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Active Particle Diffusion in Convection Roll Arrays

Pulak Kumar Ghosh1, Fabio Marchesoni2,3†, Yunyun Li2†, Franco Nori4,5

Undesired advection effects are unavoidable in most nano-technological applications involving
active matter. However, it is conceivable to govern the transport of active particles at the small
scales by suitably tuning the relevant advection and self-propulsion parameters. To this purpose,
we numerically investigated the Brownian motion of active Janus particles in a linear array of
planar counter-rotating convection rolls at high Péclet numbers. Similarly to passive particles,
active microswimmers exhibit advection enhanced diffusion, but only for self-propulsion speeds
up to a critical value. The diffusion of faster Janus particles is governed by advection along the
array’s edges, whereby distinct diffusion regimes are observed and characterized. Contrary to
passive particles, the relevant spatial distributions of active Janus particles are inhomogeneous.
These peculiar properties of active matter are related to the combined action of noise and self-
propulsion in a confined geometry and hold regardless of the actual flow boundary conditions.

1 Introduction
The diffusion of a tracer (organic or artificial, alike) in a suspen-
sion fluid is a standard problem of classical transport theory1.
This paper combines two distinct aspects of this phenomenon,
which recently attracted widespread interdisciplinary interest,
each for its own merit: (i) the persistent (or time-correlated) ran-
dom motion of self-propelling particles and (ii) colloidal disper-
sion in laminar flows.

The most tractable example of persistent Brownian motion is
represented by artificial micro-swimmers, namely tiny Brownian
particles capable of self-propulsion in an active medium2,3. Such
particles are designed to harvest environmental energy and con-
vert it into kinetic energy. A class of artificial swimmers widely
investigated in the current literature is the so-called Janus par-
ticles (JP), mostly spherical colloidal particles with two differ-
ently coated hemispheres, or “faces”. Their axial propulsion is
sustained by the dipolar near-flow-field they generate by interact-
ing with the surrounding active (mostly highly viscous) medium.
Indeed, depending on their operating conditions, JPs can induce
either concentration gradients, by catalyzing some chemical re-
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action on their active surface, or thermal gradients, by inhomo-
geneous light absorption (self-thermophoresis) or magnetic exci-
tation (magnetically induced self-thermophoresis)4,5. Moreover,
experiments demonstrated their ability to perform guided mo-
tions through periodic arrays6.

Recently, artificial micro- and nano-swimmers of this class have
been the focus of pharmaceutical (e.g., smart drug delivery7) and
medical research (e.g., robotic microsurgery8). These peculiar
Brownian particles change direction randomly as usual, but with
finite time scale; persistence makes their diffusion extremely sen-
sitive to geometric confinement and other constraints9–12. Tech-
nological applications involving sub-millimeter artificial swim-
mers thus require accurate control of their diffusive properties
in non-homogeneous environments1,6.

On the other hand, Brownian diffusion in an advective medium
is also a nanotechnological issue, for instance, in the design and
operation of microfuidic devices13–15 or chemical reactors16. We
consider for simplicity a Brownian tracer of free diffusion constant
D0, advected by a planar stationary laminar flow, like in Fig. 1(a).
Let the velocity field of the suspension fluid be formulated as17,
~vψ = (∂y,−∂x)ψ, where

ψ(x,y) = (U0L/2π)sin(2πx/L)sin(2πy/L), (1)

is a stream function extensively studied in the context of Rayleigh-
Bénard convection18. On combining the two constants, L, the
flow’s spatial period, and U0, the maximum advection speed, one
defines the advection diffusion scale, DL =U0L/2π, and the max-
imum roll vorticity, ΩL = 2πU0/L (Appendix A).

At high Péclet numbers, Pe = DL/D0 � 1, a passive tracer
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Fig. 1 Spatial distributions of a Janus particle in the laminar flow of Eq. (1), sketched in (a)-(b), for v0 = 0.1 (c) and 0.5 (d). The chart levels are
color-coded on natural logarithmic scales as indicated. Other simulation parameters are: D0 = 0.01, Dθ = 0.01, U0 = 1 and L = 2π. According to Eq. (3),
here vc = 0.4. A practical realization of a linear convection array is represented by the Rayleigh-Bénard rolls sketched in (b); the JP self-propulsion
model of Eq. (2) is illustrated in (a).

undergoes normal diffusion with enhanced diffusion constant
D = κ

√
DLD0 with κ = 1.07, that is D > D0

19. This advection
effect, termed advection enhanced diffusivity (AED), has been
explained19–22 by noticing that for D0 < DL an unbiased parti-
cle jumps between convection rolls while being advected along
their separatrices. Narrow flow boundary layers (FBL) of esti-
mated width δ = (D0/ΩL)

1/2, form a network of advection chan-
nels centered around the ψ(x,y) cell separatrices, thus enabling a
large-scale particle’s diffusion.

Peculiar effects due to the combination of self-propulsion and
advection are expected to emerge when one considers an ac-
tive JP suspended in a one dimensional (1D) array of counter-
rotating convection rolls. An ideal experimental setup is sketched
in Fig. 1(b). An array of stationary Rayleigh-Bénard cells can oc-
cur in a plane horizontal layer of fluid heated from below23,24.
Assuming that they are counter-rotating cylinders parallel to the
z-axis, the z coordinate of a suspended tracer is ignorable; hence
the reduced two dimensional (2D) flow pattern of Eq. (1). Ad-
vection enhanced diffusivity of passive colloidal particles in ar-
rays of Rayleigh-Bénard rolls18 has already been demonstrated
experimentally25,26. Experimental data on the dispersion of self-
propelling microswimmers in convective laminar flows are scarce.
Recent reports mostly addressed the hydrodynamic effects of lam-
inar flows on the self-propulsion of finite-size microswimmers
of various geometries27, either artificial28 or of biological na-
ture29,30. In this regard, active JPs are ideal tracers for this kind
of measurements because their shape and size minimize hydrody-
namic effects and their self-propulsion speed can be conveniently
tuned with respect to the advection drag established in the con-
vection cell.

This paper is organized as follows. In Sec. 2 we present our
model and briefly discuss the dynamical significance of the rel-

evant parameters. Our derivation of the relevant time scales is
detailed in Appendix A. Our main numerical results are analysed
in Secs. 3 and 4, where we show that: (i) The interplay of ad-
vection and self-propulsion causes the nonuniform spatial distri-
bution of a confined active JP. For self-propulsion speeds below a
certain threshold, its distribution tends to accumulate along the
roll boundaries (Sec. 3 and Appendix B); (ii) Under these con-
ditions, its self-propulsion and advection velocities tend to line
up, so that, contrary to the 2D case of Ref.31, the large-scale dif-
fusion of an active JP is insensitive to self-propulsion itself (Sec.
4); (iii) Active tracers with self-propulsion speeds larger than the
above threshold, attain a maximum diffusion constant for an op-
timal persistence time, which we relate to advection at the array’s
edges (Sec. 4 and Appendix C). In Sec. 5 we stress the role of
geometric confinement on the diffusion properties of an active JP
in a convection array and show that the picture above holds also
for rigid (i.e., no-slip) edge flows.

2 Model

By (linear) convection array we mean here a stationary laminar
flow with periodic stream function like ψ(x,y) of Eq. (1), confined
between two parallel edges, y = 0 and y = L/2, which act as dy-
namical reflecting boundaries. The unit cell of the array consists
of two counter-rotating convection rolls [Fig. 1(a)]. The dynam-
ics of an overdamped active JP can then be formulated by means
of two translational and one rotational Langevin equation (LE),

~̇r = ~vψ +~v0 +
√

D0 ξ (t) (2)

θ̇ = (α/2) ∇×~vψ +
√

Dθ ξθ (t),

where ~r = (x,y,), ~vψ is the advection velocity introduced above,
and the self-propulsion vector, ~v0 = v0(cosθ ,sinθ), has constant
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Fig. 2 Stationary longitudinal distributions, p(x), of a Janus particle in the
laminar flow of Eq. (1) for (a) Dθ = 0.01 and different v0; (b) v0 = 0.1 and
(c) v0 = 0.5 and different Dθ (see legends). Other simulation parameters
are: D0 = 0.01; U0 = 1 and L = 2π, with DL = ΩL = 1.

modulus, v0, and is oriented at an angle θ with respect to the lon-
gitudinal x-axis. The translational (thermal) noises in the x and
y directions, ξ (t) = (ξx(t),ξy(t)), and the rotational noise, ξθ (t),
are stationary, independent, delta-correlated Gaussian noises,
〈ξi(t)ξ j(0)〉 = 2δi jδ (t), with i, j = x,y,θ . D0 and Dθ are the re-
spective noise strengths, which for generality we assume to be
unrelated10. To avoid uncontrolled hydrodynamic effects, the
particle is taken to be pointlike15. Other effects due to its ac-
tual geometry and chemical-physical characteristics are encoded
in the model dynamical parameters. The reciprocal of Dθ coin-
cides with the angular persistence (or correlation) time, τθ , of~v0;
accordingly, lθ = v0/Dθ quantifies the persistence length of the
particle’s self-propelled random motion. The flow shear exerts
a torque on the particle proportional to the local fluid vorticity,
∇×~vψ

31,32. For simplicity, we adopt Faxén’s second law, which,
for an ideal no-stick spherical particle, yields α = 133. In the high
Péclet number regime addressed here, Pe� 1 or D0 � DL, par-
ticle diffusion is strongly influenced by advection (appendix A).

The Langevin equation (2) can be conveniently reformulated in
dimensionless units by rescaling (x,y)→ (x̃, ỹ) = (2π/L)(x,y) and
t → t̃ = ΩLt. The three remaining independent parameters get
rescaled as follows: v0 → v0/U0, D0 → D0/DL and Dθ → Dθ/ΩL.
This means that, without loss of generality, we can set L = 2π and
U0 = 1 and the ensuing simulation results can be regarded as ex-
pressed in dimensionless units and easily scaled back to arbitrary

dimensional units. The stochastic differential Eqs. (2) were nu-
merically integrated by means of a standard Milstein scheme34.
Particular caution was exerted when computing the asymptotic
diffusion constant, D = limt→∞〈[x(t)− x(0)]2〉/2t, because for low
values of the noise strengths, D0 and Dθ , the transients of the
diffusion process grow exceedingly long32,35. For asymptotically
large running times, our estimates of D are independent of the
starting point (x(0),y(0)).

3 Spatial distributions
In sharp contrast with the noiseless limit, D0 = Dθ = 0, investi-
gated in Ref.32, the spatial distribution of a noisy active JP is not
uniform. The outcome of our numerical simulations is summa-
rized in Figs. 1(c),(d) and 2. The laminar flow acts upon the
particle through both an advection drag and an advection torque.
Along the roll boundaries the drag is maximum (with speed ap-
proaching U0, except at the “stagnation” corners), but the torque
vanishes. At low self-propulsion speeds, this favours the orienta-
tion of ~v0 parallel to the advection velocity ~vψ . The JP thus un-
dergoes a large-scale intra-roll circulation motion, which causes
its accumulation along the outer layers of the rolls. The less pro-
nounced particle accumulation at the roll centers is attributable
to the higher vorticity there35. These two areas of accumulation
are separated by a circular depletion region. Indeed, in Figs. 1(c)
and Figs. 2(a),(b) (see also Appendix B) the particle appears to
be sucked in by the ascending (x= L/2) and descending boundary
flows (x = 0,L), an effect that seems to increase with increasing
v0.

This picture changes abruptly as v0 is raised above a critical
value vc [Fig. 2(a)], which we established to depend on the
strength of the thermal noise, D0 (Appendix C). The intra-roll
circulation of Fig. 1(c) is suppressed and the roll interior gets
depleted [Fig. 2(a),(c)]; as a result, the particle piles up symmet-
rically at the base of the ascending (bottom edge) and descend-
ing flows (top edges). Moreover, for v0U0, the particle seems to
diffuse mostly along the array’s edges, which explains why the
longitudinal distributions, p(x), turn uniform again with increas-
ing v0, while the transverse distributions, p(y), remain peaked at
y = 0,L/2 (Appendix B). One also notices that the peaks of p(x)
widen with increasing v0 [Fig. 2(a)] and Dθ [Fig. 2(c)].

The relevance of these results can be best appreciated by com-
parison with the diffusion of a passive particle in the same 1D
convection array. In that case, the flow boundary layers still con-
trol the particle’s large-scale diffusion, but all stationary distribu-
tions, p(x,y), remain uniform35. This conclusion applies also to
noiseless self-propelling JPs in 1D convection arrays, as proven
in Ref.32, but is no longer true in the presence of thermal noise.
Indeed, upon hitting either array edge, the particle will persist
pointing against it for a time τθ ; hence the angular correlation of
~v0 and ~vψ . [Note that in most simulations presented here τθ is
larger than the circulation characteristic time, ie, Dθ < ΩL.] Ac-
cordingly, no probability density accumulation at the roll bound-
aries was detected for an active JP in the 2D laminar flow of
Eq. (1) with periodic boundary conditions, regardless of the noise
strengths, D0 and Dθ (Appendix B). This leads to the conclusion
that the FPL structure we detected in the stationary distributions
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p(x,y) of an active JP diffusing in a 1D convection array is a com-
bined effect of noise and geometric confinement.

The self-propulsion threshold, vc, can be estimated as follows.
When the vector ~v0 points inwards, the particle pulls away from
the edge a length of the order of v0/4ΩL, before being swept into
a vertical flow layer. As such length grows comparable with the
width of an unbiased flow boundary layers, i.e., for v0 > vc with

vc/U0 = 4
√

D0/DL, (3)

the particle exits the FBL and its circulation along the roll sepa-
ratrices is interrupted. This estimate of vc is consistent with our
simulation data for p(x) and p(y) at low angular noise, Dθ � ΩL

[compare Figs. 1 and 2; see Appendices B and C for more de-
tails]. Note, for instance, that in Fig. 2 the p(x) regions delimited
by the peaks at x = 0,π and 2π get depleted only for v0 = 0.5, that
is for v0 > vc. Moreover, being confined in a FBL, a JP with v0 < vc

ought to behave like a passive colloidal particle, ie, undergo ad-
vection enhanced diffusivity as an effect of the sole thermal noise.
The diffusion data presented in the next section (Fig. 3) confirm
this conclusion.

As the FBL circulation breaks up, the JP tends to accumu-
late against the array edges, provided that the self-propulsion
length is larger than the array width, lθ > L/2, or, equivalently,
Dθ/ΩL < v0/U0. However, its motion along the edges is not
advection-free. The coordinate x in Eq. (2) then obeys the approx-
imate LE, ẋ = U0〈cos(2πy/L)〉sin(2πx/L) + v0 cosθ + ξx(t), which
describes the dynamics of a Brownian particle pinned to a wash-
board potential36 (advection term) and subjected to a colored,
non-Gaussian tilting noise, v0 cosθ(t), with correlation time τθ

10

(self-propulsion term). The average 〈cos(2πy/L)〉 depends on all
three free parameters v0,Dθ and D0; in particular, its modulus in-
creases with increasing v0 and decreasing Dθ . This simple obser-
vation explains: (i) the non-monotonic v0-dependence of the p(x)
peaks, whereby a larger v0 implies not only higher washboard po-
tential barriers, but also a stronger tilting term; (ii) the flattening
of the longitudinal distributions for v0U0, as self-propulsion wins
over the advection pinning action at the edges; (iii) the broaden-
ing and double-peaked profile of the p(x) peaks in Fig. 2(c) on
increasing Dθ which is a well-known effect of colored noise37.

On increasing Dθ , the JP self-propulsion length eventually
grows shorter than the roll size, lθ < L/2; the active particle then
tends to behave like a passive Brownian particle, except its free
diffusion constant, D0, must be now incremented by the extra
term Ds = v2

0/2Dθ . Accordingly, both its spatial distributions, p(x)
and p(y), become uniform [see Figs. 2(b),(c) and Appendix B].

4 Longitudinal diffusion
Based on the qualitative arguments of Sec. 3, we expect to ob-
serve distinct diffusion regimes for a JP with lθ > L/2. Our
expectation are supported by the simulation data reported in
Fig. 3(a,b). Indeed, the curves D versus v0 exhibit distinct be-
haviors for v0 < vc, vc < v0U0 and v0 � U0. For v0 � U0, ad-
vection is negligible compared to self-propulsion; since we as-
sumed reflecting boundaries at the array’s edges, not surprisingly,
D→ D0 +Ds

31. This behavior is in sharp contrast with the sce-
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nario suggested by the D curves in the limit v0/U0→ 0. All curves
overlap, insensitive to Dθ , and, more remarkably, tend to the ad-
vection enhanced diffusivity estimate, D = κ

√
DLD0, for passive

pointlike particles19. Such a behavior persists for v0 up to an up-
per value, which appears to agree well with our estimate for vc in
Eq. (3). This picture holds also at lower thermal noise strengths,
Fig. 3(b) and Appendix C (though not with as good statistics).
This result confirms that for v0 < vc the array’s edges make the
JP self-propulsion velocity, ~v0, to line up with the advection drag,
~vψ , so that the JP diffuses only through the FBL network due to
thermal fluctuations, .

The intermediate regime, vc < v0U0, is characterized by a sharp
drop of the particle’s diffusivity. This is a signature of its pin-
ning to the array’s edges. For Dθ/ΩL � v0/U0, the particle can
slide along the edges only by overcoming the advection wash-
board potential of amplitude DL|〈cos(2πy/L)〉|. In the limit of
very low noises, D0/DL,Dθ/DL → 0, this occurs for v0 ∼U0. For
D0/DL � {|〈cos(2πy/L)〉|,v0/U0}, its diffusion constant drops to
exponentially small values36, which could not be computed nu-
merically. On increasing D0 and (or) Dθ , the amplitude of the pin-
ning potential diminishes, and the particle’s diffusivity becomes
numerically appreciable; eventually, the diffusion dips because
pinning becomes negligible.

Interesting is the shift of the D minima to higher v0 values with
increasing D0 (inset of Fig. 3). This counterintuitive effect, is due
to the fact that for Dθ/ΩL < D0/DL � 1, the JP self-propulsion
velocity, ~v0, changes direction owing to the combined action of
thermal noise (pulling the particle away from its pinning site)
and advection (exerting a torque on it). A larger dispersion of
the JP orientation angle, θ , with thermal noise, implies a higher
depinning value of v0. We stress here, once again, the role of
advection along the array’s edges. In a periodic 2D convection
array of stream function (1), the v0-dependence of D is quite dif-
ferent31,32. In the noiseless limit, a spherical JP gets trapped for
v0 lower than the threshold vth ' 2.2 U0

32. After a generally long
transient, during which it keeps roll jumping, the particle even-
tually ends being uniformly distributed inside a single convection
roll (i.e, with vc = 0). Here, instead, advection at the array’s edges
lowers the trapping threshold down to U0.

As anticipated above and illustrated in Fig. 4, Dθ , is an impor-
tant control parameter, because it governs orientation and persis-
tence of self-propulsion. When Dθ is so large that Ds is negligible
compared to D0, Dθ/ΩL� (DL/D0)(v0/U0)

2, the passive particle
regime is recovered, no matter the value of v0. In Fig. 4 we
set D0 < DL, i.e., Pe� 1: therefore, for Dθ/ΩL→ ∞, all D curves
plotted there tend to the same (high Péclet number) advection en-
hanced diffusivity value, D = κ

√
DLD0. More remarkably, the two

curves with v0 < vc only slightly deviate from that value through-
out the entire Dθ domain. This result is a further evidence of the
particle’s confined circulation inside the FBLs.

The curves for vc < v0U0 overshoot the advection enhanced dif-
fusivity value, with overlapping maxima at Dθ ∼ ΩL. This effect
is due to the synchronized action of angular diffusion and ad-
vection torque. The two, combined, optimize the mechanism of
edge switching, whereby the JP moves from one pinning site at
the bottom to a pinning site at the top, and vice versa. As such
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Fig. 5 Stationary transverse distributions: (a)-(c) transverse density func-
tions, p(y), corresponding to the longitudinal distributions, p(x), of Fig. 2;
(d) 〈|cos(2πy/L)|〉 vs. v0/U0. Simulation parameters in (a)-(c) are the
same as in the corresponding panels of Fig. 2; if not specified otherwise
in the legend, the same parameters have been adopted in (d). Vertical
arrows mark our estimates for vc at D0 = 0.01 and 0.001, Eq. (3).
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pinning sites are (at least) a distance L/2 apart, edge switching
enhances lateral diffusion against edge pinning. Under these con-
ditions (Fig. 4), the leading contribution to the diffusion constant
is D = (L/2π)2ΩL/2, i.e., D/DL ' 1/2, independent of v0 and D0

(Appendix A).

The curves for v0 �U0, as anticipated above, are mostly gov-
erned by self-propulsion. For a wide Dθ range, they closely follow
the free diffusion law, D = D0 +Ds, like in a straight zero-flow
channel, even when lθ > L/2 (as a consequence of the reflecting
boundaries). However, having chosen D0� DL, at larger Dθ the
JP free diffusion constant, D0 +Ds, grows smaller than DL: Par-
ticle’s diffusion then takes place at effective high Péclet numbers
and the advection enhanced diffusivity mechanism applies, hence
D= κ

√
DL(D0 +Ds)

31. These two distinct diffusion laws are both
illustrated in Figs. 3 and 4.

All D curves with v0 > vc in Fig. 4 share a surprising property:
Upon lowering Dθ , they drop below the free diffusion value, D0.
This suggests that for v0 > vc and large τθ advection at the array
edges is never negligible. We already noticed that a JP with lθ >

L/2 trapped at the array’s edges can free itself either by sliding
against the advection drag or by switching edge. We also know
that in the limit D0/DL,Dθ/DL→ 0, a particle pointing against an
edge with |cosθ | < U0/v0 ends up sitting in a stagnation corner,
i.e., sliding can be suppressed even for v0�U0. Diffusion is then
activated by autonomous edge switching, which, for a JP, can
occur through either angular reorientation, with time constant τθ ,
or translational diffusion, with time constant τD = (L/2π)2/2D0

(Appendix A). For v0 �U0, depinning from the edge washboard
potential requires |θ |>U0/v0, therefore, angular diffusion ceases
driving edge switching when 2Dθ τD < (U0/v0)

2, or Dθ < D∗
θ
, with

D∗θ/ΩL = (U0/v0)
2(D0/DL). (4)

As shown in Fig. 4, lowering Dθ below D∗
θ

causes a sharp drop of
the D curves to values so small that they could not be numerically
computed with acceptable accuracy. This effect is clearly due to
geometric confinement, as confirmed by the fact that it was never
detected in 2D flows31.

5 Concluding remarks
We have investigated the diffusion of an active JP in a 1D array of
counter-rotating convection rolls. The JP considered here should
be regarded as modeling a self-propelling micro-swimmer of bio-
logical or synthetic nature, alike. Our choice for the laminar flow
is meant to mimic the Rayleigh-Bénard rolls occurring between
two parallel (free-slip) surfaces: by varying the temperature dif-
ference between them it is possible to vary the advection speed
of the suspension fluid with respect to the speed of the active JP
and thus explore the parameter space investigated in the present
paper.

We focused on effects due the combination of three key ingre-
dients, namely, thermal noise, advection and self-propulsion, in
a confined geometry. Such effects, not detectable in 2D arrays
of convection rolls with same hydrodynamical parameters but no
boundaries, can be summarized as follows:
(i) The large-scale circulation of a JP trapped in a convection roll

is confined to narrow flow boundary layers, whereby the particle
self-propulsion velocity tends to line up with the advection drag,
which results in an accumulation of the particle probability den-
sity.
(ii) The diffusion of an active JP with low self-propulsion speed is
governed by its circulation along the roll boundaries, and is thus
undistinguishable from that of a regular passive particle.
(iii) For larger self-propulsion speeds, the JP tends to sojourn in
the vicinity of the array’s edges and diffuses by sliding along them.
Its diffusion is dominated by the advection drag parallel to the
array’s boundaries even for self-propulsion speeds much larger
than the advection drag. This mechanism works for strengths of
the angular noise above a certain threshold; below that threshold,
the particle’s diffusion constant drops to vanishingly small values.

Our emphasis on the above confinement effects is motivated by
the widespread interest in controlling transport of diluted active
matter3,4 in microfluidic circuits13.

To this regard we note that, due to the large variability of
the advection parameters in actual Rayleigh-Bénard cells14,25 [L
and U0 in the model of Eq. (1)] and the self-propulsion mecha-
nisms5,8 [v0 and Dθ in the JP model of Sec. 2], all three diffusion
regimes listed above are experimentally accessible. Both organic
and synthetic microswimmers could be employed to investigate
advection effects on the active diffusion in laminar flow patterns.
Next focus of the present project is the self-assembly of advected
JPs. Indeed, mixtures of both passive and active JPs are known
to form a variety of superstructures2–4 mostly because of of the
hydrodynamic effects associated with the particle self-propulsion
and the particle-particle interactions, all effects which have been
neglected in this first report.

Finally, we remark that the overall picture presented here holds
for rigid (or no-slip) boundary arrays, as well. Numerical results
for the stream function,

ψ(x,y) = (U0L/2π)sin(2πx/L)sin2(2πy/L), (5)

are reported in Figs. 3 and 4 for a comparison. The breakdown
of the FBL circulation with increasing v0 is still detectable, though
not as sharp as in free-boundary convection arrays. In Fig. 3 the
dips of the D curves occur at lower values of v0 and are less pro-
nounced. This happens because a particle moving against the
edges of the array of Eq. (5) is advection free: it moves subjected
to the sole thermal noise; correspondingly, the FBL width shrinks.
For the same reason, in Fig. 4 the D curves never drop below D0.

A Model’s time scales
The diffusion process of Eq. (2) is characterized by many dynam-
ical parameters. In particular, in our analysis of the diffusion
data we made use of various time scales, which we now recap for
reader’s convenience, with reference to the underlying dynamical
mechanisms:

(i) Angular diffusion. In Eq. (2), the self-propulsion velocity
vector, ~v0, was assumed to have constant modulus, v0, and fluc-
tuating orientation with angle θ(t). In the absence of advection,
U0 = 0, we know that10,38, 〈vi(t)vi(0)〉= (v2

0/2)exp(−Dθ |t|), with
i = x,y. These autocorrelation functions prove that the angular
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Fig. 6 Stationary distributions, p(x) and p(y), for different Dθ with the
same simulation parameters as in panels (b) of Figs. 2 and 5, except for
D0 = 0.001. Note that here Eq. (3) yields vc = 0.13.

noise strength, Dθ , plays the role of angular diffusion rate and,
accordingly,

τθ = 1/Dθ , (6)

defines the persistence time of the ensuing active Brownian mo-
tion of the self-propelling JP. (ii) Roll circulation. Due to advec-
tion, a particle trapped in a convection roll, is dragged along a cir-
cular FBL of approximate radius L/4 with speed U0. This means
that the particle circulates inside the trapping roll with period
of the order of τ ′L = πL/2U0 or, equivalently, angular frequency
Ω′L = 4U0/L = (2/π)ΩL. Therefore, consistently with the current
literature, we agreed to use the standard definition of circulation
time scale35, namely

τL = 2π/ΩL = L/U0. (7)

(iii) Thermal diffusion. Subjected to thermal noise, the sus-
pended particle diffuses across the array with mean first-passage
time1 τ ′D = (L/2)2/2D0. Advection drag and thermal diffusion are
comparable when τ ′D/τ ′L ∼ 1. In the text, this condition has been
reformulated more conveniently as ΩLτD ∼ 1, with

τD = (L/2π)2/2D0. (8)

(iv) Ballistic self-propulsion. In the absence of angular diffu-
sion, Dθ = 0, the JP crosses ballistically a unit flow cell with time
constant τ ′0 = L/〈|vx|〉 = πL/2v0. In this regime, the action of ad-
vection and self-propulsion are comparable under the condition
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Fig. 7 Longitudinal diffusion of a JP in the laminar flow of Eq. (1): same
as in Fig. 3, (a), and Fig. 4, (b), but for D0 = 0.001.

that τ ′0 ∼ τ ′L, or, equivalently, τ0 ∼ τL, with

τ0 = L/v0. (9)

It should be noted that ballistic effects due to self-propulsion are
negligible with respect to advection and the array’s geometry, re-
spectively under the conditions ΩLτ0 � 1 and Dθ τ0 � 1, that is,
for v0�U0 and Dθ/ΩL� v0/U0

31.

Equations (6)-(9) define the time scales used in our analysis of
the simulation data displayed in Figs. 3 and 4. They can also be
combined to obtain convenient estimates of the reference diffu-
sion scales introduced in Sec. 4. Firstly, based on our derivation
of Ω′L, the diffusing particle is advected across the array width L/2
with effective speed (2/π)U0

39. This means that by hitting the
roll boundaries it undergoes a large-scale diffusion with diffusion
constant D = (1/2)(L/2)(2U0/π) = DL, which coincides with the
diffusion scale associated with the stream function of Eq. (1). Sec-
ondly, in Sec. 3, the FBL of a convection roll has been modeled as
an annulus of radius L/4 and width δ = (D0/ΩL)

1/2; accordingly,
it covers a fraction φ = 2πδ/L of the roll’s surface. We know that,
for v0 < vc, the large-scale diffusion of a JP, with diffusion con-
stant DL, is restricted to the FBL network. Therefore, its effective
diffusion constant is D = φDL, that is, D =

√
DLD0. This simple

argument reproduces the result of Ref.19 with κ = 1 instead of
the more accurate κ = 1.07.
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B Transverse distributions
We present in Fig. 5 the transverse distributions, p(y), corre-
sponding to the longitudinal distributions, p(x). Combined with
Figs. 1(c),(d) and 2 of Sec. 3, this figure illustrates the large-
scale circulation of a JP with v0 < vc and the break-up of the
FBLs for v0 > vc. The depletion of the inner region of the con-
vection rolls is the most pronounced for v0 ' U0 [Fig. 5(a)],
which corresponds to the strongest interplay of advection and
self-propulsion. In Fig. 5(d), the FBL break-up causes the sharp
jumps of 〈|cos(2πy/L)|〉, from 0 to 1 at v0 ∼ vc.

Moreover, we stated in Sec. 3 that the flattening of the p(x)
for v0�U0 is due to the symmetric particle accumulation against
both array’s edges. That statement is supported here by the pro-
file of the corresponding p(y) curves of Fig. 5(a), which, indeed,
exhibit sharp maxima at y = 0 and y = L/2.

We remind once again that the nonuniform distributions p(x)
and p(y) are peculiar of 1D convection arrays. Indeed, particle
accumulation inside the FBLs for v0 < vc and against the array’s
edges for v0 > vc is an effect of geometric confinement. Numerical
simulations of an active JP in the 2D flow of Eq. (1), with periodic
boundary conditions in the x and y direction, returned uniform
longitudinal and transverse distribution for any value of v0 (not
shown).

C The role of thermal noise
For brevity, in Secs. 3 and 4 we did not dwell on the role thermal
noise. We just stressed that its strength, D0, was set much smaller
than the advection diffusion scale, DL. Accordingly, we defined
the Péclet number as Pe = DL/D0. We then mentioned that D0

enters our estimates of both the FBL width, δ = (D0/ΩL)
1/2, and

the break-up threshold, vc, in Eq. (3).
To support those statements we present here simulation results

for the 1D distributions, p(x) and p(y), and the asymptotic diffu-
sion constant, D, obtained for a value of D0 one order of mag-
nitude smaller than in Figs. 2-4. On comparing Fig. 6(a) with
Fig. 2(b), it is apparent that the FBL width shrinks with increas-
ing D0. Analogously, the existence of the threshold vc and its
dependence on D0 are confirmed by the curves D versus v0, in
Fig. 7(a), and D versus Dθ , in Fig. 7(b) [see also Fig. 5(d)].

The overall behavior of the diffusion curves in Figs. 7 is con-
sistent with that displayed in Figs. 3 and 4. For instance, in
Fig. 7(b) all curves with vc < v0U0 attain the same maximum,
D/DL ' 1/2 at Dθ/ΩL = 1, as in Fig. 4, i.e., independently of D0.
However, a few differences are worthy to note: (i) Diffusion in
the pinning range, vc < v0U0, of Fig. 7(a) reveals additional de-
tails, which went unnoticed in Fig. 3; (ii) These details reflect
into the non-monotonic Dθ -dependence of the corresponding D
curves in Fig. 7(b); (iii) The interplay between thermal, D0, and
angular noise, Dθ , causes the double-peaked aspect of the p(x)
maxima in Fig. 6(a) [absent in Fig. 2(b)]. These details do not
affect the main conclusions of our work. We also remark here
that obtaining simulation data with a good statistics at very low
noise levels, D0 → 0 and (or) Dθ → 0, would require exceeding
computational resources. For this reason we could not push our
numerical investigation to lower D0 values.

A more substantial difference between Figs. 4 and 7(b) regards
the curves with v0 � U0. In Fig. 7(b) those curves seem to not
bend downward upon decreasing Dθ . This is due to the fact that,
consistently with Eq. (4), for the simulation parameters of Fig. 7
the estimated position of their maxima, D∗

θ
, is not captured by the

numerically accessible Dθ range.
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