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7 ABSTRACT

8 The local electronic structure of aqueous histidine, an amino acid important in nature and biology, is 
9 revealed by aerosol X-ray photoemission spectroscopy. A detailed picture of the photoionization 

10 dynamics emerges by tuning the pH of the aqueous solution from which the aerosols are generated 
11 allowing us to report the X-ray photoelectron spectroscopy (XPS) of histidine. Assignment of the 
12 experimental photoelectron spectra of the C1s and N1s levels allows for determination of the 
13 protonation state of histidine in these aqueous aerosols and is confirmed by density functional 
14 calculations. XPS spectra show that at pH = 1, both imidazole and amine group nitrogens are protonated, 
15 at pH = 7, the amine group nitrogen is protonated and carboxyl group carbon is deprotonated resulting 
16 in zwitterionic structure and at pH = 13, only the carboxyl group remains deprotonated. Comparison of 
17 these results with previous experimental and theoretical results suggests that X-ray spectroscopy on 
18 aqueous aerosols can provide a convenient and simple way of probing electronic structure in aqueous 
19 solutions.
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20 INTRODUCTION

21 Amino acids constitute the elementary building blocks of proteins, are metabolic intermediates, 
22 and play important roles in living organisms. To advance our understanding of their roles and functions 
23 in biology, it is important to determine the electronic and geometric structure of amino acids 
24 particularly in a solvent environment such as water. X-ray spectroscopic techniques are powerful tools 
25 for investigations of electronic structure of matter and have been extensively applied to amino acids. 
26 However, most of these investigations have been restricted to solid state1–8 or the gas phase amino 
27 acids9–12 while biochemical systems almost universally occur in aqueous environment. In the gas phase, 
28 amino acids exclusively exist in the neutral (molecular) form,13–15 and they are zwitterionic in the 
29 condensed phase.16 In biologically relevant aqueous environments, amino acids exist in a wide variety of 
30 charge states whose relative populations are determined by the pH of the solution. Amino acids exist as 
31 a cation in acidic media with its amine group protonated, whereas the carboxyl group is neutral. For a 
32 basic solution, the amine and carboxyl groups are both deprotonated and the amino acid acts as an 
33 anion. For intermediate pH values, amino acids form a zwitterionic state, leading to an overall charge-
34 neutral state.

35  Histidine is an amino acid with an imidazole ring side chain, the charge state of which depends on 
36 the environmental pH (Fig. 1).17–19 Because of its pH-dependent protonation, histidine is involved in the 
37 functions of proteins20 and plays a very important role in proton conduction,21 enzyme catalysis,22 and 
38 metal-requiring enzymes.23 From the viewpoint of molecular assembly in synthetic biology, amino acids 
39 and peptides can play very important roles due to their side chains,24,25 and in the case of histidine, the 
40 possibility of the imidazole motif to π-stack and act as nucleation sites.  Recently, we demonstrated a 
41 self-assembly process in arginine-oleic acid solutions, which is pH dependent leading to the formation of 
42 micelles, vesicles and finally sponges in basic medium.26 In histidine derived peptides, liquid-liquid phase 
43 separations have been invoked to give rise to the formation of hydrogels or coacervate micro-droplets 
44 which are also pH dependent.27 The imidazole motif prevalent in histidine has also been implicated in 
45 nucleation and crystallization processes in concentrated aqueous media, however neutron diffraction 
46 and X-ray scattering studies suggest that it is solvation which drives assembly and not π-stacking of the 
47 imidazole pairs.28 

48 Several X-ray absorption,29,30 X-ray emission,31 and resonant inelastic X-ray scattering (RIXS)32,33 
49 studies have been conducted on glycine, proline, cysteine, and lysine to investigate the change of their 
50 electronic structures engendered by varying the pH of solutions. The above mentioned techniques 
51 provide a view of the bulk solution, while X-ray photoelectron spectroscopy (XPS), which can provide 
52 direct information on electronic structure of the surface and interface, brings an extra layer of sensitivity 
53 to the measurements. However only recently has it been applied for the study of highly volatile aqueous 
54 solutions via liquid jet34 technology, to probe the electronic structure of lysine,35 glycine,36 and 
55 imidazole37 (the side chain of histidine), while we have pioneered the use of aqueous aerosols to 
56 investigate arginine with XPS38 and valence band spectroscopy.39 The XPS studies revealed large spectral 
57 energy shifts of the N1s and C1s photoemission peaks as a function of pH, showing it has a large 
58 influence on the electronic structure of amino acids. 
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59 While the solution phase pH dependence has been probed by vibrational spectroscopy40 and NMR 
60 methods,17  most of X-ray studies to date have focused on solid state histidine. XPS8,41,42 and near-edge 
61 X-ray absorption fine structure (NEXAFS)2,43 measurements of solid histidine and other biomolecules 
62 were supported by theoretical investigation of NEXAFS spectra of amino acids.44 A recent publication 
63 discusses NEXAFS and RIXS of histidine’s N K-edge in aqueous solution at basic, neutral, and acidic 
64 conditions.45 In the present work, we report on the impact of the pH variation on the local electronic 
65 structure of histidine in solution using XPS applied to the aqueous aerosols combined with theory. We 
66 demonstrate that we can extract protonation states of both carbon and nitrogen atoms at various pH 
67 conditions revealing valuable information for small biomolecules.

68 METHODS

69 Histidine was obtained commercially from Sigma-Aldrich (purity above 99%) and used without 
70 further purification. Initial 0.1 mol/L amino acid solutions were prepared with highly demineralized 
71 water. pH values of 1.0, 7.0, and 13.0 (±0.2) were adjusted either with hydrochloric acid or sodium 
72 hydroxide. 

73 In this study, a velocity map imaging (VMI) spectrometer combined with an aerodynamic lens38,46 
74 was used to obtain the XPS of histidine aqueous aerosol nanoparticles.  Aqueous aerosol nanoparticles 
75 were generated by atomizing 0.1 mol/L histidine aqueous solution via a high flux atomizer (Model 3076, 
76 TSI). Dry nitrogen is used as carrier gas for the C1s level while oxygen is used for the N1s level 
77 measurements. The size distribution of the nanoparticles is measured with a commercial scanning 
78 mobility particle sizer (SMPS, TSI). This distribution is broad with a mean particle diameter of 170 nm 
79 (surface to volume ratio of 3.7%), providing a nanoscaled solution environment. After passing through a 
80 set of aerodynamic lenses, the nanoparticles are tightly focused to a beam. The beam diameter is 1 mm 
81 with a computed flux of 107 particles/s at the interaction region. The photon beam generated by the 
82 beamline 11.0.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory intersects the 
83 nanoparticle beam orthogonally and leads to photoemission. 

84 Typical accumulation times for a photoelectron image is about 15 minutes. A background image is 
85 collected with an inline filter inserted, which removes all of the nanoparticles from the beam and is 
86 subtracted from the data image. The velocity distributions from the background-subtracted 
87 reconstructed images is performed using the pBASEX algorithm.47 The spectrometer is calibrated with 
88 N1s spectra of N2, in order to relate radial position in the image to electron kinetic energy (KE). C1s and 
89 N1s spectra presented in the paper are obtained by subtracting a linear background from raw data. The 
90 photon energy was calibrated by measuring XPS of nitrogen gas at 425 eV, and the obtained binding 
91 energy of N1s is 409.9 eV. Electron binding energies (BE) reported here are with respect to vacuum. 
92 Throughout this paper, when molecular formula fragments are reported, the atom of interest is 
93 indicated by being underlined where there is possible ambiguity.

94  Theoretical photoelectron spectra are calculated using the Gaussian 09 computational chemistry 
95 package to help assignment of experimental XPS data.48 Geometrical structures of histidine molecules 
96 are optimized using ωB97X-D functional with a 6-311+g(d,p) basis set in the presence of solvent 
97 simulated by the polarizable continuum model (PCM). The XPS peak positions and corresponding 
98 chemical shifts are obtained using Koopmans’ theorem (also known as “initial state”) approximation for 
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99 the density functional theory.49 According to the approximation, the final state effects are neglected and 
100 electron BEs and corresponding BE shifts are found only for initial state of the molecule. While the 
101 method is not very accurate for finding absolute values of BEs, it is rather precise and widely used to 
102 predict BE shifts. Calculated values of binding energies are blue shifted by 9.3 eV for C1s and by 10.9 eV 
103 for N1s electrons to correlate with experimental data for histidine solution with pH = 7. 

104 RESULTS AND DISCUSSION

105 Photoelectron spectra of aqueous solutions of histidine at three different pH values are shown in 
106 Fig. 2. XPS spectra of the N1s level are collected using the photon energy of 425 eV, whereas the C1s 
107 spectra are collected at photon energy of 310 eV, resulting in kinetic energy of emitted electrons of 20 
108 eV. While the shape of C1s spectra at three different pH values are very similar, the N1s spectrum 
109 becomes broader with the increase of pH, but the common trend is that both N1s and C1s peaks shift to 
110 lower binding energy with the increase of pH. That is due to change of the net histidine charge from +2 
111 (cation) at pH = 1, to neutral (the zwitterion form) in neutral solution, to -1 (anion) at pH = 13. The 
112 increase of electron density around histidine results in the shift of N1s and C1s peaks to lower BE during 
113 the increase of pH.

114 The experimental spectra were fit using Gaussian functions with fixed FWHM of 1.5 eV in such a 
115 way, that the sum of peak areas reflects expected stoichiometric ratios for the chemical environments 
116 within the histidine molecule (Fig. 1) and are presented in Table 1. A building block approach, based on 
117 literature data on XPS of aqueous solutions of glycine,36,38 arginine,38 and imidazole37 was used to assign 
118 the collected experimental data.

119 At pH = 1, the peak with the highest binding energy of 406.6 eV could be assigned as the amine 
120 group (NH3

+) nitrogen (Fig. 2, left panel). The two remaining peaks are due to the imidazole group. Due 
121 to protonation of the imidazole group, both N atoms in the group are in a close chemical environment 
122 and therefore corresponding N1s peaks lie near each other at binding energies of 406.0 and 405.6 eV. 
123 When the pH of the solution is increased to 7, the imidazole group becomes neutral while the amine 
124 group remains protonated. Because all three N atoms are in different environments, the three peaks 
125 used to fit the experimental data are well separated. The peak corresponding to the unchanged amine 
126 group, shifts to slightly lower binding energy of 406.1 eV. Whereas both imidazole N atoms experience 
127 stronger BE shifts: the N=C–NH and N=C–NH 1s photoemission lines occur at 405.0 and 403.6 eV, 
128 respectively. At pH = 13, both the amine and imidazole groups are deprotonated. The imidazole group 
129 maintains the same charge as at pH = 7 and therefore N=C–NH peak stays at 405.0 eV, whereas N=C–NH 
130 peak shifts to lower BE of 403.2 eV, separating the imidazole group peaks by 1.8 eV, what is close to the 
131 experimental value of 1.7 eV reported for aqueous imidazole.37 In agreement with previous XPS studies 
132 of aqueous glycine,36,38 deprotonation of the amine group leads to a significant decrease of 
133 corresponding N1s BE by 2.0 - 2.5 eV and results in amine’s N1s peak of histidine at 403.9 eV.

134 The shape of C1s spectra (Fig. 2, right panel) does not change so strongly as that of the N1s spectra. 
135 All three spectra have a shoulder at high BE which is due to the ionization of the carboxyl group and 
136 correlates well with the similar peak in glycine.36,38 The larger peak in C1s spectra is due to 
137 photoemission from the remaining five carbon atoms, which complicates assignment of the individual 
138 peaks. The lowest BE component could be due to aliphatic C–C carbon, whereas the two peaks in 
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139 between of carboxyl and aliphatic carbons should be due to imidazole’s and amine’s C1s peaks. 
140 According to previous XPS data for imidazole37 and glycine,36,38 at pH =1 the peak at 291.6 eV is due to 
141 the amine group and N=C–NH carbon in the imidazole group. Two remaining imidazole carbons (labeled 
142 C–N in Fig. 2) result in a peak at 290.9 eV. Increase of pH to 7 leads to deprotonation of the carboxyl 
143 group, which shifts the  corresponding peak BE by 0.8 eV, what is less than that observed in glycine (1.0 
144 eV36 or 1.1 eV38), but larger than that observed in arginine (0.7 eV38). Deprotonation of the imidazole 
145 group and change of net molecule’s charge from +2 to 0 leads to decrease of BE of the remaining peaks, 
146 but does not change their order. The peak at 290.8 eV is due to glycine’s and imidazole’s N=C–NH 
147 carbons, whereas the peak at 290.0 eV is due to two other imidazole’s carbon atoms. Increase of pH to 
148 13 leads to deprotonation of the amine group and change of peak order within the large peak in 
149 histidine’s C1s XPS spectrum (Fig. 2, bottom right panel). The imidazole’s N=C–NH carbon appears at BE 
150 = 290.5 eV, whereas the amine’s carbon (C–NH2) shifts to BE of 290.0 eV, joining two imidazole’s 
151 carbons.

152 While the building block’s approach allows for a tentative assignment of the XPS spectra, we 
153 performed theoretical calculation as outlined above to confirm these assignments and gain further 
154 insight into the electronic structure of solvated histidine. To reproduce the experimental spectra, in 
155 particular the splitting on carboxyl’s carbon it was necessary to explicitly insert four water molecules 
156 around histidine molecule as shown in Fig. S1 in Supporting Information. This model at various levels of 
157 theory have been implemented in studying the core level shifts in aqueous glycine.36,50,51 The calculated 
158 spectra, based on binding energies summarized in Table 2, are convoluted with a Gaussian with FWHM = 
159 1.2 eV to resemble experimental spectra and are shown in Fig. 3. The calculated spectra reproduce the 
160 main features of the experimental XPS spectra. Thus for the N1s peak, one can see that the peak gets 
161 broader at pH = 7 and pH = 13, and the asymmetric shape of the peaks at those pH is well reproduced. 
162 The theory confirms our assignment with only one major difference: deprotonation of the amine group 
163 caused by increase of pH from 7 to 13 leads to decrease of corresponding N1s BE by 3.1 eV instead of 
164 the 2.2 eV observed in the experiment, shifting the primary amine’s nitrogen from the most bound at pH 
165 = 1 and 7 to the least bound at pH = 13. The observed discrepancy with the experiment may arise from 
166 the simple level of theory to extract electron BE’s, namely Koopmans’ theorem. However, the 
167 correlation of theory with the experiment is better for C1s spectra, reproducing the predicted 
168 assignments and shifts of peaks, such as merged Gaussian peaks of double (at pH =1 and 7) or triple (at 
169 pH = 13) intensity. In the future, better theoretical models coupled to a higher level of calculations 
170 should provide for a more robust fit to our experimental results.

171 Although we discuss only the π-tautomer of histidine, shown in Figure 1, there is another, τ-
172 tautomer, which has another deprotonated nitrogen in the imidazole moiety.17–19 Our DFT calculation 
173 revealed that the π-tautomer is energetically favorable over the τ-tautomer by 52 meV at pH = 7 and by 
174 25 meV at pH = 13. The computed XPS spectra for both tautomers are presented in Fig. S2 and 
175 demonstrate similarity, with one noticeable difference for N1s at pH = 7, where the peak is broader for 
176 the τ-tautomer. While the resolution of our experimental spectra does not allow for an unequivocal 
177 identification, previous investigations45 and energetics would suggest that the π-tautomer is the 
178 dominant species.
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179 CONCLUSIONS

180 X-ray photoelectron spectra of histidine aqueous aerosols at different pH values were obtained using 
181 the velocity map imaging photoelectron spectrometer combined with an aerodynamic lens. Application 
182 of a building block approach allowed for identification of the individual nitrogen and carbon atoms of 
183 aqueous histidine by their respective core-level binding energies. Electron binding energies, extracted 
184 from DFT calculations of the histidine at different pH values of solution confirmed assignment of the 
185 experimental spectra. This allowed for identification of protonation states of individual carbon and 
186 nitrogen atoms in histidine molecule. This study also demonstrates that velocity map imaging XPS of 
187 aqueous aerosols is a powerful technique allowing to probe the electronic structures of biological 
188 molecules in their natural aqueous environment. 
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340 Table 1: Summary of all experimental C1s and N1s binding energies (in eV) for histidine aqueous aerosol 
341 generated at different pH conditions.

C1s N1s
carboxyl amine, 

N=C–NH
C–N C–C amine N=C–NH N=C–NH

pH = 1 293.3 291.6 290.9 290.6 406.6 406.0 405.6
pH = 7 292.5 290.8 290.0 289.8 406.1 405.0 403.6

pH = 13 292.3 290.5 290.0 289.3 403.9 405.0 403.2
342

343

344 Table 2: Summary of all calculated C1s and N1s binding energies (in eV) for histidine aqueous aerosol 
345 generated at different pH conditions.

C1s N1s
carboxyl amine N=C–

NH
C–NH C–N C–C amine N=C–

NH
N=C–

NH
pH = 1 294.4 292.4 292.5 291.2 291.5 290.8 407.5 406.3 406.3
pH = 7 292.2 290.9 290.9 290.0 290.0 289.8 405.9 405.1 403.6

pH = 13 291.7 289.8 290.8 289.9 289.8 289.2 402.8 405.0 403.5
346
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347

348 Figure 1. Dominating protonation forms of histidine in aqueous solution at different pH conditions.

349

Page 12 of 13Physical Chemistry Chemical Physics



13

350

351 Figure 2. N1s and C1s photoelectron spectra of aqueous histidine collected at pH = 1 (top), pH = 7 
352 (middle), and pH = 13 (bottom). Black line represents experimental data, while magenta line represents 
353 total fit composed of sum of individual Gaussians (colored in red, blue, green, and black). 

354

355

356 Figure 3. Theoretical N1s and C1s spectra of aqueous histidine collected at pH = 1 (top), pH = 7 (middle), 
357 and pH = 13 (bottom). Calculated binding energies are shown with vertical colored sticks. The spectrum 
358 is convoluted with Gaussian (FWHM = 1.2 eV) to correlate with the experimental photoelectron spectra 
359 and shown as black lines.
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