from equilibrium is 

the biological reaction. The calculated free energies of reaction for 

the pyruvate decarboxylase reaction discussed above (Eqn 3) using 

both the BBR and Alberty formulations are shown in Table 1. In 

both cases, the total concentration of each of pyruvate, 

acetaldehyde and CO2 is 1 M. As can be seen, the difference 

between the two approaches is small compared to the magnitude 

of the average standard free energy change. The difference will be 

greatest at the pH that is the pKa of pyruvate, pH = 2.92. In this 

case, the chemical potential for both pseudoismers of pyruvate is 
𝜇𝑝𝑦𝑟,1

∘ = 𝜇𝑝𝑦𝑟,2
∘ = −483.6. Consequently, the free energy 

contribution due to pyruvate for the Alberty formulation is,   

𝜈𝑝𝑦𝑟 ∙  𝜇𝑝𝑦𝑟
∘ = 1 ∙ [−𝑅𝑇 𝑙𝑜𝑔 ( ∑ 𝑒−𝜇𝑝𝑦𝑟,𝑗

∘ /𝑅𝑇

𝑁𝑖,𝑖𝑠𝑜

𝑗=1

)

+ 𝑅𝑇 𝑙𝑜𝑔(1)], 

   

66 

 

                               = −𝑅𝑇 𝑙𝑜𝑔(2 ⋅ 𝑒−𝜇𝑝𝑦𝑟,1
∘ /𝑅𝑇), 67 

 

while the free energy contribution for the BBR formulation is, 

 

𝜈𝑝𝑦𝑟𝑓𝑝𝑦𝑟,1 ⋅ 𝜇𝑝𝑦𝑟,1
∘ + 𝜈𝑝𝑦𝑟𝑓𝑝𝑦𝑟,2 ⋅  𝜇𝑝𝑦𝑟,2

∘

=
1

2
𝜇𝑝𝑦𝑟,1

𝑓∘
+

1

2
 𝜇𝑝𝑦𝑟,2

𝑓∘
 

             = 𝜇𝑝𝑦𝑟,1
𝑓∘

, 

68 

 
where the last equality follows since at pH = pKa, 𝜇𝑝𝑦𝑟,1

∘ = 𝜇𝑝𝑦𝑟,2
∘ . 

The factor of 2 comes into the Alberty formulation (Eqn 67) because 

there are (
2
1

) = 2 choices of pseudo-isomers, which reflects the 

uncertainty in the distribution of the pseudo-isomers. This results in 

a difference in chemical potential of −𝑅𝑇 log 2 = −1.71 kJ/mol, 

which is approximately the difference at pH = 3.0 in Table 1.  

 
 pH 

Met

hod 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

BBR -

42.

72 

-

42.

83 

-

43.

26 

-

42.

47 

-

37.

05 

-

30.

96 

-

25.

17 

-

19.

45 

-

13.

74 
Albe

rty 
-

42.

70 

-

42.

67 

-

42.

42 

-

40.

76 

-

36.

37 

-

30.

84 

-

25.

15 

-

19.

45 

-

13.

74 
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Table 1. Standard free energies (kJ/mol) at specified pH for the 

reaction catalyzed by pyruvate decarboxylase. 

 

A more complex example is that of the pyruvate kinase reaction, 

 

pyruvate + ATP ⇌ phosphoenolpyruvate +ADP. 
 

69 

In this case the reactants pyruvate and ATP have a total of eight 

ionic states to consider, while the products have a total of 10 ionic 

states to consider, potentially exacerbating the difference in free 

energies calculated using the two methods. However, because a 

single ionic state is often dominate for each species at a given pH, 

the difference is again maximized near the pKa of each species. As 

long as each species has sufficiently different pKas, the maximum 

difference in Δ𝑟𝐺 is approximately −𝑅𝑇 log 2 = −1.71 kJ/mol, as 

seen near pH 6.0.  

 

 pH 

Met
hod 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

BBR -
42.
69 

-
40.
92 

-
34.
63 

-
32.
49 

-
35.
30 

-
35.
69 

-
35.
03 

-
29.
87 

-
23.
75 

Alber
ty 

-
41.
71 

-
39.
66 

-
35.
59 

-
33.
63 

-
34.
59 

-
34.
76 

-
33.
31 

-
29.
11 

-
23.
61 

 

Table 2. Standard free energies (kJ/mol) at specified pH for the 

reaction catalyzed by pyruvate kinase. 

 

An effective difference in the combinatorial nature of the two 

methods can be estimated using c = 𝑒|ΔΔ𝑟𝐺|/𝑅𝑇 . The value of c is 

plotted against pH for the pyruvate kinase reaction in Figure 1. The 

maximum value of c is 2.00 at pH 6.0.   

 

 
Figure 1.Dependence of effective number 𝑐 of combinations and 

permutations of pseudo-isomers (left axis) and difference in free 

energies of reaction (right axis) between BBR and Alberty methods 

as a function of pH for the pyruvate kinase reaction, which has a 

total of 18 different pseudo-isomers. 

 
Equivalence Between Alberty and BBR methods at Equilibrium. If 

in fact both methods are correct given their assumptions, it should 

be possible to use the equilibrium assumption to obtain the same 

results in the Alberty method as in the BBR method. In fact, Alberty 

sometimes assumed that the chemical species constituting the 

pseudo-isomer group were at equilibrium with H+ and Mg2+ ions. He 

does so when he states, “At specified pH and pMg, the various 
forms [𝑗] of a reactant [𝑖] have the same ∆𝑓𝐺𝑗

′  [Δ𝑓𝐺𝑖,𝑗]  at chemical 

equilibrium” [37]. As mentioned above, this is a very reasonable 

assumption since the timescales for protonation/deprotonation and 

forming ions is much faster than the timescales of the enzymatic 

reactions. However, when this assumption is made, the approach 

used by Alberty, comprised of Eqns 39 and 41 for standard 

conditions, is identical to the BBR approach for chemical 

thermodynamics, Eqn 48, as shown next. 

 

First, in conditions other than equilibrium, the mole fraction is, 

𝑓𝑖,𝑗
 =

𝑒−𝜇𝑖,𝑗
 /𝑅𝑇

𝑒−�̃� 
𝑖/𝑅𝑇

, 
70 

Next, the Alberty expression for a change in reaction free energy 

(Eqn 41) can be expanded using the identity 1 = ∑ 𝑓𝑖,𝑗𝑗 , where 𝑓𝑖,𝑗  

is the mole fraction under the observed conditions, 

   

ΔrGA
∘  =   ∑ 𝜈𝑖

𝑁𝑆

𝑖=1

 𝜇𝑖
∘ ( ∑ 𝑓𝑖,𝑗

𝑁𝑖𝑠𝑜(𝑖)

𝑗=1

) 71 

     =   ∑ ∑ 𝜈𝑖 ⋅ 𝑓𝑖,𝑗𝜇𝑖
∘

𝑁𝑖𝑠𝑜(𝑖)

𝑗=1

𝑁𝑆

𝑖=1

 72 

 =   ∑ ∑ 𝜈𝑖,𝑗𝜇𝑖
∘

𝑁𝑖𝑠𝑜(𝑖)

𝑗=1

𝑁𝑆

𝑖=1

,  73 

where the last equality follows from Eqn 46 when it is assumed that 
𝑓𝑖,𝑗 = 𝑓𝑖,𝑗

∘ . The standard chemical potential can be further expanded 

using the identity 1 = 𝑒−μ𝑖,𝑗
∘

𝑒−μ𝑖,𝑗
∘

⁄  and the definition of the 
equilibrium mole fraction 𝑓𝑖,𝑗

∘ ,  

𝜇𝑖
° = −𝑅𝑇 log (𝑒−�̃�𝑖

∘/𝑅𝑇
𝑒−𝜇𝑖,𝑗

∘ /𝑅𝑇

𝑒−𝜇𝑖,𝑗
∘ /𝑅𝑇

)  74 

                        = −𝑅𝑇 log(𝑓𝑖,𝑗
° −1𝑒−𝜇𝑖,𝑗

∘ /𝑅𝑇) 75 

                       = 𝜇𝑖,𝑗
∘ + 𝑅𝑇 log 𝑓𝑖,𝑗

∘   76 

                       = 𝜇𝑖,𝑗
𝑓∘

.     77 

 

Substituting into Eqn 73,  

                Δ𝑟𝐺𝐴
∘ =   ∑ ∑ 𝜈𝑖,𝑗𝜇𝑖,𝑗

𝑓∘

𝑁𝑖𝑠𝑜(𝑖)

𝑗=1

𝑁𝑆

𝑖=1

   
   

78 

                         = Δ𝑟𝐺BBR
∘ .  

 

That is, comparing Eqn 78 to Eqn 48, it is clear that when the 

pseudo-isomers are assumed to be at equilibrium  and one 

accounts for pseudo-isomers using the modified stoichiometric 

coefficients ν𝑖,𝑗, the Alberty formulation of Eqn 73 and BBR 

approaches are equivalent. Applying the equilibrium assumption to 

the Alberty method is how, in a recent IUPAC publication, Sabatini, 

et al, [26] came to the conclusion that the BBR formulation was 

equivalent to the Alberty formulation. 

 

Conclusions for Formulations of Chemical Potentials. For enzyme 

catalyzed reactions the BBR approach is appropriate when the 

individual pseudo-isomers are at equilibrium and are explicitly 

measured or modeled, while the Alberty approach is appropriate 
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when the pseudo-isomers are not measured or modeled or are not 

necessarily at equilibrium with respect to one another. For both 

modeling and measurement, the Alberty approach is more 

convenient in that the number of variables needed to be accounted 

for is reduced significantly for biochemical reactions. However, the 

tradeoff is a loss in precision in the Alberty method due to 

uncertainty associated with the configuration of the pseudo-isomers. 

If the assumption of equilibrium is valid, one can get both the 

convenience of the Alberty approach and the precision of the BBR 

approach by simply applying equilibrium mole fractions to the 

Alberty approach as shown in Eqns 72-73. The numerical difference 

between the two approaches in any individual free energy of reaction 

is likely only ±1.7 kJ/mol or less. These differences generally are 

not cumulative in a system of coupled chemical reactions, since the 

individual reaction free energies are constrained such that they must 

sum to the overall free energy change for a system, and the overall 

free energy change is generally determined by boundary conditions 

that may also have at most an error due to pseudo-isomers of ±1.7 

kJ/mol.  

 

More generally, the approach of summing over chemical potentials 

has applications beyond charge state (pseudo-) isomers, rotational 

isomers [32], and isomeric hydrocarbons [31]. Statistical 

thermodynamic theories of non-equilibrium chemical reaction 

networks assume that the chemical species undergoing reaction will 

(1) relax to their equilibrium configuration between reactions and 

(2) after relaxation are in local equilibrium with the solvent [2, 38, 

39]. This assumption can be obviated with the use of summary 

chemical potentials such as Eqn 39 in which the sum is over the 

ground state and all possible excited state configurations.  

 

Methods 

All free energies of formation in aqueous solution (reference 

chemical potentials) were obtained 

from  http://equilibrator.weizmann.ac.il/, version 2.2 with source 

code repository commit hash 

f8bc4ca931f41ae08c5cf15b8945c1b1a85158d0, using the 

component contribution method [36]. 

 

Supplemental Material 

Code for the calculations used in generating the tables and figure 

are available as computational notebooks at 

https://github.com/wrcannon/CompositeReactionFreeEnergies. 
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