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Mid-infrared Spectroscopic Imaging (MIRSI) provides spatially-resolved molecular specificity by mea-
suring wavelength-dependent mid-infrared absorbance. Infrared microscopes use large numerical
aperture objectives to obtain high-resolution images of heterogeneous samples. However, the optical
resolution is fundamentally diffraction-limited, and therefore wavelength-dependent. This signifi-
cantly limits resolution in infrared microscopy, which relies on long wavelengths (2 µm to 12 µm) for
molecular specificity. The resolution is particularly restrictive in biomedical and materials applica-
tions, where molecular information is encoded in the fingerprint region (6 µm to 12 µm), limiting the
maximum resolving power to between 3 µm and 6 µm. We present an unsupervised curvelet-based
image fusion method that overcomes limitations in spatial resolution by augmenting infrared images
with label-free visible microscopy. We demonstrate the effectiveness of this approach by fusing images
of breast and ovarian tumor biopsies acquired using both infrared and dark-field microscopy. The
proposed fusion algorithm generates a hyperspectral dataset that has both high spatial resolution
and good molecular contrast. We validate this technique using multiple standard approaches and
through comparisons to super-resolved experimentally measured photothermal spectroscopic images.
We also propose a novel comparison method based on tissue classification accuracy.

1 Introduction

Broadband vibrational spectroscopic imaging provides excellent
molecular sensitivity that can identify the spatial distribution of
molecular constituents. Fourier transform infrared (FTIR) spec-
troscopic imaging is a popular technique that is used to measure
mid-infrared absorbance spectra in materials science,1,2 foren-
sics,3 and biomedicine4,5 by illuminating the sample with mid-
infrared (mid-IR) light in the range of 750 to 4000 cm−1 (13.3
to 2.5µm).6 This technique is commercially available, facilitating
wide adoption in settings where mid-infrared spectroscopic imag-
ing (MIRSI) is necessary to provide molecular context at each
pixel.

The spatial resolution ∆` of an imaging system under the
Rayleigh criterion is proportional to the incident wavelength λ

and inversely proportional to the objective’s numerical aperture
NA:7

∆`= 0.61
λ

NA
. (1)

The numerical aperture is fixed and usually in the range of ≈
0.5 to 0.8. Spatial resolution is therefore wavelength-dependent
and varies significantly (up to 6×) across the mid-IR range
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(2.5 to 13.3µm). MIRSI instrument manufacturers typically use
pixel sizes between 5 µm and 7 µm based on the spatial res-
olution in the fingerprint region (900 to 1800cm−1). This is
sub-optimal for biomedical applications that require sub-cellular
resolution to evaluate heterogeneous tissue structures. Recent
commercial platforms provide high-definition8 imaging that re-
duces pixel sizes to ≈1.1 µm to achieve the best possible spa-
tial resolution.8,9 These advances improve image quality in high-
wavenumber bands (3000 to 3500cm−1).10 However images in
the fingerprint region, which encode molecular contrast for a va-
riety of organic molecules, are still diffraction limited.11 The final
images are high resolution at higher wavenumbers, due to the re-
ciprocal relationship to wavelength, while important molecular
information at longer wavelengths is obscured in low-resolution
images. Methods that improve the spatial resolution at these
wavenumbers can significantly improve the viability of FTIR in
biomedical applications.12

Resolution limits in MIRSI hinder the analysis of histologi-
cal samples where small spatial features, such as collagen fibers
(≈2 µm wide) and cell clusters, are clinically important. Applica-
tions requiring high spatial resolution have motivated the devel-
opment of new MIRSI instruments leveraging probes to overcome
the diffraction limit.13–16 Photothermal IR (PTIR)17 and optical
photothermal IR (O-PTIR)18 enable sub-micrometer resolution
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with simultaneous spectroscopic contrast. While individual band
images and spectra can be acquired rapidly using O-PTIR, mea-
suring full hyperspectral cubes is currently too time consuming
for routine clinical applications. However, spectroscopic imaging
data from O-PTIR provides a direct experimental measurement of
sub-micron spatial features and spectroscopic signatures, which is
challenging to obtain through other technologies. We use it as a
gold standard to assess the technology proposed in the current
manuscript.

This paper proposes curvelet-based multi-modal fusion to en-
hance spatial resolution in chemical maps, bridging the gap be-
tween MIRSI and traditional histology to achieve cellular-level
resolution with FTIR instrumentation. The proposed method
builds on image sharpening techniques from remote sensing19,20

and extends it to mid-IR hyperspectral datasets using a novel un-
supervised approach to integrating high-frequency features into
hyperspectral images. In remote sensing, low resolution mul-
tispectral (MS) images are fused with high-resolution panchro-
matic (PAN) images. Such sharpening is commonly referred to
as pansharpening. Our approach uses dark-field microscopy to
obtain high-resolution data analogous to panchromatic images.
High spatial frequency features are fused into MIRSI data using
an unsupervised curvelet-based approach. This combination of
dark-field microscopy and MIRSI provides several practical ad-
vantages: (1) both modalities are label-free; (2) high-resolution
image acquisition requires very little additional time, and (3) no
changes to sample preparation are required. Unlike current pho-
tothermal imaging, our technique does not require new instru-
mentation, or long hyperspectral data acquisition times.

We demonstrate the efficacy of the proposed algorithm on tis-
sue biopsies, where both molecular specificity21 and cellular-level
resolution (<5 µm)22 are critical to clinical diagnosis but beyond
the capabilities of FTIR imaging. We evaluate the efficacy of our
fusion algorithm using quantitative metrics, such as spectral dis-
tortions relative to the raw hyperspectral data. We also propose
evaluations based on classification of the fusion data and com-
paring these results to both FTIR and traditional histopathology.
This novel evaluation method is more practical for MIRSI, since
it focuses on optimizing the resulting image for reconstruction,
which is currently the most common task in infrared histology.

1.1 Previous Work

Multi-modal image fusion refers to a broad class of techniques
combining data from two or more modalities to produce an
information-rich output image. This provides clinical insights
that each modality cannot furnish alone. Such techniques are
common in medical imaging, where magnetic resonance imaging
(MRI), computed tomography (CT), positron emission tomogra-
phy (PET), and single-photon emission computed tomography23

are fused to provide a comprehensive data set for a single patient.
Multi-modal image fusion can also speed up acquisition. Work by
Kong et al.24 demonstrates that integration of autofluorescence
imaging and Raman scattering acquires molecular information
faster than the conventional histology. Falahkheirkhah25 has pro-
posed a deep learning framework to enhance spatial details of

MIRSI by training on hematoxylin and eosin (H&E) stained tissue
images. This approach has limited applicability in histopathol-
ogy applications where data consists of several cell types and
subtypes, since the spatial enhancement is not uniform for all
morphological features but biased towards the morphological fea-
tures highlighted by H&E.

Pansharpening is used extensively in remote sensing to fuse
high-resolution panchromatic images with multispectral (MS)
data.26 This produces images with better spatial and spectral res-
olution through cost-effective imaging using independent sensors
optimized for (1) high spectral resolution (MS sensor) and (2)
high spatial resolution (panchromatic sensor).27 Pansharpening
commonly relies on component substitution: a low-resolution hy-
perspectral (HS) image is projected onto a new basis, such as
the one provided by principal component analysis (PCA). High-
frequency components are inserted by replacing elements in the
projected basis. The inverse transform is then applied to produce
a fused output. Pansharpening with PCA is a component sub-
stitution algorithm,28 where the MS image is transformed using
PCA. The first component of the new MS image is replaced by
the high-resolution pan image to add spatial detail. Inverting the
fused MS projection results in a sharpened MS output. Compo-
nent substitution techniques are unsupervised, and do not require
training or a corresponding ground truth. However, these sharp-
ening techniques are prone to spectral distortion. The extent of
these distortions depends on the correlation between the sharp
pan band and the replaced component of the projected MS im-
age.

Another approach involves directly injecting spatial details
into low-resolution images. These methods separate spatial fea-
tures using multi-resolution analysis (MRA). Wavelet-based fu-
sion, band dependent spatial injection (BDSD), and wavelet-
based Bayesian fusion are examples of spatial detail injection
methods.29 These methods provide better spectral fidelity, since
the injected features are optimized for each band and there is
no upper limit on the number of injected high-resolution bands.
Most pansharpening algorithms are supervised. Band dependent
spatial detail (BDSD) uses a ground truth image to identify op-
timal parameters for injecting spatial details. BDSD is also com-
putationally intensive since the inserted spatial features are com-
puted using the entire MS image.26 Clustered-BDSD (C-BDSD)
algorithm is an extension of BDSD algorithm with efficient im-
plementation. C-BDSD optimizes parameters on pixels clustered
using spatial features unlike BDSD in which parameters are es-
timated globally or locally with a sliding window.30 Parameter
estimation on clustered pixels makes C-BDSD fast and accurate
when compared to BDSD. Although C-BDSD is fast and works
well for remote sensing, it is a supervised algorithm which relies
on a high resolution ground truth. The nonavailability of high res-
olution FTIR hyperspectral images makes supervised approaches
impractical.

Spatial-spectral fusion methods using the Fourier or wavelet
transforms are good at retaining spectral information at the ex-
pense of spatial detail.31 Wavelet transforms are poor at repre-
senting curved edges, making them sub-optimal for microscopic
images of organic materials.32 The curvelet transform is therefore
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preferred in medical imaging applications, such as image segmen-
tation33 and fusion.31

2 Curvelet Transform
The curvelet transform34 (CT) is an extension of wavelets35 and
ridgelets.36 Images are decomposed into sub-bands of different
scales using the wavelet transform, and then a localized ridgelet
transform is applied to each sub-band. Curvelets can represent
high-frequency contours at a range of scales using a sparse set
of coefficients combined with the curvelet basis. The curvelet
transform includes three stages: (1) image decomposition, (2)
smooth partitioning, and (3) a ridgelet transform:

1. Image decomposition: Each band image is decomposed
into resolution-based sub-bands using a 2D isotropic wavelet
transform. Each layer contains details of different frequen-
cies.

2. Smooth partitioning: The first layer is low frequency and
can be smoothly expressed using wavelets. However, the
wavelet transform is not efficient for representing high-
frequency curved features. High frequency features are
therefore represented with curvelets. To represent high-
frequency features efficiently using curvelets, each sub-band
is divided into square partitions of a size appropriate for the
scale (Figure 1). At a finer scale, curved edges are divided
into smaller fragments with smaller square partitions and
treated as straight edges.

3. Ridgelet transform: The ridgelet transform is applied on
each square partition of each sub-band.

Image

Ridgelet 
Transform

An
gl

e

Frequency

smooth 
sub-band

detail sub-bands

Wavelet 
Transform

Image de-composition & 
square partition

Fig. 1 An illustrtion of the Curvelet transform

The continuous curvelet transform and fast discrete curvelet
transform are developed by E.J.Candes et.al..37 In this section,
we illustrate the utility of curvelet transforms in the context of
our proposed image fusion algorithm. A curvelet transform, de-
fined on a two dimensional function f (x,y), is represented us-
ing curvelet coefficients computed by taking inner product of
elements of f and curvelet at different scales and orientations.
In a curvelet transform, ϕ j is defined as a mother curvelet.37

Curvelets at scales 2− j are obtained through rotations and trans-
lations of the mother curvelet. At decomposition scale 2− j, orien-
tations of curvelets are given by the sequence of equispaced rota-
tion angles θl = 2π ·2−

j
2 · l, with l = 0,1, · · · such that 0 < θl < 2π

and translation given by sequence of translation parameters are
k = (k1,k2) ∈ Z. At scale 2− j and orientation θl and positions
x( j,l)

k = R−1
θl

(k1 ·2− j,k2·−
j
2 ), with Rθ is rotation by θ , curvelets are

defined (as a function of x) by:

ϕ j,l,k(x) = ϕ j

(
Rθl

(
x− x( j,l)

k

))
. (2)

Any function f ∈ L2(R2) can be represented as a series of curvelet
coefficients and a curvelet coefficient at scale 2− j, direction l and
location k is computed by taking inner product between an ele-
ment f and a curvelet ϕ j,l,k,

c j,l,k = 〈 f ,ϕ j,l,k〉. (3)

Function f sparsely represented using discrete curvelet coeffi-
cients is reconstructed using formula,

f = ∑
j,l,k
〈 f ,ϕ j,l,k〉 ·ϕ j,l,k. (4)

The curvelet transform is a multidimensional extension of the
wavelet transform, which can effectively represent curved dis-
continuities with fewer coefficients than wavelets. Medical im-
ages are composed of many curved edges optimally represented
by wedges using sparse curvelet coefficients.31,33 The sharpness
of the curved edges in a hyperspectral band image changes as
a function of wavelengths due to the diffraction. The CT decom-
poses images into multi-resolution sub-bands representing curved
features at different scales and orientation. In Figure 2, curvelet
coefficients for two FTIR band images (1080 cm−1 and 1650 cm−1)
are shown with the Cartesian concentric corona for the first four
scales. The coarse scale is in the center of the corona. The co-
efficient scale increases from inner to outer corona, with coeffi-
cients at different orientations measured clockwise from the top
left. Number of angles (orientations) changes with the scale and
with the number of angles selected for 2nd coarsest scale which
is 16 (Figure 2). The band image at 1650 cm−1 is sharper than the
image at 1080 cm−1, therefore dense coefficients are seen at finer
scales corresponding to higher wavenumbers. Multi-resolution
sparse decomposition is useful for fusing high spatial frequency
features without introducing artifacts into the spectral domain.

3 Materials and Methods

Our curvelet-based multi-modal fusion is validated on 10 tis-
sue samples from breast and ovarian tissue microarrays (TMAs).
We procured formalin fixed paraffin embedded (FFPE) breast
(AMS802) and ovarian (BC11115c) sections from commercial tis-
sue banks, with adjacent sections placed on IR transparent CaF2

and standard glass slides. All sections went through the same de-
paraffinization protocol. Unstained sections on CaF2 slides were
imaged using both FTIR and dark-field microscopes. Adjacent sec-
tions on glass were stained with H&E and imaged in brightfield.
TMAs included tissue cores from different grades and stages of
cancer to enable validation on biochemically diverse tissues. Ten
1 mm cores from each array (10 different patients) were sharp-
ened and annotated to compute the classification accuracy of the
two key histological classes.
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1080 cm-1 1650 cm-1

scale

angle

1

0

Fig. 2 Curvelet coefficients at four scales for two band images (wavenumber 1080cm−1 and 1650cm−1) from FTIR imaged tissue represented using
Cartesian corona. The first coarser scale (low pass filtered) is in the center of the Cartesian concentric corona. Coefficients scale increase from inner
corona to the outer corona and at each scale, coefficients at different orientations measured clockwise from the top left.

3.1 Multi-Modal Imaging

Both FTIR and dark-field microscopy are used to image unstained
tissue cores from breast and ovarian TMAs. Tissue sections were
prepared using standard protocols11 for FTIR imaging. 5 µm thick
tissue sections from FFPE blocks mounted on IR transparent win-
dows of CaF2 were deparaffinized for imaging, first imaged with
FTIR imaging system (Agilent 670 spectrometer coupled to a Cary
620 microscopy system) and then with a dark-field microscope
(Nikon Eclipse Ti inverted optical microscope). Agilent Cary 620
FTIR has 15×0.62NA and 128×128 pixels focal plane array (FPA)
detector. We collected mid-IR HS images of tissue sections using
standard-definition (SD) mode with 5.5 µm pixel size and 8cm−1

spectral resolution in the spectral range of 1000 to 3900cm−1.
Tissue sections were imaged with a Nikon inverted optical mi-

croscope with a 10×,0.4NA objective in the dark-field mode. A
dark-field condenser transmits a hollow cone of light and blocks
light from within a disk around the optical axis. In the presence
of a sample, scattered light is collected by the objective forming a
bright image against a dark background. Based on the Rayleigh
criteria, the diffraction-limited spatial resolution of dark-field im-
ages collected in the visible range (400 to 700nm) is significantly
higher than FTIR images in the fingerprint region (2.5 to 12µm).

3.2 Pre-processing

In multi-modal fusion, image registration is a critical step, since
misalignment can introduce spatial artifacts in the fused result.
Both FTIR and dark-field are label-free, enabling multi-modal
imaging without additional tissue preparation. This prevents
physical distortion of the tissue between images that can lead to
misalignment. For this study, we image deparaffinized, label-free
tissue sections with both modalities. Multi-modal images were
registered by cropping both FTIR and dark-field images to the

same tissue area. We then upsampled FTIR images to match
the scale of dark-field images in the x dimension. We used the
image resize method in OpenCV, using bilinear interpolation to
resample each FTIR band image,38 and OpenCV affine transfor-
mations to align dark-field images with FTIR hyperspectral im-
ages.38 Prior to image sharpening, FTIR images underwent stan-
dard rubber-band baseline correction to remove scattering arti-
facts.39 As baseline correction methods can impact classification,
we perform these corrections before spatial frequency injection to
facilitate comparison between the original and sharpened images.

3.3 Spatial-Spectral Fusion

In mid-IR imaging, wavenumbers in the fingerprint region 900 to
1800cm−1 are especially important for identifying biomolecules,
therefore FTIR hyperspectral images (L) from these wavenum-
bers are used for histology analysis. The images have a
diffraction-limited spatial resolution of 5.5 to 11.11µm. Tissue
sections are first imaged with FTIR and then with a dark-field
microscope without any intermediate processing.

FTIR data consists of B band images Li ∈ L, where i = 1, · · · ,B.
We performed image sharpening on each band image by fusing
spatial features from dark-field image Ψ into Li using a curvelet
transform algorithm described below. In FTIR, the intensity range
in each band varies with absorbance. The range among different
bands can vary by a factor of 10. For better image sharpening re-
sults, the dark-field image (ΨΨΨ) was equalized to ΨΨΨi for each band
image Li. Equalization of the dark-field image was performed
with linear scaling to match the intensity scale of each band im-
age. The proposed curvelet-based method uses multi-resolution
analysis by decomposing each image into a set of spatial features
using the fast discrete curvelet transform (FDCT).37

Higher curvelet coefficients from dark-field image repre-
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Fig. 3 Process for sharpening broadband low spatial resolution HS im-
ages with high spatial resolution dark-field images using the curvelet
transform based algorithm. High spatial resolution HS image is obtained
by fusing detail coefficients of each low resolution band image with detail
coefficients of equalized dark-field image for that band image.

sents sharp features which can be fused in FTIR band images
based on Local Magnitude Ratio (LMR).34 Let C j,l (Li(x,y)) and
C j,l (ΨΨΨi(x,y)) be curvelet coefficients at band Li, with the equal-
ized dark-field image ΨΨΨi at scale 2− j and orientation l. The LMR
at spatial location (x,y) is defined as:

LMR j,l (x,y) =
C j,l (Li(x,y))
C j,l (ΨΨΨi(x,y))

. (5)

As the edges in dark-field images are sharper than FTIR data,
LMR j,l(x,y) ≤ 1 at location (x,y) indicates that the spatial details
of ΨΨΨi(x,y) are better than the spatial details of Li and therefore
are injected into the fused image.

Figure 3 and algorithm 1 illustrate the data fusion process for
combining the FTIR hyperspectral image L and registered dark-
field image ΨΨΨ using curvelet transform.

4 Results
We demonstrate the efficacy and robustness of the proposed tech-
nique using two independent datasets consisting of breast and
ovarian tissue cores derived from patients at varying stages of
cancers. For the sharpened images, we evaluated spatial qual-
ity with visual qualitative inspection and assess spectral quality
using quantitative metrics. We also compare the performance of
curvelet based fusion against PCA based29 methods.

Algorithm 1 Algorithm for fusing multi-modal images using
curvelet transform

1. Input: L ∈ RX×Y×B, ΨΨΨ ∈ RX×Y ; Output: F ∈ RX×Y×B

2. Select single band image Li ∈ L, where i = 1, · · · ,B.

3. Compute equalized reference image ΨΨΨi for Li.

4. Apply fast discrete curvelet transform (FDCT) on Li and ΨΨΨi.

Lc = {C(Li) ,D1,l (Li) , · · · ,D7,l (Li)}
Hc = {C(ΨΨΨi) ,D1,l (ΨΨΨi)], · · · ,D7,l (ΨΨΨi)}

where, Lc and Hc are sets of curvelet coefficients of low-
resolution band image Li and sharp dark-field image ΨΨΨi re-
spectively. These coefficients are composed of coarse coeffi-
cients C(I) and detail coefficients D j,l (I) of image I at scale
2− j and orientation l.

5. Generate curvelet coefficients for fused image i.e. Fc =
{C(Fi) ,D1,l (Fi) , · · · ,D7,l (Fi)} using following fusion rules
for coarse and detail coefficients.

(a) coarse coefficients from Lc are kept as it is in the fused
image

C(Fi) = C(Li)

(b) detail coefficients from Lc and Hc are fused using local
magnitude ratio (LMR) criteria34

D j,l (Fi(x,y)) =

{
D j,l (Li(x,y)) if LMR j,l(x,y)> 1
D j,l (ΨΨΨi(x,y)) if LMR j,l(x,y)≤ 1

Here, D j,l (Fi(x,y)) are detail coefficients at scale 2− j

and orientation l for fused image F at spatial location
(x,y) and LMR is computed using equation 5.

6. Apply inverse FDCT on fused coefficients Fc to reconstruct
the fusion band image Fi.

7. Append fused band image Fi to generate HS image F

8. Repeat step 2 to 7 for i = 1, · · · ,B.

Band images of tissue cores from breast TMA AMS 802 are pre-
sented in Figure 4, which demonstrates sharpening of the raw
FTIR data by fusing high spatial frequency features from the dark-
field images of the same cores. Both curvelet and PCA based al-
gorithms sharpen high-frequency features, like fibrous textures or
the lining of epithelial cells in lobules. Arrows in the top row point
at the fibrous texture in the stromal area, and arrows in the sec-
ond and third rows (from the top) point to epithelial cells in the
terminal duct lobular units (TDLUs) and terminal ducts respec-
tively. Visual inspection of the sharpened images using curvelet
based sharpening establishes the improvement in spatial quality
as compared to the raw FTIR images. The curvelet-based algo-
rithm also increases spectral localization and avoids adding spec-
tral artifacts during sharpening. However, PCA sharpening fuses
spatial details in the raw FTIR data at the cost of greater spectral
distortion. Red arrows in PCA sharpened images indicate the loss
of spectral information in the fused images due to dominating
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spatial features from the dark-field images.
We used three quantitative metrics to evaluate spectral qual-

ity which capture distinct characteristics, namely spectral angle
mapper (SAM),40 histological classification performance metric
area under ROC curve (AUC) and classification accuracy (CA). SAM
quantifies the mean angular distance between pixels in a fused
image with corresponding pixels in an upscaled raw FTIR image
as defined per equation 6 below. SAM values range from (-90,
90) degrees with 0 degree being optimal.

SAM(fi, li) = arccos

(
〈fi,si〉
‖f‖‖si‖

)
, (6)

where fi and li are tissue spectra from fused image F and upsam-
pled FTIR image L.

Table 1 Quantitative analysis of image sharpening (breast tissue)

SAM AUC Classification Accuracy
raw 0 0.9831 92%
PCA 2.94 0.9762 91.2%
curvelet 2.22 0.9984 96.7%

Table 2 Quantitative analysis of image sharpening (ovarian tissue)

SAM AUC Classification Accuracy
raw 0 0.9581 91.6%
PCA 1.34 0.9151 89.3%
curvelet 1.21 0.9873 97.6%

Metrics presented in table 1 are computed from 10 tissue cores
of 10 different patients at varying stages of cancer. The quanti-
tative results match qualitative image sharpening trends (Figure
4). SAM is typically computed with respect to the ground truth
image equation 6. As we cannot directly measure high-resolution
HS ground truth images, we estimate SAM using sharpened im-
ages with respect to upsampled raw FTIR. SAM values closer to
0 indicate less spectral distortion. Table 1 indicates the average
SAM of the proposed curvelet based sharpening algorithm (2.22)
is smaller than that for the PCA sharpening algorithm (2.94) for
breast tissue cores.

We validated the quality of sharpened (fused) images by an-
alyzing the effect of sharpening on classification performance
for histological classes of interest. We were interested in ac-
curate classification of epithelial cells, which are implicated in
breast tissue carcinoma. We performed classification of raw FTIR
and sharpened HS images for two histology classes: epithelium
(green) and stroma (blue) (Figure 5). We used a binary SVM
classifier using 12 optimal features selected by the GA-LDA fea-
ture selection algorithm39 and evaluated classification results us-
ing two metrics, namely area under the ROC curve (AUC) and
classification accuracy. The corresponding results are presented
in table 1. The curvelet sharpened images have 1.5% higher AUC
and 4.7% higher classification accuracy over the raw FTIR images
whereas PCA sharpended images has 0.5% lower AUC and 0.8%
lower classification accuracy. The proposed curvelet algorithm

demonstrates superior spectral fidelity compared to PCA because
it minimizes spectral distortions.

We assessed the reliability of sharpening results by classifying
key histology classes. Raw FTIR images 5(a), PCA sharpened im-
ages 5(b), and curvelet sharpened images 5(c) were annotated
for two histological classes: epithelium (green) and stroma (blue)
using H&E stained adjacent section (5(e)) as the ground truth. A
visual comparison of classification images from raw FTIR data
5(f) and curvelet sharpened data 5(h), shows that the 5(h) cor-
responds more closely to the H&E, especially around the TDLU
region as shown in the magnified insets. Several stromal pixels in
PCA sharpened images 5(g) are incorrectly classified as epithelial
cells due to spectral distortions induced during image sharpen-
ing. Our curvelet-based sharpening improves both the sensitivity
of epithelial cells and the localization of the cells with sharp edges
for lobules that helps precise grading of carcinoma. Misclasssfied
pixels are illustrated in figure 6 in red. The curvelet based image
6(d) has fewer misclassified pixels than the raw FTIR image 6(b)
and PCA based sharpened image 6(c).

We performed similar extensive analysis for ovarian cancer
TMAs (Figure 7 and 8) and observed similar improvements as
seen in for breast TMAs. The results are based on total 337982
spectra (149954 for training and 188028 for testing) from 10 tissue
cores from different patients at varying stages of cancers. Train-
ing and testing spectra are taken from mutually exclusive tissue
cores. By testing on spectra from mutually exclusive tissue cores
which are measured at different times we have considered spec-
tral measurement uncertainties for imaging settings mentioned
here. For this independent dataset, the curvelet sharpened im-
ages have 3.0% higher AUC and 6% higher classification accuracy
over the raw FTIR images whereas PCA sharpended images have
4.5% lower AUC and 2.4% lower classification accuracy than the
raw FTIR images.

Figure 9 compares our sharpened results with O-PTIR (mI-
Rage), showing sharpened images of eight ovarian cores from
TMA BC11115c. Epithelial cells, stromal cells, adipocytes and
lymphocytes are compared with O-PTIR images at the Amide I
band (1650cm−1). Qualitative comparison of sharpened images
with O-PTIR images indicates that spatial resolution achieved by
proposed multi-modal fusion is between FTIR and O-PTIR with
spatial details comparable to the optical photothermal imaging.

5 Discussion
The goal of this study was to develop a fast, clinically viable
method to enhance image quality by sharpening spatial features
in a diffraction-limited mid-IR HS image while preserving spec-
tral fidelity. The proposed multi-modal fusion method requires
minimal sample preparation and can fit into a clinical workflow
seamlessly. We used rapid, label-free microscopy to augment spa-
tial details in the data from FTIR imaging. Also, being unsu-
pervised, the curvelet based sharpening eliminates the need for
super-resolved ground truth images. The results of the proposed
image sharpening method are robust and reliable as well as are
generally applicable for different tissue types.

The proposed fusion method allows FTIR imaging at larger
pixel sizes, thus reducing data collection time. Dark-field mi-
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croscopy used in this study is faster than FTIR imaging, therefore,
data fusion is a practical solution for improving image quality
without increasing data collection time. It takes ≈ 120minutes
to image one tissue core of 1 mm with FTIR in high-definition
(HD) mode (pixels size 1.1 µm) with 16 co-adds, ≈ 3minutes for
the same tissue core with FTIR in SD mode (pixels size 5.5 µm),
and ≈ 40sec with dark-field microscope. The curvelet transform
is implemented using MATLAB and sharpening of a single band
image of one tissue core (1059 pixels x 1069 pixels) takes around
6 seconds on a system with 24GB of physical memory and 0.24
seconds with 256GB of physical memory. The proposed fusion
method enables roughly 35× faster imaging than the HD mode
in FTIR. Data acquisition with larger pixel sizes followed by the
application of our algorithm can potentially provide high resolu-
tion data with lower collection time and will be explored in the
future. Our current instrument limitations have allowed for two
pixels sizes: 5.5 µm (SD imaging mode) and 1.1 µm (HD imaging
mode).

Multi-modal fusion algorithms for image sharpening (pan-
sharpening) can either be supervised or unsupervised. Super-
vised algorithms require super-resolved ground truth images to
find optimization parameters, whereas unsupervised algorithms
do not have this requirement. Obtaining super-resolved ground
truth in FTIR imaging is challenging because of the diffraction
limit. Recent methods25 for supervised image sharpening have
relied on H&E images as a substitute for super-resolved ground
truth FTIR data. Since H&E images do not contain spectroscopic
information, the algorithm can potentially distort spectral quality
in FTIR data by adding wavenumber dependent spatial artifacts
to each band image. Our unsupervised method overcomes the
challenges encountered by the supervised methods as it does not
require super-resolved ground truth images.

In building our classifiers, we performed training and valida-
tion on mutually exclusive data in both breast and ovarian can-
cer TMAs accommodating patient-to-patient variations. Indepen-
dently processed breast and ovarian tissue TMAs with a diverse
array of tissues with varying grades of cancer from different pa-
tients reinforces the robustness of our results.

We used two validation metrics Area under ROC curve (AUC)
and classification accuracy to evaluate improvement in image
quality after sharpening. An ROC curve is a plot of false positive
rate vs true positive rate at different thresholds from 0 to 1 for
a binary classifier. Higher AUC indicates better classification per-
formance at different thresholds. Overall classification accuracy
is a measure of classification performance at an optimal thresh-
old. While quantitative metrics, area under ROC curve (AUC) and
classification accuracy, for classification from tables 1 and 2 mea-
sure spectral quality of annotated pixels, a qualitative analysis of
classification images in breast (figure 5) and ovarian tissue cores
(figure 8) helps evaluate spectral fidelity at both annotated and
unlabeled pixels, especially in regions important to cancer diag-
nosis. Qualitative analysis is especially important for the tissue re-
gions with mixed pixels where annotation is challenging. There-
fore, we have used a combination of both quantitative and quali-
tative analyses to evaluate the fidelity of the proposed technique.
The superior qualitative and quantitative results demonstrate util-

ity and efficacy of the proposed curvelet based multi-modal fusion
method for image sharpening. Both quantitative and qualitative
results presented above indicate that image sharpening improves
sensitivity and specificity of histological classes, providing a more
accurate assessment of the spread of cancer cells in the tissue and
in turn facilitates improved understanding of disease prognosis.

We further evaluated image sharpening results by comparing
sharpened data with data from O-PTIR images as it provides di-
rect super-resolved images derived from molecular absorbance,
which is the same intrinsic parameter measured by FTIR. How-
ever, as mechanism for measuring molecular absorbance by O-
PTIR is different from FTIR, their absorbance values are not ex-
pected to directly match. We therefore compared our results by vi-
sual inspection on individual band images from both the datasets.

Higher spectral resolution would increase the computational
cost due to an increase in the number of bands. Since the curvelet
based fusion operates on individual bands, it allows sharpening
of only specific bands based on histological classes of interest.
Image sharpening of selected bands reduces the computational
time and storage requirement of sharpening the entire HS image
with hundreds of bands. This advantage of the proposed method
also enables selective enhancement of histological-class-specific
morphological features by fusing with other specialized imaging
modalities such as second harmonic generation (SHG) imaging
for collagen fibers.41,42

The proposed technique has limitations when the sample under
examination has no contrast under a dark field microscope, but
consists of chemically distinct species that FTIR imaging recog-
nizes. Here, the algorithm would retain the chemical sensitivity
of FTIR imaging but would not improve spatial resolution. For
such samples, a different technique (auto-fluorescence, Raman,
etc.) which can provide contrast can be used as a substitute for
dark-field images. We believe that our algorithm would also work
for such image fusion.

6 Conclusion
We describe a novel technique to sharpen diffraction-limited
FTIR images and demonstrate improvement in data quality using
breast and ovarian cancer tissues. The proposed curvelet based
multi-modal fusion technique fuses spatial information from the
dark-field images into FTIR hyperspectral images. Each imaging
modality contributes complementary information about the sam-
ple, therefore, resulting image has the best spatial and spectral
information. Also, the curvelet based sharpening is suitable for
biomedical images containing curved discontinuities. The pro-
posed technique is both a fast and cost-effective way of enhancing
spatial-spectral quality that improves sensitivity and specificity of
histological classes deemed important for accurately grading the
spread of cancer cells for cancer prognosis.
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Fig. 4 Multi-modal imaging for improving the spatial resolution of FTIR hyperspectral images using dark field images. The increase in spatial details
is observed by comparing raw FTIR images of breast tissue cores with the PCA sharpened images and the curvelet sharpened images at wavenumber
1650cm−1. PCA based sharpening adds spatial details at the cost of spectral information (red arrows). Whereas, proposed curvelet based sharpening
can enhance spatial detail while maintaining spectral mapping (black arrows).
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Fig. 5 Multi-modal image sharpening using PCA and curvelet based algorithm validated by classifying sharpened breast tissue cores into two histological
classes: epithelium (green) and stroma (blue). Here, first row shows (a) dark-field image and band images at 1650cm−1 wavenumber from (b) raw
FTIR image, (c) pca based sharpened image and (d) curvelet based sharpened image. Second row shows (e) adjacent section from same breast core
stained with hematoxilin and eosin and classified images for (f) raw data (g) pca sharpened data and (f) curvelet sharpened data.
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Fig. 6 Effects of image sharpening on classification. (a) H&E stained tissue for ground truth and incorrectly classified pixels are highlighted in red for
classification results on: (b) raw FTIR image, (c) PCA based sharpened image and (d) curvelet based sharpened image.
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Fig. 7 curvelet based image sharpening with multi-modal imaging is demonstrated using ovarian tissue cores from ovarian TMA BC11115c. Spatial
information from dark-field images (left) of ovarian tissue cores is fused to raw FTIR images (middle) used to achieve leveraged spatial resolution in
sharpened images (right)
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Fig. 8 Qualitative analysis of multi-modal image sharpening using PCA and curvelet based algorithm. Top row: (a) dark-field image, band images at
1650cm−1 wavenumber for (b) raw FTIR image, (c) PCA based sharpened image, and (d) curvelet based sharpened image for the same core. Bottom
row: (e) adjacent tissue section stained with hematoxilin and eosin, classified images for (f) raw FTIR image, (f) PCA sharpened image, and (g)
curvelet sharpened image which are classified into epithelium (green) and stroma (blue).
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Fig. 9 Image sharpening results on eight ovarian cores from TMA BC11115c with O-PTIR imaging at amide I band (1650cm−1). On the right side of
each sharpened (fused) ovarian core image, insets of high frequency features(middle) is compared with raw FTIR (top), and O-PTIR (bottom) images.
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