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Yield-prediction models for efficient exfoliation of soft layered 
materials into nanosheets  

Kyohei Noda,a Yasuhiko Igarashi,b,c Hiroaki Imai,a Yuya Oaki*,a,c 

Yield-prediction models were studied for efficient exfoliation of 

soft layered materials stacked via van der Waals interaction by an 

assistance of machine learning on small experimental data. High-

yield exfoliation of graphite and layered organic polymer were 

achieved in the conditions guided by the models in a limited 

number of experiments. 

Layered materials and their exfoliated two-dimensional (2D) 

nanosheets exhibit emergent properties originating from the 

characteristic structures.1 Nanosheets are obtained by 

exfoliation of the precursor layered materials in liquid phase.2 

In the present work, nanosheets are defined as not only the 

monolayers but also thin layers with anisotropic structures 

exfoliated from the layered materials. A typical method for 

liquid-phase exfoliation is sonication to apply mechanical 

stress.2 The new methods have been studied to promote the 

exfoliation more efficiently, such as addition of specific 

exfoliating agents and assistance of microwave.2d,3 A couple of 

previous reports showed high-yield syntheses of graphene and 

transition-metal dichalcogenides.3 However, nanosheets are 

not always obtained in high yield through exfoliation. In 

particular, the guideline to select the dispersion media is 

required for liquid-phase exfoliation. In recent years, layered 

materials have the types diversified from classical inorganic 

ones to new organic and hybrid ones, such as metal- and 

covalent-organic frameworks (MOFs and COFs) and 2D 

polymers.4 If the high-yield conditions, such as exfoliation 

media, are efficiently predicted before the experiments, the 

design, synthesis, and exfoliation of new layered materials can 

be accelerated. Here we propose straightforward yield-

prediction models for efficient exploration of organic solvents 

as the exfoliation media (Fig. 1).  

    Exfoliation methods and processes are different for different 

interlayer interaction of layered materials.2d The interlayer 

interaction is mainly classified into two types, electrostatic and 

van der Waals interactions. For example, layered materials 

based on van der Waals interaction, such as graphite, transition-

metal dichalcogenides, and black phosphorus, are exfoliated 

into the nanosheets with dispersion in liquid phase.1b–e,2b,c,4,5 On 

the other hand, layered compounds based on the electrostatic 

interaction, such as clays, layered double hydroxides, and 

transition-metal oxides, are delaminated with ionic exfoliating 

agents in aqueous and polar organic media.1a,f,g,2a,d,6  

 

Fig. 1.   Yield-prediction model for exfoliation of soft layered materials. (a) Structural 

model of soft layered composites based on the transition-metal oxide layers and 

interlayer organic guests. (b) Surface-modified nanosheets and definition of the yield in 

the present work. (c) Structural models of graphite and BQ-Py layered organic polymer 

for the predicted syntheses of the nanosheets. (d) Dispersion media for exploration of 

the high-yield conditions using the prediction model (Scheme S1 in the ESI). (e) Average 

actual yields for exfoliation of graphite (blue) and BQ-Py (orange) in the predicted high- 

(left bars) and low- (right bars) yield conditions. 

Our group has studied a new exfoliation route using layered 

inorganic-organic composites.1h,7 Transition-metal oxides 

stacking the layers via electrostatic interaction, a rigid type 

layered compound, are converted to the soft layered 

composites through intercalation of the organic guests (Fig. 1a). 
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As the weaker interlayer interaction via van der Waals 

interaction is introduced by the intercalated guests, the surface-

modified nanosheets, including the monolayers and few-layers, 

are obtained through the exfoliation in organic dispersion 

media (Fig. 1b). The exfoliation behavior, such as yield and 

lateral size, is changed and controlled by the combinations of 

the host inorganic layers, guest organic molecules, and 

dispersion media.7d–f A yield-prediction model for exfoliation of 

the soft layered composites was constructed with an assistance 

of machine learning.7d,e The prediction model facilitates 

exploration of the guest-medium combinations achieving the 

high-yield exfoliation. As the main interlayer interaction of the 

soft layered composites is van der Waals interaction between 

the interlayer organic guests (Fig. 1a), the model can be applied 

to other layered compounds based on van der Waals interaction 

even without the interlayer guests, such as graphite and layered 

organic polymers (Fig. 1c). In the present work, the high-yield 

exfoliation of layered compounds stacked via van der Waals 

interaction was demonstrated using the yield-prediction model 

(Fig. 1c–e). Then, the prediction model was modified for the soft 

layered compounds. Moreover, the higher yield was achieved 

using the modified prediction model. The prediction models can 

be regarded as a general guideline for exploration of exfoliation 

media.  

Table 1.   Measured yields of the exfoliated nanosheets from graphite and BQ-Py in the 

predicted high- and low-yield conditions. 

Predicted high-yield conditions (top)  Predicted low-yield conditions (bottom) 

Host Graphite Yield 
y / % 

 Host Graphite Yield 
y / % Rank Medium  Rank Medium 

1 1,3-Dioxolane 15.97  1 Hexane 1.74 
2 Benzyl alcohol 24.88  2 Heptane 5.14 
3 2-Methoxyethanol 14.94  3 Cyclohexane 9.62 
4 2-Ethoxyethanol 14.80  4 Octadecene 20.39 
5 2-Aminoethanol 28.29  5 Benzene 0 

Average 19.78  Average 7.38 
Standard deviation 5.68  Standard deviation 7.29 

Host BQ-Py Yield 
y / % 

 Host BQ-Py Yield 
y / % Rank Medium  Rank Medium 

1 Benzyl alcohol 19.86  1 Hexane 0 
2 Benzaldehyde 25.72  2 Heptane 3.28 
3 Ethylene Glycol 14.55  3 Acetonitrile 17.31 
4 Chlorobenzene 23.04  4 Cyclohexane 6.45 
5 2-Methoxyethanol 22.04  5 4-methyl-2-pentanone 14.62 

Average 21.04  Average 8.33 
Standard deviation 3.75  Standard deviation 6.61 

Graphite was selected as a model of crystalline layered 

compounds. An amorphous layered organic polymer was 

prepared by random 2D copolymerization of benzoquinone 

(BQ) and pyrrole (Py) with the simultaneous stacking (Fig. 1c and 

Fig. S1 in the Electronic Supplementary Information (ESI)), 

according to the method in our previous report.8 These two soft 

layered materials were exfoliated into the nanosheets in 

organic dispersion media. The dispersion media achieving the 

high-yield exfoliation were explored in 38 common solvents 

using the yield-prediction model (Fig. 1d and Scheme S1 in the 

ESI). The predicted yield (yʹ) is described by (Eq. 1) using two 

descriptors, namely Hansen-solubility (similarity) parameter 

(HSP) hydrogen-bonding term of the dispersion medium (x18) 

and HSP distance between the host layer and dispersion 

medium (x35).7e  

yʹ = 35.00x18 – 32.33x35 + 34.07 … (Eq. 1) 

The descriptors x18 and x35 were converted to the normalized 

frequency distribution such that the mean is 0 and standard 

deviation is 1. These descriptors were extracted from total 35 

explanatory variables (xn: n = 1–35) potentially related to the 

exfoliation of the layered composites in our previous works 

(Table S1 in the ESI).7e Three HSP terms of the host graphite, 

namely dispersion (D), polarity (P), and hydrogen bonding (H) 

terms, were referred to the previous report for the calculation 

of the HSP distance to the solvents (x35).5b D, P, and H terms of 

the BQ-Py polymer were calculated on the structure of the 

oligomer (Fig. S1 in the ESI). Table 1 summarizes the 

recommended dispersion media to achieve the highest and 

lowest yields corresponding to the top and bottom 5 in the 

ranking of the predicted values (Table S2 in the ESI), respectively. 

The exfoliation experiments were carried out on these 20 

conditions. 

 

Fig. 2.   Microscopy (a–d,f–i) and DLS (e,j) analyses of the nanosheets with 

exfoliation of graphite (a–e) in 1.3-dioxolane and BQ-Py (f–j) in chlorobenzene. 

(a,f) TEM images. (b,g) AFM images and their height profiles. (c,d,h,i) Histogram of 

the lateral size and thickness. (e,j) DLS charts of the dispersion liquids containing 

the nanosheets.  

Graphite and BQ-Py were dispersed in these media. The 

dispersion liquids were sonicated at room temperature for 0.5 

h in a sonic bath and then maintained at 60 °C for 0.5 h under 

stirring. The detailed method was described in the ESI. Then, the 

bulky unexfoliated and aggregated particles were removed by 

filtration. The dispersed nanosheets were suctioned and 

collected using a membrane filter with 0.1 μm in the pore size. 

The actual yield (y) was calculated using (Eq. 2) by the initial 

weight of the precursor layered materials (W0) and weight of 

the collected nanosheets (W) (Fig. 1b).7d–f 

y = 100 × W / W0 … (Eq. 2) 

The measured actual yields and their averages were 

summarized in Table 1. The average yields in the predicted high-
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yield conditions (top five) were 19.78 ± 5.68 % for graphite and 

21.04 ± 3.75 % for BQ-Py (y in the left part in Table 1 and Fig. 

1e). On the other hand, the average yields in the predicted low-

yield conditions (bottom five) were 7.38 ± 7.29 % for graphite 

and 8.33 ± 6.61 % for BQ-Py (y in the right part in Table 1 and 

Fig. 1e). The measured yields showed the significant differences 

in the predicted high- and low-yield conditions.  

The exfoliated nanosheets were observed by transmission 

electron microscopy (TEM) and atomic force microscopy (AFM) 

(Fig. 3). The precursor layered materials had the average size 

4.97 ± 4.10 μm for graphite and 2.26 ± 3.14 μm for BQ-Py (Fig. 

S2 in the ESI). The exfoliation of graphite in 1,3-dioxolane 

formed the nanosheets 1.45 ± 0.85 μm in lateral size and 3.2 ± 

1.4 nm in thickness (Fig. 2a–d). Dynamic light scattering (DLS) 

analyses showed the particle-size distribution with the average 

size 1.21 ± 0.33 μm (Fig. 2e). Although the resultant nanosheets 

were not monolayered graphene, the anisotropic nanosheets 

stacking around 10 layers were obtained through the exfoliation. 

The BQ-Py nanosheets 287 ± 90 nm in lateral size and 9.8 ± 11.3 

nm in thickness were obtained by the exfoliation in 

chlorobenzene (Fig. 2f–j). As the layers are partially cross-linked 

via covalent bond (Fig. S1 in the ESI),8 the thicker nanosheets 

are formed for BQ-Py (Fig. 2g,i). These results support the 

formation of the nanosheets in organic dispersion media.  

Table 2.   List of the explanatory variables for ES-LiR. 

n / – Parameters Unit  n / – Parameters Unit 

Dispersion media  16 bHSP dispersion  – 

2 bMolecular length nm  17 bHSP polarity  – 
4 aBoiling point °C   18 bHSP hydrogen bond – 

5 aDensity g cm–3  Host-medium combination 

8 aViscosity cP  33 bDifferences in dipole 
moment 

Debye 
10 aSurface tension mJ m–2   
14 bDipole moment Debye  35 bHSP distance – 

a Literature values. b Calculation values by commercial softwares (See ESI).  

 
Fig. 3.    Improvement of the prediction models. (a) Weight diagram of the ES-LiR 

analysis on total 60 data. (b,c) Relationship between the estimated (yʹ) and actual 

(y) yields for the prediction models using the two (x18 and x35) (b) and four 

descriptors (x16 , x17, x18, and x35) (c).  

The high- and low-yield syntheses of the nanosheets were 

demonstrated in the predicted conditions using the model (Eq. 

1). However, the model is constructed on the training data for 

the layered composites of host transition-metal oxide layers 

and interlayer organic guests (Fig. 1a).7e Here the descriptors 

and model are validated by machine learning (Fig. 3). New 40 

yield data for exfoliation of graphite and BQ-Py were added to 

the original 20 data in Table 1 (Table S3 and Fig. S3 in the ESI). 

The actual yields (y) of the total 60 samples were set as the 

objective variables. We selected the potential descriptors (xn: n 

= 2, 4, 5, 8, 10, 14, 16, 17, 18, 33, and 35 in Table 2) as the 

explanatory variables on the basis of our chemical perspective. 

The correlation between xn and y was studied by exhaustive 

search with linear regression (ES-LiR),9 a machine learning 

method for sparse modeling.10 Sparse modeling is a recent data-

scientific approach for description of high-dimensional data 

using a limited number of the strongly correlated factors, 

namely descriptors, on the assumption of the sparseness in the 

data. In ES-LiR, the linear multiple regression models are 

exhaustively constructed for all the possible combinations of 

the explanatory variables (xi: i = 1, 2, 3, …i), namely total 2N–1 

(N = i) combinations. After the linear regression models are 

sorted in ascending order of the cross-validation error (CVE), 

the non-zero coefficient of the explanatory variables is 

represented by the warm and cool colors corresponding to the 

positive and negative values in the weight diagram (Fig. 3a). The 

more densely colored descriptors with the similar chromaticity 

are the potential descriptors. The weight diagram supports that 

x18 and x35 in (Eq. 1) are the descriptors with the positive and 

negative correlations, respectively (Fig. 3a). The yield-prediction 

model was modified to be (Eq. 3) using x18 and x35 with root 

mean squared error (RMSE) 8.47 % on the 60 training data for 

soft layered materials (Fig. 3b and Table S3 in the ESI).  

yʹ = 4.37x18 – 5.88x35 + 16.21 … (Eq. 3) 

Fig. 3b shows the relationship between the estimated and 

actual yields. The more plots on the diagonal line mean the 

more accurate model with the correlation between the 

estimated and actual values. Moreover, the weight diagram 

indicates that x16 and x17 have potentials to be the descriptors 

with the positive correlation. The revised yield-prediction 

model was described using (Eq. 4) by x16, x17, x18, and x35 with 

RMSE 8.09 % (Fig. 3c). 

yʹ = 2.19x16 + 2.43x17 + 2.74x18 – 5.09x35 + 16.21 … (Eq. 4) 

The revised model using the four descriptors is more accurate 

because of the smaller RMSE value. The revised model (Eq. 4) 

has the improved correlation in the higher-yield conditions (Fig. 

3b,c).  

   The correlation of these four descriptors is explained as 

follows. The higher yield is achieved by the smaller x35. The 

smaller HSP distance between the layers and dispersion media 

means their higher affinity. The positive correlation of x16, x17, 

and x18 indicates that the higher yield is achieved in dispersion 

media with the larger HSP D, P, H terms. The stronger 

interactions of the dispersion media to the host layers 

contribute to achieve the higher yield. The other potential 

factors, such as the size and crystallinity, can be included as the 

explanatory variables in the training dataset. The prediction 

model can be improved and expanded with addition of the yield 

data by the similar manner.  
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   The improved prediction model (Eq. 4) was applied to 

demonstrate the exfoliation of graphite in the higher yield using 

the mixed solvents as unknown dispersion media. As the 

coefficient of x35 is the largest in (Eq. 4), the dispersion media 

with the smaller HSP distance to graphite have potentials to 

achieve the high-yield exfoliation. HSP distance (HSP-d) is 

calculated by the differences in D, P, and H terms (δD, δP, δH) 

between two materials using (Eq. 5).11  

HSP-d = {4(δD)2 + (δP)2 + (δH)2}0.5 … (Eq. 5) 

Therefore, the dispersion media with D, P, and H terms similar 

to graphite provide the smaller HSP-d. According to the 

previous report,23 the terms (D, P, H) of graphite are (18.0, 9.3, 

7.3). The following pure solvents have the close values to 

graphite: (18.7, 3.6, 3.5) for chlorobenzene, (17.4, 13.7, 11.3) 

for DMF, (18.9, 8.0, 6.2) for benzaldehyde, (17.0, 11.0, 6.8) for 

acetylacetone, and (17.3, 9.2, 8.9) for 1,3-dioxolane. As the 

mixed solvents have the proportionally divided D, P, and H 

terms of the two pure solvents, the smaller HSP distances to 

graphite are achieved by the mixed solvents chlorobenzene-

DMF, 1,3-dioxolane-benzaldehyde, and benzaldehyde-

acetylacetone (Table S4 in the ESI). In addition, the D, P, and H 

terms themselves corresponding to x16, x17, and x18 in (Eq. 4) are 

large to achieve high-yield exfoliation, respectively. Exfoliation 

of graphite in the mixed solvents in 1/1 by volume actually 

showed the yield 48.01 % for chlorobenzene-DMF, 41.09 % for 

1,3-dioxolane-benzaldehyde, and 14.41 % for benzaldehyde-

acetylacetone for 1 h including the sonication at room 

temperature for 0.5 h and stirring at 60 °C for 0.5 h. The highest 

yield 48.01 % was not observed in the pure solvents as the 

dispersion media in the present work (Table S3 in the ESI). The 

yield is one of the highest efficiencies compared with previous 

works (Table S5 in the ESI).4,7e In this manner, the prediction 

model assists exploration of the dispersion media for the high-

yield exfoliation in a limited number of the experiments. 

Efficient exfoliation of layered materials was reported using the 

mixed solvents and/or HSP values.11b,12 However, the yield-

prediction models as the guideline, such as (Eq. 3) and (Eq. 4), 

were not proposed in the previous works. The optimization of 

the exfoliation conditions has potentials for further 

improvement of the yield and selective syntheses of the 

monolayered graphene.  

In summary, the yield-prediction models were studied for 

exfoliation of soft layered materials stacked via van der Waals 

interaction. The straightforward prediction model comprised 

few descriptors related to the physicochemical parameters of 

the host layers and dispersion media. The high-yield exfoliation 

of graphite and layered organic polymer was achieved in a 

limited number of the experiments, according to the prediction 

models. The straightforward model can be applied to design of 

new layered materials and exploration of the exfoliation media.    

This work was supported by JST PRESTO (Y.O., JPMJPR16N2 

and Y. I. JPMJPR17N2). There are no conflicts to declare. 
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