

Novel Self-Assembling Approach for Synthesizing Nanofiber Aerogel Supported Platinum Single Atoms

Journal:	Journal of Materials Chemistry A			
Manuscript ID	TA-ART-03-2020-003207.R1			
Article Type:	Paper			
Date Submitted by the Author:	01-Jul-2020			
Complete List of Authors:	Zhang, Haojie ; Donghua University, College of Materials Science and Engineering, Zhao, Yonghui; Shanghai Advanced Research Institute, Sun, Yu; Hokkaido University Institute for the Advancement of Higher Education, Xu, Qing; Shanghai Advanced Research Institute Yang, Ruoou; Chinese Academy of Sciences, Shanghai Institute of Applied Physics Zhang, Hao; Shanghai Institute of Applied Physics, Lin, Chao; Donghua University, College of Materials Science and Engineering Kato, Kenichi; JARSI/SPring-8, Li, Xiaopeng; Donghua University, College of Materials Science and Engineering Yamauchi, Miho; Kyushu University, I2CNER Jiang, Zheng; Chinese Academy of Sciences, Shanghai Institute of Applied Physics			

SCHOLARONE[™] Manuscripts

ARTICLE

1Received 00th January 20xx, 2Accepted 00th January 20xx

3DOI: 10.1039/x0xx00000x

4

Novel Self-Assembling Approach for Synthesizing Nanofiber Aerogel Supported Platinum Single Atoms

Baojie Zhang,^{a,†} Yonghui Zhao,^{b,†} Yu Sun,^c Qing Xu,^b Ruoou Yang,^d Hao Zhang,^d Chao Lin,^a Kenichi
 Kato,^e Xiaopeng Li,^{a,*} Miho Yamauchi^{f,g,*} and Zheng Jiang^{d,h,*}

¹⁰A grand challenge for catalysts engineering is precisely assembling and positioning nanoscale active metals at desired ¹¹locations while constructing robust functional architectures. This article presents a novel approach for constructing ¹²macroscopic Ag-doped manganese oxide aerogels (up to 2 L) while homogeneously incorporating active Pt single atoms ¹³(Pt/Ag-MnO₂) based on a solution-solid-solid (SSS) mechanism. AgO_x seeds were identified as key species for triggering the ¹⁴octopus-like growth of MnO₂ nanofibers and inserting Ag and Pt into the MnO₂ crystalline framework. The interconnection ¹⁵and entanglement among nanofibers allowed the formation of mechanically strengthened hierarchical structures, leading ¹⁶to one of the most robust manganese-based aerogels to date. Impressively, the Pt/Ag-MnO₂ aerogel also possessed ¹⁷promising selectivity and stability toward the electrocatalytic oxygen reduction reaction, with Pt showing a high mass activity ¹⁸of 1.6 A/(mg_{Pt}) at 0.9 V vs. RHE. Experimental characterization and theoretical calculation confirmed Pt single atoms to be ¹⁹located at substitutional lattice sites, which reduce the overall oxygen reduction barriers. Our approach suggests that SSS or ²⁰other analogous nanofiber or nanowire growth strategy is powerful in controlling structural formation over the entire range ²¹of length scales while being applicable to fabricate single-atom catalysts.

22 Introduction

²³Aerogels are an extreme class of porous materials having ²⁴ultralow stacked densities (*ρ*, ranging from 0.8 to 0.001 g/cm³), ²⁵and porosities larger than 80%.¹⁻³ Aerogels can effectively ²⁶preserve the unique physical-chemical properties of their ²⁷nanoscale functional units while retaining them in a single and ²⁸effectively interconnected macroscopic body.⁴ Aerogels possess ²⁹a continuous hierarchical pore structure, which facilitates mass ³⁰transport throughout the three-dimensional (3D) architecture ³¹with nearly no 'dead' region. These structural features make

^{e.} RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan ^{f.} International Institute for Carbon-Neutral Energy Research (WPI-I²CNER), Kyushu

- Katahira, Aoba-ku, Sendai, 980-8577 Japan ^h Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jia
- Luo Road, Jiading district, Shanghai 201800, China
- ⁺ H. Zhang and Y. Zhao contribute equally to this work.

32aerogels as ideal supports for the preparation of energy 33 conversion and storage devices and heterogeneous catalysis ³⁴applications. To date, various inorganic aerogels such as silica,⁵ ³⁵carbon materials (e.g., graphene and carbon nanotubes),^{6,7} ³⁶metals (e.g., Au, Pd, and Pt)⁸ and metal chalcogenides (e.g., CdS, ³⁷CdTe, and PbS)⁹ have been synthesized. Among them, 3D 38 transition metal oxide aerogels are of technological importance 39 because of their abundance and extensive applications as 40 electrode materials, catalysts or catalytic supports. 10-12 ⁴¹However, the organization of nanocrystalline metal oxide units 42 into a 3D architecture still remains challenging while using self-43 assembly to achieve desired macroscale properties. 13, 14 For 44example, most of the transition metal-based aerogels 45 synthesized to date are fragile and require laborious 46 supercritical drying techniques. The addition of a cross-linker or 47 template can improve the mechanical strength of the aerogel at 48 the expense of decreasing the specific activity per volume (or ⁴⁹mass).¹⁵ Therefore, the development of a novel fabrication ⁵⁰method following the one-pot macroscopic assembly of metal 51 oxide aerogels with improved physical-chemical properties is 52highly desirable.

⁵⁴Single-atom catalysts (SACs) have recently attracted ⁵⁵tremendous interest owing to their reduced material costs and ⁵⁶intriguing physical-chemical properties including low ⁵⁷coordination environment, quantum-size effect, and strong ⁵⁸electronic metal-support interaction (EMSI), thereby enhancing ⁵⁹their catalytic performance.¹⁶⁻³¹ To date, various methodologies ⁶⁰such as impregnation, co-precipitation, atomic layer deposition ⁶¹and pyrolysis of metal-organic frameworks have been

^{a.} State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, No. 2999 North Renmin Road, Songjiang District, Shanghai 201620, China

^{b.} CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), No. 100, Haike Road, Pudong New District, Shanghai 201210, China

^c Institute for the Advancement of Higher Education, Hokkaido University, North-10 West-8 Kita-ku, Sapporo 060-0817, Japan

^{d.} Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), No. 239 Zhangheng Road, Pudong New District, Shanghai 201203, China

University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan ^{g.} Advanced Institute for Materials Research(AIMR), Tohoku University, 2-1-1

^{*} Coressponding authors: Prof. X. Li (<u>xiaopeng.li@dhu.edu.cn</u>) Prof. M. Yamauchi (<u>yamauchi@i2cner.kyushu-u.ac.jp</u>)

Prof. Z. Jiang (jiangzheng@sinap.ac.cn)

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Journal Name

¹ developed.³²⁻⁴¹ However, despite the ultra-fine metal ₅₈Experimental Section ²dispersion achieved, SACs face the same issues of conventional ³supported catalysts. Thus, an inadequate porous structure ⁴engineering may lead to the limited exposure of active sites.⁴² ⁶⁰(Pt/Ag-MnO₂) ⁵Moreover, only powdered SACs have been prepared so far,^{29,30,61}The single atoms Pt supported on Ag-MnO₂ aerogel was ¹⁴macroscopic 3D material during aerogel formation.

15

ARTICLE

¹⁷nanowire/nanofiber growth involving 18 mechanisms such as solution-liquid-solid (SLS), solution-solid- 74 obtaining aerogel. Control samples including Ag-MnO2 and un-19solid (SSS) and vapor-liquid-solid (VLS) growth of doped 75doped MnO2 were prepared in an identical way by controlling $_{20}$ nanowires or nanofibers. ⁴⁸⁻⁵² Foreign dopants can be $_{76}$ the addition of AgNO₃ and Pt(NO₃)₂. 21 homogeneously incorporated into the nanofiber body through 77 22a growth catalyst located at the nanofiber tip. Nanofibers have 78 Material characterization 23been also proven as ideal components for constructing 79XRD was carried out on an Ultima IV X-ray diffractometer with 24 functional aerogels. 53-57 Based on previous reports, we ²⁵developed a novel concept of taking advantage of the nanofiber 26 growth mechanism. Nanofiber unit may be self-assembled into 27 the aerogel form, while simultaneously incorporating single 28 atoms of interests into the crystalline framework of nanofibers. ²⁹We believe that the successful development of this concept will ³⁰open a new avenue for SAC synthesis while endowing aerogels ³¹with enhanced performance and new functionalities.

32

³³Here, we demonstrate the first example of applying an SSS $_{34}$ mechanism to construct an Ag-doped α -MnO₂ (Ag-MnO₂) 35 nanofiber aerogel with the incorporation of highly active Pt $_{\rm 36} single$ atoms into the crystalline lattice of ${\sf MnO}_2.~{\sf AgO}_x$ 37 nanoparticles severed as seeds, triggering an octopus-like 39entangled and interconnected, thereby providing the self-⁴²incorporated through AgO_x seeds and subsequently into the Ag-49scanning transmission electron microscopy (HAADF-STEM). As a 105 by a Varian 720-ES inductively coupled plasma optical emission ⁵⁰proof-of-concept, the as-prepared Pt/Ag-MnO₂ aerogel was ¹⁰⁶spectrometry (ICP-OES). 51employed as an electrocatalyst for oxygen reduction reaction 107 ⁵²(ORR). Pt/Ag-MnO₂ showed a promising performance with a ¹⁰⁸Electrochemical measurements safunctional theory (DFT) calculation unraveled that the presence ⁵⁶for oxygen reduction reaction, thereby delivering enhanced ¹¹¹Research, USA) at room temperature using Pt wire and Ag/AgCI 57performance.

59Synthesis of single atoms Pt supported on Ag-MnO₂ aerogel

632-39, 43-46 and these materials need to be assembled into films, 62 prepared by a hydrothermal reaction of the synthesis of the Ag- $_7$ pellets, or monoliths for practical applications. Recently, Zhu et $_{63}$ MnO₂ aerogel. Typically, MnSO₄•H₂O (0.005 mol), (NH₄)₂S₂O₈ sal. reported an iron-based single-atom electrocatalyst (SAEC) 64(0.005 mol) and (NH₄)₂SO₄ (0.02 mol) were added to the 25 mL 9supported on a carbon aerogel using Te nanowire as a template, 65Teflon vessel with 17.5 mL DI water, forming a clear solution. $_{10}$ which showed excellent electrocatalytic activities.⁴⁷ Notably, to 66 Subsequently, a certain amount of AgNO₃ and Pt(NO₃)₂, 11the best of our knowledge, SACs supported by metal oxide ordetermined by the nominal loading of 10 wt% Ag and 1 wt% Pt, 12aerogel have not been reported. This probably can be explained 68were added to the solution with vigorously stirring for 15 min. 13 by the difficulty of homogeneously positioning single atoms in a 19 Then, the Teflon vessel was sealed and transferred into the 70 oven at 140 °C for 12 h. After cooling down to the room 71 temperature, the obtained hydrogel was washed with a large ¹⁶Over the past decades, abundant knowledge has been built on ⁷²quantity of water. Afterward, the hydrogel was placed in a well-identified 73 refrigerator at -70 °C and then freeze-dried for 48 h for

 $_{80}$ Cu K α radiation (λ =0.15418 nm, Rigaku, Japan). The N₂ aladsorption/desorption isotherms were measured by a surface szarea and porosity analyzer (Tristar II, Micromeritics). The 83 samples were degassed at 120 °C for 6 h under vacuum before 84analysis. XPS measurements were taken out by using a 85 photoelectron spectrometer (Thermo Fisher Scientific, USA). 86 Calibration of binding energy was carried out by setting the 87 binding energy of C1s peak to 284.8 eV. The morphologies of ⁸⁸the as-synthesized samples were examined by a field-emission 89SEM with the EDS (Oxford, UK). TEM and STEM were used to 90 further confirm the detailed nanostructures (FEI Tecnai G2, 91USA), and EDS was used to determine the Ag and Pt loading 92(Oxford, UK). HAADF-STEM was used to further confirm the ⁹³Atomic arrangement in the Ag-MnO₂ nanofiber (JEOL-2010, $_{
m 38}$ growth mode. The as-formed MnO $_2$ nanofibers were highly $_{
m 94}$ Japan). The mechanical properties were measured by a 5960 95Dual Column Tabletop Testing Systems (INSTRON 5967, USA). $_{40}$ assembled hierarchical aerogel monolith with outstanding $_{96}$ SRXRD was conducted using radiation (λ =0.80072(4) Å) at 41mechanical strength. Interestingly, Pt atoms were firstly 97RIKEN BL44B2 beamline. X-ray absorption spectroscopy (XAS) 98 measurements were performed at the BL14W1 beamline at the $_{43}$ MnO $_2$ crystalline lattice upon continuous axial growth of the $_{_{99}}$ Shanghai Synchrotron Radiation Facility, Shanghai Institute of 44nanofiber during the hydrothermal reaction. The presence of 100 Applied Physics, China. The electron storage ring operated at 45 homogenously distributed Pt single atoms and lattice doping 101 3.5 GeV, equipped with a double Si (111) crystal ⁴⁶sites were validated and characterized by synchrotron radiation ₁₀₂monochromator.⁵⁸ X-ray absorption data was obtained at 47X-ray diffraction (SRXRD), X-ray absorption spectroscopy (XAS) 103 fluorescence mode and data analysis was performed using the 48 and abbreviation-corrected high angle annular dark-field 104 IFEFFIT software package. The amount of the Pt was measured

⁵⁵of Pt single atoms in MnO₂ lowered the overall energy barriers

Journal Name

31

Fig. 1. Characterization of Ag-MnO₂ aerogel. (a) Optical photograph of the un-doped α -MnO₂ nanowire powder and the Ag-MnO₂ aerogels with different sizes. (b) HRSEM, (c) TEM and (d) HRTEM images of the as-prepared Ag-MnO₂ aerogel. (e) the overlay of the distribution of the elements along with an Ag-MnO₂ nanofiber acquired by EDS mapping measurement and the corresponding spectra for individual elements: (f) Mn, (g) O and (h) Ag. (g) Relationship between E and ρ for the Ag-MnO₂ aerogels, together with data from some reported foams/aerogels for comparison. Carbon material aerogels were not included.

1(Metrohm, 3M KCI) as counter and reference electrodes. The 2ORR performance was evaluated on RDE and RRDE setup.

⁴Details of DFT calculation and ORR measurements are provided ⁵in the supporting information.

Results and discussion

⁷Synthesis and characterization of robust Pt/Ag-MnO₂ aerogel

⁸Firstly, Ag-MnO₂ aerogel was synthesized in an aqueous solution containing AgNO₃, MnSO₄, (NH₄)₂SO₄, and (NH₄)₂S₂O₈ 10(see details in experimental section). After being vigorously 11stirred for 1 min, the mixed solution was transferred to a Teflon 12vessel and subsequently heated in an oven at 140 °C for 12 h. 13 The obtained Ag-MnO₂ hydrogel was freeze-dried to produce a 14solid aerogel. At the macroscopic scale, Ag-MnO2 aerogel 15 inherited the shapes of their cylindrical vessels. As shown in Fig. 161(a), Ag-MnO₂ aerogel were successfully prepared with a 17diameter of up to 15 cm with the total volumes of $_{18}$ approximately ~ 2 L and the mass of ~ 99.6 g. The preparation 19 of Ag-MnO₂ aerogel can be consistently and cost-effectively 20 scaled-up by simply increasing the size of the vessel used for the ²¹hydrothermal processing. The ρ of an Ag-MnO₂ aerogel can be $_{\rm 22} controlled from \simeq 10$ to $\simeq 50 \ mg/cm^3$ by linearly increasing the 23 precursor concentration. In contrast, a hydrogel/aerogel could 24not be produced in the absence of AgNO₃, with the average $_{25}$ length of the as-grown α -MnO₂ nanofibers was approximately $_{26}600$ nm (Fig. S1), because these low aspect ratio $\alpha\text{-MnO}_2$ 58

 $_{27}$ nanofibers did not satisfy the basic conditions for gel $_{28}$ formation. 54 The SRXRD pattern for Ag-MnO₂ aerogels (Fig. S2) $_{29}$ could be ascribed to a pure α -MnO₂ phase (JCPDS No. 044-0141) $_{30}$ with the tetragonal, I4/m, symmetry space group. $^{59-61}$

32Scanning electron microscopy (SEM) and transmission electron 33microscopy (TEM) were used to image microscale ³⁴morphological features of the as-prepared Ag-MnO₂ aerogel. 35Low-resolution SEM (LRSEM) images (Fig. S3(a-b)) confirmed $_{36}$ the presence of large pores (> 50 μ m), which were created by 37 ice crystals, and revealed the solid 3D skeleton of the Ag-MnO2 38aerogel. High-resolution SEM (HRSEM) images (Fig. 1(b) and Fig. 39S3(c-f)) revealed the aerogel skeleton was composed of $_{40}$ spherical cellular structures with the diameters of ~2 μ m. TEM 41 images as shown in Fig. 1(c) and Fig. S4(a-b) presented the 42morphology of a single cellular structure and several 43 interconnected spherical cellulars, which are consistent with 44 the SEM observations. The basic architectural elements of the 45Ag-MnO₂ nanofibers had an average diameter of ~10 nm (Fig. $_{46}$ 1(d) and Fig. S4(c-d)). The Ag-MnO₂ nanofibers were highly 47entangled and interconnected. These bonded contacts were ₄₈believed to be crucial for the formation of Ag-MnO₂ aerogel 49 with enough mechanical robustness to survive from handling 50 and freeze-drying. Energy dispersive spectrometry (EDS) ⁵¹mapping revealed that Ag was homogenously distributed in the s2bodies of the MnO₂ nanofibers (Fig. 1(e-h)). Ag content was 53determined to be ~ 7.6 wt% by EDS, slightly lower than the 54 theoretical doping amount of 10 wt%. The pore size distribution 55 of Ag-MnO₂ aerogel confirmed the presence of hierarchical ⁵⁶ pores with the size continuously spanning from 5 to 110 nm (Fig. 57S5). Fig. 1(i) shows a plot of the compressive Young's modulus

Fig. 2. Electron microscopy characterizations of Pt/Ag-MnO₂. (a) SEM image of the Pt/Ag-MnO₂ aerogel and TEM image (inset) of the single Pt/Ag-MnO₂ nanofiber. EDS element mapping of Pt/Ag-MnO₂ (b) Mn, (c) O, (d) Ag and (e) Pt. (f) HAADF-STEM image of a single Pt/Ag-MnO₂ nanofiber. (g) a magnified view of the area marked in (f). (h) HAADF intensity profile drawn along the red rectangle marked in (g).

ARTICLE

Table 1. Structural Parameters of PtO2 and Pt/Ag-MnO2 derived from quantitative EXAFS curve-fitting using the IFEFFIT software, and DFT calculated structure parameters.

Sample	Shell	CN	R(Å)	$\Delta E_0 (eV)$	Δσ ² *10 ³ (Å ²)	R-factor (%)
PtO ₂	Pt-O	6.0 ± 0.6	2.12 ± 0.02	9.1 ± 2.4	2.13 ± 1.58	1.3
Pt/Ag-MnO ₂	Pt-O	6.0 ± 0.6	2.01 ± 0.02	9.9 ± 1.3	1.28 ± 0.69	
	Pt-Mn-1	1.9 ± 0.1	2.90 ± 0.03	2.4 ± 0.5	3.38 ± 1.76	2.4
	Pt-Mn-2	1.8 ± 0.2	3.04 ± 0.03	2.5 ± 0.5	2.53 ± 0.54	
Pt/MnO ₂ (DFT results)	Pt-O	6.0	1.99			
	Pt-Mn-1	2.0	2.89			
	Pt-Mn-2	2.0	3.04			

Note: Pt L₃-edge EXAFS curves fitting parameters: Δk = 3.0 – 12.5 Å⁻¹, Δr = 1.0 – 2.0 Å. CN, coordination number; R, the distance between absorber and backscatter atoms; ΔE₀, inner potential correction; Δσ², Debye-Waller factor to account for both thermal and structural disorders; R-factor (%) indicate the goodness of the fit. The obtained S₀² of Pt foil was 0.87 and it was fixed in the subsequent fitting of Pt foil L₃-edge data for the catalyst. CN and bond lengths are corresponding to the structures displayed in Fig. 3d.

1(E) of the Ag-MnO₂ aerogel, which was derived from the slope 22wt% by inductively coupled plasma optical emission $_{2}$ of the stress-strain curve plotted against ρ as shown in Fig. S6. $_{23}$ spectrometry (ICP-OES). To further gain insights into the atomic $_{3}$ The *E* of the Ag-MnO₂ aerogel increased with an increase in ρ $_{24}$ structure of the Pt/Ag-MnO₂, abbreviation-corrected HAADF-4 such that $E \approx \rho^{1.7}$ and reached 375 kPa at ρ = 49 mg/cm³. To the 25STEM imaging with atomic number-contrast (Z-contrast) was sbest of our knowledge, this Ag-MnO₂ aerogel has a higher E (for 26 conducted on a single nanofiber. Pt and Ag atoms appeared 6 compression) than any other reported manganese-based 27 brighter than Mn atoms in the image (Fig. 2(f) and Fig. S7 (e)), 7aerogels. The enhanced physical properties (e.g., mechanical 28 while low atomic-number oxygen atoms were not detected by estrength) together with the high surface area and the 29HAADF. In the enlarged image shown in Fig. 2(g) and the line ⁹hierarchical structures make Ag-MnO₂ aerogel as an ideal ³⁰profile drawn along the bright atomic column in Fig. 2(h), two 10 support for SACs.

11

 $_{13}$ was achieved by simply adding Pt(NO₃)₂ to the precursor $_{34}$ estimation of the signal intensity. 14 solution prior to the hydrothermal reaction. SEM and STEM 35 15 characterization revealed that Pt/Ag-MnO₂ shared nearly 36 EDS and STEM results suggested Pt predominantly existed as 16 identical structure features as the Ag-MnO₂ aerogel (Fig. 2(a) 37 single atoms. With the aim to confirm the atomic dispersion of 17 and Fig. S7). EDS elemental mapping showed a uniform Pt 38Pt in the entire Pt/Ag-MnO2 aerogel, and to probe the electronic 18 distribution similar to that of Ag over the entire MnO₂ cellular 39 structure and coordination environment, SRXRD, X-ray 19structure with no Pt aggregates (Fig. 2(b-e)). The Pt and Ag 40photoelectron spectroscopy (XPS), X-ray absorption near-edge 20 contents were determined to be 0.42 and 6.30 wt%, 41 spectroscopy (XANES) and extended X-ray absorption fine 21 respectively, by EDS. The Pt content was determined to be 0.36 42 structure (EXAFS) were performed. The SRXRD pattern of Pt/Ag-

Fig. 3. Structure characterization of Pt/Ag-MnO₂ aerogel by SRXRD, XANES and EXAFS spectroscopy. (a) SRXRD patterns of the Pt/Ag-MnO₂ aerogel. (b) Normalized Pt L₃-edge XANES spectra of the Pt/Ag-MnO₂ aerogel, PtO₂ and Pt foil. The inset picture shows the magnified view of the selected region. (c) The k3-weighted Fourier transformed EXAFS spectra of the Pt/Ag-MnO₂ aerogel. (d) DFT calculated Pt/MnO₂ structure showing the bond lengths of first shell Pt-O, and high shell Pt-Mn-1 and Pt-Mn-2.

31atoms with higher contrast than the surrounding Mn atoms 32 were observed. Since the HAADF signal is proportional to Z^{1.7}, 12 The incorporation of Pt into the Ag-MnO₂ (Pt/Ag-MnO₂) aerogel 33 we ascribed those two atoms to Pt and Ag based on a rough

> $_{43}MnO_2$ (Fig. 3(a)) was assigned to α -MnO₂ reflection with no 44 diffraction peaks corresponding to Pt or PtOx being observed, 45 which excluded the presence of large crystalline Pt particles. 46 Rietveld refinement indicated that the crystalline lattice of the 47Ag-MnO2 aerogel expanded upon the incorporation of large 48 atomic radius Pt. Thus, Pt/Ag-MnO₂ showed larger a and b 49 dimension (9.854 Å) as compared to Ag-MnO₂ (9.840 Å), while

(f)

Journal Name

1 the c dimension remained unchanged (2.858 Å). These results 2suggested that Pt atoms possibly occupy Mn sites rather than ³being simply adsorbed at the tunnel or the surface of MnO₂. The ⁴profile of the XANES spectra of Pt/Ag-MnO₂ was similar to that 5 of the reference PtO2 (Fig. 3(b)). However, the intensity of the $_{\rm 6}$ white and the sharpness of the first intense maxima at ~ 7ca.11570 eV was higher than that of PtO₂, indicating Pt atoms shave a high oxidation state (> +4), which can be ascribed to 9electron transfer from Pt to the Ag-MnO₂ framework. Fig. 3(c) 10shows the Fourier transformed EXAFS spectra of the Pt/Ag- $_{11}$ MnO₂ aerogel, which included a dominant peak located at ~ 1.6 ${}_{12}\text{\AA}$ ascribed to the Pt-O contribution with a bond length of 2.01 13Å. Two weaker peaks around 2.65 Å were contributed by two 14types of high shell Pt-Mn coordination (denoted as Pt-Mn-1 and 15Pt-Mn-2). The EXAFS fitting results are displayed in Table 1. The $_{16}$ coordination number (CN) and bond length (d_{Pt-Mn-1}) for Pt-Mn- $_{17}$ 1 were estimated to be 1.9 ± 0.1 and 2.90 ± 0.03 Å, respectively. $_{18} The \ CN$ and $d_{Pt-Mn-2}$ for Pt-Mn-2 were estimated to be 1.8 \pm 0.2 19 and 3.04 ± 0.03 Å, respectively. No significant contribution from 20Pt-Pt coordination (~2.8 Å) was observed. We simulated the 21 crystal structure of Pt substituted MnO2 (Fig. 3(d)). The bond 22length of first shell Pt-O coordination was determined to be 23~1.99 Å. The bond lengths of two types of high shell Pt-Mn 24 coordination including Pt-Mn-1 and Pt-Mn-2 were calculated to 25be 2.89 Å and 3.04 Å, respectively, which are in good agreement 26 with the EXAFS results as listed in Table 1. Compared with PtO2 $_{27}$ (R = 2.12 ± 0.02 Å), Pt/Ag-MnO₂ aerogel showed a shorter Pt-O 28bond length (R = 2.01 ± 0.02 Å), thereby suggesting a stronger ²⁹interaction between Pt and O atoms in Pt/Ag-MnO₂. The above 30 results demonstrated that Pt single atoms were successfully 31 doped into the MnO₂ framework via the substitution of Mn sites. 59 hydrogel formed under these conditions. As the hydrothermal 32

33Identification of aerogel formation and Pt single atoms 34 incorporation mechanism

35In order to gain an insight into the aerogel formation and Pt 36 single atoms incorporation mechanism, time-dependent 37 characterization of the reaction intermediates was carried out. ³⁸During the typical hydrothermal synthesis of un-doped α-MnO₂ ³⁹nanofibers, the reaction at elevated temperature (>100 °C) is 40 known to process as:62

41

$${}_{42}Mn^{2+}(I) + S_2O_8^{2-}(I) + 2H_2O(I) \rightarrow MnO_2(s) + 4H^+(I) + 2SO_4^{2-}(I)$$
(1)

44 However, when AgNO₃ is added to the precursor solution, this 45 reaction can process rapidly at room temperature (Fig. S8), indicating 46 that the Ag species might effectively catalyze reaction (1). Black 47 precipitates of the mixed precursor solution were collected prior to 48 hydrothermal treatment. According to XRD, SEM, and TEM analyses 49a large number of AgO nanoparticles (Fig. 4(a)) and spherical 50 aggregates of short Ag-MnO₂ nanofibers with relatively low 51 crystallinity (Fig. S9) were found to form. Fig. 4(b-g) show results 52 from TEM, XRD, and XPS measurements of the reaction 53 intermediates over time. With an increase in the hydrothermal $_{54}$ reaction time (t), the crystallinity of the MnO₂ products increased. 55After 1 h (Fig. 4(c)), spherical MnO2 cellular structures formed, but sethese structures formed black precipitates. At t = 3 h (Fig. 4(d)), the

during the preparation of Pt/Ag-MnO₂ aerogel.

1 h

 $_{57}\alpha$ -MnO₂ nanofibers were longer (> 5 μ m), and their secondary 58 structures became entangled and interconnected. A relatively weak 60 reaction proceeded beyond 3 h, the Ag-MnO₂ nanofibers became $_{61}$ longer (> 10 μ m), and the 3D interconnection (Fig. 4(e), t = 12 h) and 62 mechanical strength of the Ag-MnO₂ hydrogel were improved. 63Interestingly, the tops of several nanofibers were found to be fused 64 together by an AgO_x-based seed, indicating an octopus-like growth ${}_{\rm 65}{\rm mode}$ and the TEM and STEM images of ${\rm MnO}_2$ nanofibers sharing Ag 66 catalysts are shown in Fig. S10. EDS elemental analysis confirmed the 67 high Ag content of the growing catalyst (Fig. S11). According to the 68 time-dependent XPS measurements (Fig. 4(g)), AgO was rapidly 69 reduced on the nanofibers surface, because of its thermodynamic 70 instability. The chemical valence of Ag was between Ag⁺ and Ag⁰ 71 during the first 0.5 h, but Ag⁺ was the primary species present during ⁷²the MnO₂ hydrogel formation process ($t \le 12$ h). AgO_x nanoparticles $_{73}$ are believed to strongly catalyze and promote the growth of $\alpha\text{-}MnO_2$ 74 nanofibers such as those shown in Fig. 4(a) via a SSS mechanism. The 75 growth reactions for this process might be as below

$$_{77}S_2O_8^{2-}(I) + Ag_2O(s) + H_2O(I) \rightarrow 2AgO(s) + 2H^+(I) + 2SO_4^{2-}(I)$$
 (2)

$$_{1}^{1}H_{2}O(I) + 2AgO(s) + Mn^{2+}(I) \rightarrow MnO_{2}(s) + 2H^{+}(I) + Ag_{2}O(s)$$
 (3)

⁸⁰With growth kinetics enhanced by the AgO_x seeds at one end of 81 the MnO₂ nanofibers, MnO₂ nanofibers underwent rapid axial ${}_{\rm s2}growth$ near the AgO_x rather than radial growth. The longer 83 nanofibers facilitated more elaborate entanglement. Moreover, 84 several MnO₂ nanofibers could share a single AgO_x nanoparticle ascatalyst such that the AgO_x nanoparticles not only catalyzed

1 h

Fig. 5. Electrocatalytic performance evaluation. (a) ORR polarization curves of the Pt/Ag- MnO_2 aerogel, Ag-MnO_2 aerogel, Pt-MnO_2, and undoped $\alpha\text{-}MnO_2$ (b) Calculated MA_{Pt} on transfer n (right axis) derived from the rotating ring-disk electrode (RRDE) data. (d) Chronoamperometric responses recorded at 1.97 V vs. RHE of MnO₂, Ag-MnO₂, Pt/Ag-MnO₂ and 20 wt% Pt/C. The methanol tolerance test is shown inset of (d).

1 growth but also acted as cross-linkers to fuse nearby 2nanofibers. The combination of these unique growth features 3leads to the formation of Ag-MnO₂ aerogel with extraordinary 4mechanical properties. Beyond its important role as a catalyst s for the hydrogel formation, AgO_x catalysts were doped into 6MnO₂ with the growth of nanofiber due to the high solubility of ⁷ionic Ag in MnO_x.³⁹ Of note, the Ag catalyst-based SSS growth smechanism was different from others reported in the literature. $_9\text{Meng}$ et al.^{63} and Li et al.^{64} obtained Ag catalyzed MnO_2 10 nanostructures only in the powder form. 11

 ${\scriptstyle 12} The incorporation of Pt single atoms also strongly depends on$ $_{13}$ the AgO_x catalysts. A control experiment without the addition 14 of AgNO₃ was carried out. Only PtO_x aggregates were obtained 15at the MnO₂ nanofiber surface (Fig. S12). TEM images of $_{16} reaction$ intermediates of $Pt/Ag-MnO_2$ aerogel collected at 0.5 17h (Fig. 4(h)) and 1 h (Fig. 4(i)) were similar to those of Ag-MnO₂ 18 aerogel, indicating the addition of Pt ions did not change the SSS 19 nanofiber growth mechanism. The EDS mapping (Fig. S13) $_{20}$ confirmed that the presence of AgO_x growth catalysts and Pt $_{21}$ distributed at the AgO_x seeds as well as in the nanofibers. Fig. 224(a) shows the schematic of the proposed Pt incorporation 23 mechanism. We hypothesized that Pt was firstly deposited at $_{\rm 24} the ~AgO_x$ seeds and then incorporated into the crystalline 25 framework of Ag-MnO₂ with the elongation of nanofibers. As 26 depicted by ex-situ XPS characterization, the valence of Ag 27species was between Ag⁺ and Ag⁰ during the first 0.5 h. The 28 incorporation of Pt single atoms may firstly proceed with Pt ²⁹deposition at AgO_x may proceed via galvanic displacement 30 between Pt ions and Ag⁰, and then followed by spontaneous ³¹incorporation into MnO₂.

32

33Electrocatalytic activities of Pt/Ag-MnO₂

³⁴The intriguing physical-chemical properties of the Pt/Ag-MnO₂ 35aerogel inspired us to use it as an electrocatalyst for oxygen 36 reduction reaction (ORR). Fig. 5(a) shows the ORR polarization Journal Name

Page 6 of 10

37 curves measured at a rotating disk electrode (RDE) in an oxygen-38 saturated electrolyte (1 M KOH). Ag-MnO₂ aerogel showed a 39 substantial improvement in the ORR activity after incorporation 40 of Pt single atoms. Pt/Ag-MnO₂ aerogel had significantly higher ⁴¹positive onset potential (E_{onset} = 1.05 V vs. RHE, which is defined ⁴²as the current density reaching 0.1 mA/cm²), half-wave ⁴³potential ($E_{1/2}$ = 0.71 V), and larger diffusion-limited current $_{44}$ density ($J_1 = 5.32 \text{ mA/cm}^2$) than that of Ag-MnO₂ aerogel and 10 45wt% Pt/C (Fig. S14(a)). Additionally, Pt/Ag-MnO₂ demonstrated 46a nearly same Eonset as 20 wt% Pt/C (Fig. S14(a)). In contrast, $_{47}$ Pt/MnO₂ prepared without AgO_x seeds exhibited significantly 48 inferior performance, which was only slightly higher than that 49 of the un-doped α -MnO₂. This stark difference highlights the ⁵⁰ power of Pt single atoms in promoting ORR. We calculated the 51Pt mass activity (MAPt) based on the ORR kinetic current density ${}_{52}(j_k)$ and the ICP-OES data. The MA_{Pt} reached as high as 1.6 different potentials. (c) Dependence of the peroxide yield (left axis) and the electron 53A/(mgPt) at 0.9 V (Fig. 5(b)). RDE voltammograms at different 54rotating speeds were performed (Fig. S14(b)). Using the 55 Koutechy–Levich equation (K–L), the electron transfer number $_{56}(n)$ of the Pt/Ag-MnO₂ aerogel was calculated to be ca. 3.92 at 570.6 V (as shown in the inset of Fig S14), indicating a nearly ideal 584-electron pathway. The good linearity of the K–L plot 59suggested a first-order reaction kinetic. To further verify the 60 reaction pathway and quantitatively monitor the reaction 61intermediates, rotating ring disk electrode (RRDE) experiments 62were carried out. Fig. 5(c) shows the dependence of the Giperoxide yield and *n* on the potential calculated from the disk 64 and ring current. The peroxide yield of the Ag-MnO₂ aerogel was 65 observed to be improved to less than 5% after incorporating Pt $_{66}$ single atoms. The *n* on the Pt/Ag-MnO₂ aerogel in the potential 67 range from 0.2 to 0.7 V was nearly constant at around 3.9, 68 agreeing well with the RDE results. Apart from its high ORR 69activity and selectivity, Pt/Ag-MnO₂ aerogel also exhibited 70 superior stability and resistance against methanol crossover. In 71a continuous chronoamperometric measurement for 30000 s 72(Fig. 5(d)), 98.4% of the initial ORR current was retained at the ⁷³Pt/Ag-MnO₂ aerogel. Ag-MnO₂ retained 94.6% of its initial ORR 74 current under the same conditions. In sharp contrast, undoped $_{75}\alpha$ -MnO₂ lost 19% of its initial ORR current in the same period. 76As demonstrated in the inset of Fig. 5(d), the ORR activity of the 77Pt/Ag-MnO₂ aerogel was retained with only a 2% loss of current 78 after the addition of methanol through 12600 s of operation. ⁷⁹This loss was much smaller than those of 20 wt% Pt/C (44%), ⁸⁰ suggesting that the superior methanol tolerance of Pt single 81 atoms over metallic Pt nanoparticles in 20 wt% Pt/C. 82

83 Understanding the origin of the high activity of Pt single atoms

⁸⁴To explore the possible role of Pt single atoms in promoting the 85 activity of Ag-MnO2, we investigated the changes in the ⁸⁶geometric and electronic effects by the Vienna Ab initio 87Simulation Package (VASP) code65-67 based on self-consistent ⁸⁸DFT on the MnO₂ (100) surface. In order to obtain deeper

ARTICLE

Fig. 6. Energy profiles for oxygen reduction reaction at 0 and 1.23 V (RHE) over different catalytic sites.

insights into the ORR mechanism on MnO₂ and Pt-MnO₂ (Pt 2substituting Mn site) surfaces, the energy profiles for the reactions taking place at 0 and 1.23 V (vs. RHE) over different Acatalytic sites were obtained with DFT calculations based on the 55 References scomputational hydrogen electrode (CHE) method developed by 6Nørskov and co-workers (Fig. 6).68-72 The top view of optimized ⁷adsorption configurations of the reaction intermediates, i.e. $_{\rm 8}{}^{*}{\rm OOH},$ *O, H and *OH, on the surfaces of ${\rm MnO}_2$ and Pt-MnO_2 surfaces are shown in Fig. S15. It is obvious that at 1.23 V, OH* ¹⁰protonation to H_2O is the potential RDS over the Pt-MnO_{2 61}3. ¹¹surface with a reaction free energy (ΔG) of 0.44 eV. In contrast, ⁶² ¹²*OH protonation to H₂O for MnO₂ surface with ΔG = 1.14 eV for ⁶³ $_{13}$ the MnO₂ surface. Such a decrease of reaction free energy well $_{64}$ 4. 14 explains the experimentally observed better performance of Pt-¹⁵MnO₂ for ORR than that of MnO₂, and the Pt-MnO₂ surface has ¹⁶higher ORR activity than MnO₂ surface. 17

18 Conclusions

¹⁹In summary, we identified an SSS mechanism to construct an ⁷¹8. 20Ag-MnO₂ aerogel consisting of sophisticated hierarchical ⁷² 21 structures at the liter scale while simultaneously achieving 73 ₂₂homogenous incorporation of Pt single atoms. AgO_x ²³nanoparticles acted as catalysts triggering the octopus-like $_{\rm 24}growth$ of MnO_2. Because of its atomic and microscale ²⁵structural merits, Pt/Ag-MnO₂ aerogel showed substantial ²⁶improved physical-chemical properties. Pt/Ag-MnO₂ aerogel 27 exhibited the highest elastic modulus E (for compression) 8012. S. M. Jung, H. Y. Jung, W. Fang, M. S. Dresselhaus and J. Kong, 28 among the reported manganese-based aerogels and possessed 81 29 high catalytic activity, selectivity and stability towards ORR 82 13. D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. 30 processes. Impressively, Pt single atoms displayed a high mass 83 31 activity of 1.6 A/(mg_{Pt}). Together with HAAD-STEM, XPS, SRXRD 84 32and EXAFS results suggested the presence of Pt single atoms 14. D. Koziej, A. Lauria and M. Niederberger, Adv. Mater., 2014, 26, 33 substituting Mn sites with electron-deficient character due to ³⁴the strong EMSI. The theoretical calculation also unraveled that 35 the incorporation of Pt single atoms markedly decreased the ³⁶overall ORR barriers. Our work suggests the great potential of 37 applying SSS mechanism and other analogous growth 38mechanisms (e.g. VLS and SLS) in synthesizing SACs supported 9217. C. Zhu, S. Fu, Q. Shi, D. Du and Y. Lin, Angew. Chem. Int. Ed., 2017, 39 on 3D structures.

40Conflicts of interest

⁴¹There are no conflicts to declare.

42Acknowledgments

43X. L. acknowledges support from the National Natural Science 44Foundation of China (No. 21972163), the Fundamental 45 Research Funds for the Central Universities and DHU ⁴⁶Distinguished Young Professor Program. Z. Jiang acknowledges 47 financial support from the Joint Fund U1732267. M. Y. thanks 48 the JSPS KAKENHI (No. JP 18H05517) and JST-CREST for financial 49 supports, and Riken SPring-8 for the approval of the SRXRD ⁵⁰measurement (20190028). The authors acknowledge the help s1from Prof. Shuyuan Zhang (USTC) for the HAADF-STEM 52 measurement. XANES and EXAFS studies were carried out at the 53BL14W1 beamline at Shanghai Synchrotron Radiation Facility 54(16ssrf00787).

59

- N. Leventis, N. Chandrasekaran, A. G. Sadekar, S. Mulik and C. 561. Sotiriou-Leventis, J. Mater. Chem., 2010, 20, 7456-7471.
- 582. M. Mecklenburg, A. Schuchardt, Y. K. Mishra, S. Kaps, R. Adelung, A. Lotnyk, L. Kienle and K. Schulte, Adv. Mater., 2012, 24, 3486-3490.
 - M. A. Aegerter, N. Leventis and M. M. Koebel, Aerogels handbook, Springer Science & Business Media, LLC, New York, 1 edn., 2011.
 - A. C. Pierre and G. M. Pajonk, Chem. Rev., 2002, 102, 4243-4265.
- A. Soleimani Dorcheh and M. H. Abbasi, J. Mater. Process. Tech., 65**5**. 2008, 199, 10-26.
- M. B. Bryning, D. E. Milkie, M. F. Islam, L. A. Hough, J. M. Kikkawa 676. and A. G. Yodh, Adv. Mater., 2007, 19, 661-664. 68
- V. Chabot, D. Higgins, A. P. Yu, X. C. Xiao, Z. W. Chen and J. J. 69**7**. Zhang, Energy Environ. Sci., 2014, 7, 1564-1596. 70
- W. Liu, A. K. Herrmann, N. C. Bigall, P. Rodriguez, D. Wen, M. Oezaslan, T. J. Schmidt, N. Gaponik and A. Eychmuller, Acc. Chem. Res., 2015, 48, 154-162.
- J. L. Mohanan, I. U. Arachchige and S. L. Brock, Science, 2005, 307, 749. 397-400.
- 7610. H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan and P. Strasser, ChemCatChem, 2010, 2, 724-761.
- 7811. J. Jiang, Y. Y. Li, J. P. Liu, X. T. Huang, C. Z. Yuan and X. W. Lou, Adv. Mater., 2012, 24, 5166-5180.
- Nano Lett., 2014, 14, 1810-1817.
- M. McEvoy, M. E. Bourg and A. M. Lubers, Chem. Soc. Rev., 2009, **38**, 226-252.
- 235-256.
- 8715. S. Mahadik-Khanolkar, S. Donthula, A. Bang, C. Wisner, C. Sotiriou-Leventis and N. Leventis, Chem. Mater., 2014, 26, 1318-1331.
- 9016. W. Zhang and W. Zheng, Adv. Funct. Mater., 2016, 26, 2988-2993.
- 56, 13944-13960.

- 118. Q. Zuo, T. Liu, C. Chen, Y. Ji, X. Gong, Y. Mai and Y. Zhou, Angew. Chem. Int. Ed., 2019, 58, 10198-1020 2
- 319. P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu, Y. Tang, J. Lai, Y. Chao, M. 63 Luo and F. Lin, Nano energy, 2019, 56, 127-137.
- 520. L. Zhang, K. Doyle-Davis and X. Sun, Energy Environ. Sci., 2019, 65 12, 492-517.
- 721. J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong, R.-S. Liu, C.-P. Han, 67 Y. Li, Y. Gogotsi and G. Wang, Nat. Catal., 2018, 1, 985.
- 922. H. Zhang, G. Liu, L. Shi and J. Ye, Adv. Energy Mater., 2018, 8, 69 1701343. 10
- 1123. A. J. Therrien, A. J. Hensley, M. D. Marcinkowski, R. Zhang, F. R. 71
- 12
- Nat. Catal., 2018, 1, 192. 13
- Z. Li and R. Si, Nano Lett., 2018, 18, 3785-3791. 15
- 1625. W. H. Lai, B. W. Zhang, Z. Hu, X. M. Qu, Y. X. Jiang, Y. X. Wang, J. 7651. M. Amato, M. Palummo, R. Rurali and S. Ossicini, Chem. Rev.,
- Z. Wang, H. K. Liu and S. L. Chou, Adv. Funct. Mater., 2019, 77 17 1807340. 18
- 1926. J. Kim, C. W. Roh, S. K. Sahoo, S. Yang, J. Bae, J. W. Han and H. 79 Lee, Adv. Energy Mater., 2018, 8, 1701476. 20
- 2127. K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng, Y. Zhao, Y.-R. Lu, T.-S. 81 Chan, F. M. de Groot and Y. Tan, *Nat. Commun.*, 2019, **10**, 1743. 22
- 2328. D. Huang, G. A. de Vera, C. Chu, Q. Zhu, E. Stavitski, J. Mao, H. 8354. S. M. Jung, H. Y. Jung, M. S. Dresselhaus, Y. J. Jung and J. Kong, Xin, J. A. Spies, C. A. Schmuttenmaer and J. Niu, ACS Catal., 2018, 84 24
- 8.9353-9358. 25 2629. X. Fang, Q. Shang, Y. Wang, L. Jiao, T. Yao, Y. Li, Q. Zhang, Y. Luo 86
- and H. L. Jiang, Adv. Mater., 2018, 30, 1705112. 27
- 2830. Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang and Y. Li, Joule, 2018, 2, 88 1242-1264.
- 3031. S. Cao, H. Li, T. Tong, H. C. Chen, A. Yu, J. Yu and H. M. Chen, Adv. 90 Funct. Mater., 2018, 28, 1802169. 31
- 3232. S. Yang, J. Kim, Y. J. Tak, A. Soon and H. Lee, Angew. Chem. Int. 92 Ed., 2016, 55, 2058-2062. 33
- 3433. P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, 94
- 35 55. 10800-10805. 36
- 3734. S. Liang, B. Qiao, X. Song, C. Hao, A. Wang, T. Zhang and Y. Shi, 97 Nano Energy, 2017, 39, 1-8. 38
- 3935. P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. 99 Zhang, Q. Guo, D. Zang, B. Wu, G. Fu and N. Zheng, Science, 2016, 100 40 **352**, 797-801. 41
- 4236. X. Li, W. Bi, L. Zhang, S. Tao, W. Chu, Q. Zhang, Y. Luo, C. Wu and 102 Y. Xie, Adv. Mater., 2016, 28, 2427-2431. 43 103
- 4437. F. Dvorak, M. Farnesi Camellone, A. Tovt, N. D. Tran, F. R. 10462. X. P. Li, J. Liu, Y. H. Zhao, H. J. Zhang, F. P. Du, C. Lin, T. J. Zhao and Negreiros, M. Vorokhta, T. Skala, I. Matolinova, J. Myslivecek, V. 105 45
- Matolin and S. Fabris, Nat. Commun., 2016, 7, 10801. 46
- 4738. X. Cui, K. Junge, X. Dai, C. Kreyenschulte, M. M. Pohl, S. Wohlrab, 107 48
- 4939. P. Hu, Z. Huang, Z. Amghouz, M. Makkee, F. Xu, F. Kapteijn, A. 109 50 2014, 53, 3418-3421. 51
- 5240. B. Zhang, H. Asakura, J. Zhang, J. Zhang, S. De and N. Yan, Angew. 112 Chem. Int. Ed., 2016, 55, 8319-8323. 53
- 5441. Max J. Hülsey, Jiaguang Zhang and N. Yan, Adv. Mater., 2018, 30, 11468. T. Sun, Y. Jiang, Q. Wu, L. Du, Z. Zhang, L. Yang, X. Wang and Z. 1802304. 55
- 5642. D. Malko, A. Kucernak and T. Lopes, Nat. Commun., 2016, 7, 11669. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, 13285. 57
- 5843. Z. Zhang, Y. Zhu, H. Asakura, B. Zhang, J. Zhang, M. Zhou, Y. Han, 118
- 59 16100. 60
- Mayrhofer, H. Kim and M. Choi, Nat. Commun. , 2016, 7, 62

- 10922.45. C. Zhang, J. Sha, H. Fei, M. Liu, S. Yazdi, J. Zhang, Q.
- Zhong, X. Zou, N. Zhao, H. Yu, Z. Jiang, E. Ringe, B. I. Yakobson, J.
- Dong, D. Chen and J. M. Tour, ACS Nano, 2017, **11**, 6930-6941.
- 6646. J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren and X. Bao, Energy Environ. Sci., 2015, 8, 1594-1601.
- 6847. C. Zhu, S. Fu, J. Song, Q. Shi, D. Su, M. H. Engelhard, X. Li, D. Xiao, D. Li, L. Estevez, D. Du and Y. Lin, Small, 2017, 13, 1603407.
- 7048. F. Wang, A. Dong and W. E. Buhro, Chem. Rev., 2016, 116, 10888-10933.
- Lucci, B. Coughlin, A. C. Schilling, J.-S. McEwen and E. C. H. Sykes, 7249. J. Wang, K. Chen, M. Gong, B. Xu and Q. Yang, Nano Lett., 2013, 73 13, 3996-4000.
- 1424. Y. Peng, Z. Geng, S. Zhao, L. Wang, H. Li, X. Wang, X. Zheng, J. Zhu, 7450. Y. Zhang, R. Xu, W. Chen, O. Zhuo, Q. Wu, J. Cai, X. Wang and Z. Hu, J. Mater. Chem. C, 2017, 5, 6493-6496.
 - 2014, **114**, 1371-1412.
 - 7852. X. Yang, B. Zhou, C. Liu, Y. Sui, G. Xiao, Y. Wei, X. Wang and B. Zou, Nano Res., 2017, 10, 2311-2320.
 - 8053. F. J. Heiligtag, W. Cheng, V. R. de Mendonça, M. J. Süess, K. Hametner, D. Günther, C. Ribeiro and M. Niederberger, Chem. Mater., 2014, 26, 5576-5584. 82
 - Sci. Rep., 2012, 2, 849.
 - 8555. W. Cheng, F. Rechberger and M. Niederberger, Nanoscale, 2016, 8, 14074-14077.
 - 8756. Y. Tang, S. Gong, Y. Chen, L. W. Yap and W. Cheng, ACS Nano, 2014, **8**, 5707-5714.
 - 8957. H. L. Gao, L. Xu, F. Long, Z. Pan, Y. X. Du, Y. Lu, J. Ge and S. H. Yu, Angew. Chem. Int. Ed., 2014, 53, 4561-4566.
 - 9158. H. S. Yu, X. J. Wei, J. Li, S. Gu, S. Zhang, L. Wang, J. Y. Ma, L. n. Li, Q. Gao, R. Si, F. Sun, Y. Wang, F. Song, H. j. Xu, X. H. Yu, Y. Zou, J.
 - q. Wang, Z. Jiang and Y. Y. Huang, Nucl. Sci. Tech., 2015, 26, 050102.
 - Z. Deng, G. Zhou, S. Wei and Y. Li, Angew. Chem. Int. Ed., 2016, 9599. L. Wu, F. Xu, Y. Zhu, A. B. Brady, J. Huang, J. L. Durham, E. Dooryhee, A. C. Marschilok, E. S. Takeuchi and K. J. Takeuchi, ACS Nano, 2015, 9, 8430-8439.
 - 9860. Z. Yang, D. C. Ford, J. S. Park, Y. Ren, S. Kim, H. Kim, T. T. Fister, M. K. Y. Chan and M. M. Thackeray, Chem. Mater., 2017, 29, 1507-1517.
 - 10161. S. Ni, H. Zhang, Y. Zhao, X. Li, Y. Sun, J. Qian, Q. Xu, P. Gao, D. Wu, K. Kato, M. Yamauchi and Y. Sun, Chem. Eng. J., 2019, 366, 631-638.
 - Y. H. Sun, ChemCatChem, 2015, 7, 1848-1856.
 - 10663. Y. M. Dai, S. C. Tang, S. Vongehr and X. K. Meng, ACS Sustain. Chem. Eng., 2014, 2, 692-698.
 - F. Shi, A. Bruckner and M. Beller, ACS Cent. Sci., 2017, 3, 580-585. 10864. Z. Li, Y. Ding, Y. Xiong and Y. Xie, Cryst. Growth Des., 2005, 5, 1953-1958
 - Dikhtiarenko, Y. Chen, X. Gu and X. Tang, Angew. Chem. Int. Ed., 11065. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15-50.
 - 11166. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186.
 - 11367. G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558-561.
 - Hu, Catal. Sci. Technol., 2017, 7, 51-55. 115
 - T. Bligaard and H. Jónsson, J. Phys. Chem. B, 2004, 108, 17886-117 17892.
 - T. Tanaka, A. Wang, T. Zhang and N. Yan, Nat. Commun., 2017, 8, 11970. Y. Jiang, L. Yang, T. Sun, J. Zhao, Z. Lyu, O. Zhuo, X. Wang, Q. Wu, J. Ma and Z. Hu, ACS Catal., 2015, 5, 6707-6712. 120
- 6144. C. H. Choi, M. Kim, H. C. Kwon, S. J. Cho, S. Yun, H. T. Kim, K. J. 12171. S. Kattel and G. Wang, J. Phys. Chem. Lett., 2014, 5, 452-456.

Journal Name

- 172. X. Liu, H. Liu, C. Chen, L. Zou, Y. Li, Q. Zhang, B. Yang, Z. Zou and H. Yang, *Nano Res.*, 2019, **12**, 1651-1657.
- 3

4

Title: Novel Self-Assembling Approach for Synthesizing Nanofiber Aerogel Supported Platinum Single Atoms

Haojie Zhang,^{a,†} Yonghui Zhao,^{b,†} Yu Sun,^c Qing Xu,^b Ruoou Yang,^d Hao Zhang,^d Chao Lin,^a Kenich Kato,^e Xiaopeng Li,^{a,*} Miho Yamauchi^{f,g,*} and Zheng Jiang^{d,h,*}

TOC figure

A new self-assembling methodology of incorporating Pt single atoms into metal oxide is presented with controlled structural formation over the entire range of length scales. Pt single atoms work synergistically with neighboring Mn atoms as asymmetrical sites for electrocatalytic reaction, resulting in activity enhancement.

Keywords: Platinum single atoms; Manganese oxide aerogel; Self-assembly; Solution-solid-solid (SSS) nanowire growth; Oxygen reduction reaction (ORR)