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Abstract

The lithium ion battery cathode material β-VOPO4 is capable of intercalating more than one Li 
ion per transition metal ion due to the accessibility of both the V5+/V4+ and V4+/V3+ redox 
couples at ~4.5 V and ~2.3 V vs. Li, respectively, giving a theoretical capacity greater than 
~300 mAh g−1. The ability to perform full and reversible two Li-ion intercalation in this 
material, however, has been a matter of debate and the poor crystallinity of the fully lithiated 
phase has thus far precluded its complete structural characterization by conventional 
diffraction-based methods. In this work, 7Li and 31P NMR spectroscopy, in combination with 
first principles DFT calculations, indicate that chemical lithiation results in a single phase β-
Li2VOPO4 exhibiting a complex Li ordering scheme with lithium ions occupying multiple 
disordered environments. 2D NMR 7Li correlation experiments were used to deduce the most 
likely Li ordering for the β-Li2VOPO4 phase from amongst several DFT optimised structures. 
In contrast, electrochemically lithiated β-Li2-xVOPO4 discharged to 1.6 V exhibits, in addition 
to β-Li2VOPO4, a β-Li1.5VOPO4 phase. The existence of β-Li1.5VOPO4 is not reflected in the 
flat galvanostatic charge and discharge curves nor is evident from diffraction-based methods 
due to the very close structural similarity between the β-Li1.5VOPO4 phase and β-Li2VOPO4 
phases. We demonstrate that solid state NMR spectroscopy, in combination with DFT results 
provides a powerful tool for identifying intermediate states formed during charge/discharge of 
these complex phosphates as these phases can be distinguished from the end member phases 
primarily by the nature of the lithium ordering.
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Introduction

Lithium-ion batteries are currently the predominant electrical energy storage technology used 
to power our portable electronics as well as electric vehicles. However the high cost and limited 
capacities (~120–180 mAh g-1) of commercial intercalation-based cathode materials such as 
LiCoO2, LiNi1-x-yCoxAlyO2 (NCA) and LiNixMnyCozO2 (NCM, 0 ≤ x,y,z < 1)1–9

  has restricted 
their use in large-scale applications such as grid-scale energy storage. Phosphate-based cathode 
materials primarily represented by LiFePO4

10–14 have offered a promising alternative to the 
oxides as the inductive effect of the PO4

3- group allows for high voltage (>3.4 V) charging 
without the structural instability at high voltages often observed with the oxide based 
cathodes.15–17 However, the capacity of LiFePO4 is still limited to ~170 mAh g-1 due to the 
one-electron Fe2+/Fe3+ couple and limited sites for Li within the olivine structure.  The vanadyl 
phosphates, LixVOPO4, offer the advantage of both high voltage as well as allowing for two-
electron reduction giving rise to theoretical specific capacities of ~300 mAh g-1 due to the 
accessibility of both the V3+/4+ as well as the V4+/5+ redox couples.
The vanadyl phosphates exhibit diverse polymorphism with 7 different polymorphic 
modifications known to date.18–23 However only the α1, β and ε polymorphs have been serious 
contenders as lithium-ion battery materials, owing in part to the difficulty in synthesising the 
other polymorphs as single-phase materials free of impurities. The α1 polymorph is a layered 
(2D) phase, whereas both the β and ε polymorphs have 3D structures comprising VO6 
octahedra bridged by PO4 groups.  For example, the structure of β-LiVOPO4, the material 
studied in this work, comprises VO6 octahedra corner-shared with adjacent VO6 octahedra 
along the [100] direction and bridged by PO4 groups both along the b and c directions to form 
a 3D framework of VO6 octahedra bridged by PO4 groups (Figure 1(a)).  The Li ions are located 
in octahedral sites that share two faces with VO6 octahedra and form 1D diffusion channels 
along the [010] direction.

Figure 1. (a) Structure of β-LiVOPO4
 along the b-direction, (b) local coordination environment around the single 

Li octahedral site in β-LiVOPO4 and (c) local coordination environment around the phosphorus tetrahedral site in 
β-LiVOPO4. V-O-Li and V-O-P bond pathways ( , used to help interpret the 7Li and 31P NMR spectra, as given 𝜌𝑖)
in Table 1, are marked in (b) and (c), respectively.

While there are numerous studies on the electrochemical and structural aspects of the α1 and ε 
polymorphs,24–27 much less is known about the mechanism of lithiation of the β phase. Ren et 
al.28 have demonstrated the use of β-LiVOPO4 as an anode in lithium-ion batteries and 
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suggested that one Li ion per formula unit can be intercalated into the structure to give 
Li2VOPO4, with deeper discharge down to 0.01 V resulting in the formation of metallic 
vanadium and Li3PO4.  Allen et al.29 have also investigated the electrochemical performance of 
both ε and β-LiVOPO4 and the evolution of the local geometry of the VO6 octahedra with 
electrochemical cycling using X-ray spectroscopic techniques. More recently, Harrison et al.30 
have studied the phases formed on electrochemical and chemical lithiation of α- and β-
LiVOPO4 using mainly X-ray and neutron diffraction as well as X-ray spectroscopy methods. 
They suggest a two-phase mechanism operating upon lithiation of β-LiVOPO4, with the plateau 
in the galvanostatic charge curve at ~2 V arising due to equilibrium between a two-phase 
mixture of β-LiVOPO4 and β-Li2VOPO4. 
Lin et al. carried out a combined first-principles and experimental investigation that examined  
the relative thermodynamic stability, voltages, band gaps and diffusion kinetics for alkali 
intercalation into the α1, β and ε polymorphs of VOPO4.31 They constructed a 0 K calculated 
phase diagram for AxVOPO4 (x = Li and Na), suggesting that for the β polymorph, an 
intermediate phase exists for x = 1.5; however, no clear experimental evidence for the 
formation of this phase during electrochemical cycling was found.  Moreover, the poor 
crystallinity of the electrochemically- as well as the chemically-lithiated phases precluded a 
detailed structure solution of β-Li2VOPO4.  
Despite the utility of X-ray diffraction-based crystallographic methods to investigate the 
lithiation mechanisms in battery materials, these methods give limited insights as to the 
evolution of lithium ordering with electrochemical cycling, an understanding of which is 
crucial to reveal the influence of structure on the electrochemical performance. Solid-state 
NMR spectroscopy remains one of the few techniques capable of probing lithium ordering and 
dynamics in the often poorly crystalline phases formed during the electrochemical cycling. In 
this work, we carry out a detailed 7Li and 31P NMR and first principles calculations study to 
gain insights into the lithium ordering in the pristine as well as electrochemically - and 
chemically-lithiated forms of β-LiVOPO4. Both the 7Li as well as 31P NMR data clearly 
indicate formation of an intermediate Li1.5VOPO4 phase during the discharge process; the 
assignments of the NMR spectra are supported by first principles calculations of both the 
energetics of different lithium ordering schemes of the Li1+xVOPO4 phases and their associated 
7Li and 31P hyperfine shifts. The results indicate that the discharge process is not a simple two-
phase transformation between LiVOPO4 and Li2VOPO4 but involves an intermediate, partially-
lithiated metastable phase that is not readily observable by long range characterization 
techniques such as X-ray diffraction (XRD).

Experimental 

Synthesis of Materials: β-LiVOPO4 was synthesised through the calcination of a 
hydrothermally synthesised precursor, LiVOPO42H2O.32 The precursor was prepared by first 
stirring V2O5 (Aldrich, >99.6%), oxalic acid (Sigma-Aldrich, >99.0%), and phosphoric acid 
(Fisher Scientific, 85%) for 18 hours in water and ethanol (in 3:1 volume ratio), followed by 
the addition of LiOHH2O (Sigma, >99.0%) and an additional 4 hours of stirring. The solution 
was then placed in a 4748 Type 125 mL PTFE-lined reactor (Parr Instrument Co.) and heated 
to 160 °C for 48 hours. The resulting LiVOPO42H2O was then filtered, dried, and heated 
(calcined) at 600 °C in O2 for 3 hours to form β-LiVOPO4. 

β-VOPO4 was synthesised by calcining a H2VOPO4 precursor. The precursor was 
prepared by dissolution of VCl3 (Sigma-Aldrich, 97%) and P2O5 (Sigma-Aldrich, ≥98%) in 
190 proof ethanol (Pharmco-AAPER), which was placed in a 4748 Type 125 mL PTFE-lined 
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reactor (Parr Instrument Co.) and heated to 180 °C for 72 hours. The resulting precursor was 
extracted through centrifugation and heated (calcined) at 700°C for 3 hours. 

Diffraction:  All precursors and the final product β-LiVOPO4 and β-VOPO4 were characterized 
by powder XRD using a Bruker D8 Advanced X-ray diffractometer equipped with a Cu Kα 
source, λ = 1.54178 Å. The diffraction patterns were recorded within the 2θ range from 10° to 
80° with 2θ steps of 0.02°. The unit cell parameters were obtained by Rietveld refinement using 
the diffraction patterns within the TOPAS program.  

Electrochemical testing: β-VOPO4 and β-LiVOPO4 were electrochemically (de)lithiated by 
using the materials as cathodes in 2325-type coin cells. β-LiVOPO4 was first subjected to high-
energy ball-milling with graphene for 30 minutes. Polyvinylidene fluoride (PVDF) was then 
added to the mixture, resulting in a β-LiVOPO4:graphene:PVDF ratio of 75:15:10. This 
mixture was formed into a slurry with n-methyl-2-pyrrolidinone (NMP) as the solvent, doctor 
blade coated onto a carbon-coated Al foil, and dried at 60 °C. Electrodes with an area of 1.2 
cm2 were punched from the dried slurry, with resultant mass loadings of ~2.5–4.5 mg.  Cells 
were then assembled using the prepared electrodes as the cathode, a pure lithium chip (MTI) 
as the counter and reference electrodes, a Celgard 2400 separator (Hoechst Celanese) as the 
separator, and 1 M LiPF6 in 1:1 v/v ethylene carbonate (EC) and dimethyl carbonate (DMC) 
as the electrolyte. Electrochemical (de)lithiation of the β-LiVOPO4 and β-VOPO4 was 
conducted at C/100 (C = 318 mAh g-1). Galvanostatic intermittent titration technique (GITT) 
measurements of β-LiVOPO4 were conducted by discharging the cell at a rate of C/100 for 1.5 
hours followed by a relaxation period of 100 hours.

Chemical lithiation:  Chemical lithiation was performed with n-butyllithium as the reducing 
agent. N-butyllithium and the synthesised pure β-LiVOPO4 sample (in a 1:1 molar ratio) were 
mixed in hexane and stirred for 3 days. After reaction, the chemically-lithiated product was 
rinsed with hexane 3 times and collected through filtration. The mixing, stirring and sample 
collection steps were carried out inside an Ar-filled glovebox to avoid sample exposure to air.  

Solid-state NMR: 7Li and 31P NMR experiments were acquired with a Bruker 1.3 mm HX probe 
using a 4.7 T (200 MHz) magnet. Spectra were acquired at Larmor frequencies of 77.77 MHz 
and 81.04 MHz for 7Li and 31P, respectively. 7Li 1D spectra were acquired using a rotor-
synchronised Hahn echo pulse sequence at a magic-angle spinning (MAS) rate of 60 kHz with 
a π/2 pulse length of 1.02 μs at a power level of 43.5 W, initially optimised on an external 
reference of Li2CO3 (referenced to 1.1 ppm). 31P spectra were acquired, also at a MAS rate of 
60 kHz, using a π/2 pulse length of 0.75 μs at a power level of 53 W, externally referenced to 
ammonium dihydrogen phosphate (NH4H2PO4) at 1.0 ppm. 2D permutationally offset 
stabilised C7 (POST-C7) 7Li spectra33–35 were acquired using a spinning speed of 63 kHz, 
which was chosen to correlate the full range of features observed. The POST-C7 experiments 
used 9 composite C7 cycles for double quantum excitation and reconversion, corresponding to 
an evolution time of 0.57 ms; the recycle delay was 40 ms and the RF power level was set the 
same as for the 7Li 1D spectra. 2D exchange spectroscopy (EXSY) 7Li measurements36–38 were 
performed also using a spinning speed of 63 kHz; the mixing period was 8 ms and the recycle 
delay was 50 ms.

Computational methods: Solid-state hybrid density functional theory (DFT) calculations were 
performed using CRYSTAL14,39 a linear combination of atomic orbitals (LCAO) code. All 
calculations were performed using the PBE0 hybrid functional40 with a total energy 
convergence criteria of 2.72×10−6 eV, a Monkhorst-Pack mesh of 8×8×8 and integral 
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tolerances of 10−7, 10−7, 10−7, 10−7 and 10−14 as defined in the CRYSTAL14 documentation. 
The atomic positions and lattice parameters of different LixVOPO4 structures (x = 1, 1.5 and 
2), taken from a previous DFT study,25 were optimised using a quasi-Newtonian algorithm. 
RMS convergence criteria of 8.16×10−3 and 3.27×10−2 eV were adopted for forces and 
displacements respectively. All calculations were performed in the spin polarised, 
ferromagnetic state unless otherwise stated. 

The 7Li and 31P Fermi contact shifts were calculated for the geometry-optimised structures 
using the method developed in previous studies41–43; only a brief summary is given here. It has 
been shown in previous work that hybrid functionals are required to accurately describe the 
Fermi contact interactions in paramagnetic materials.42,44 The size of the Fermi contact shift is 
sensitive to the percentage of Fock exchange (F0) included in the hybrid functional, with 
F0=20% and 35% representing the upper and lower bounds, respectively, of experimentally 
observed shifts. In this work, the PBE0 hybrid functional with F0 = 25% was therefore also 
adopted for the calculations of Fermi contact shifts.
For geometry optimisations, a small, contracted basis set (BS-I) was used which was taken 
unmodified from the CRYSTAL online repository. BS-I had the form (7s2p1d)/[1s2sp1d] for 
Li, (20s12p4d)/[1s4sp2d] for V, (10s4p1d)/[1s2sp1d] for O, and (16s8p1d)/[1s3sp1d] for P, 
where the values in parentheses denote the number of Gaussian primitives and the values in 
square brackets denote the contraction scheme. For the calculation of Fermi contact shifts, a 
more extended basis set (BS-II) was used which had the form (9s2p)/[5s2p] for Li, 
(13s9p5d)/[7s5p3d] for V, (10s6p2d)/[6s5p2d] for O and (11s7p3d)/[7s6p3d] for P. The BS-II 
in this work has also previously been used to calculate the Fermi contact shifts of Fe 
phosphates, 42,44 Li2VO2 35 and -LiVOPO4.45𝜀

Calculation of 7Li and 31P Fermi contact shifts: Fermi contact shifts of the pristine LixVOPO4 
structures were calculated with single point energy calculations using the BS-II basis set. In 
order to scale the Fermi contact shifts calculated from DFT at 0 K in the ferromagnetic state 
into the paramagnetic regime, the previously-reported approach was adopted,42,44 in which the 
DFT calculated hyperfine coupling constant, Aiso, was multiplied by a magnetic scaling factor, 
Φ, defined as:

                                                                                                                 (1)𝛷 =
𝐵0𝜇2

𝑒𝑓𝑓

3𝑘𝐵𝑔𝑒𝜇𝐵𝑆𝑓𝑜𝑟𝑚(𝑇 ― 𝜃)

where B0 is the external magnetic field, kB is the Boltzmann constant (1.381×10−23 J K-1),, ge 
is the free electron g factor (equal to 2.0023), μB is the Bohr magneton (9.274×10−24 J T-1), T is 
the experimental temperature at which the NMR spectra were recorded, μeff is the effective 
magnetic moment and θ is the Weiss constant. Sform is the formal spin angular momentum 
quantum number which is equal to ½ and 1 for V4+ and V3+, respectively. Based on previous 
magnetic measurements of LiVOPO4

46 μeff was taken as the spin-only magnetic moment for 
V4+ (1.732 μB) and V3+ (2.828 μB) The Weiss constant, θ, was taken to be 0 K (i.e. the Curie 
spin approximation), which is an approximation for the weakly antiferromagnetic Weiss 
constant of -67.5 K measured for LiVOPO4

46The value of T was taken as 340 K to account for 
frictional heating due to the MAS rate of 60 kHz. The scaling factors for V4+ and V3+ were 
9.29×10−3 and 12.28×10−3, respectively, from Equation 1.
The total Fermi contact shift ( ) for individual 7Li and 31P sites (i) was decomposed into the 𝛿𝑖
separate Li-O-V and P-O-V bond pathway contributions (  using the spin-flipping method 𝜚𝑛)
of Middlemiss et al.43 In this approach, the difference between the Fermi contact shift on a 
given 7Li/31P site is calculated for ferromagnetic and ferrimagnetic spin alignments of 
neighbouring V sites. The individual  bond pathway contributions from the n neighbouring 𝜚𝑖
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V sites can be summed to recover the total shift . For the Li1.5VOPO4 structures with 𝛿𝑖 = ∑
𝑛𝜚𝑛

mixed V4+/V3+ sites, before summation, the individual  contributions were scaled by the 𝜚𝑖
appropriate V4+ or V3+ scaling factor depending on the oxidation state of the V ion involved in 
the spin density transfer. 

Results 

Ab-initio DFT studies of the pristine and lithiated samples: DFT calculations were first 
performed in order to explore the energetics and to assign the experimental NMR shifts to 
specific sites in the phases formed during electrochemical lithiation of β-LiVOPO4.  These 
studies build on the DFT results for β-LiVOPO4 previously reported,31 in addition to 
calculating the NMR hyperfine shifts to make connections with experiment.  

β-LiVOPO4 exhibits a single octahedrally-coordinated Li environment (Figure 1 (a) and Figure 
2(a)) surrounded by tetrahedral and distorted octahedral vacancies. In prior work,31 different 
configurations were produced by populating the vacant sites with Li ions, which were 
subsequently relaxed with Hubbard U-corrected DFT calculations (DFT+U) to produce a 
convex energy hull. As a starting point for the calculations in the present study, the lowest 
energy structures on the hull at lithium compositions of β-LixVOPO4, where x = 1, 1.5 and 2, 
were investigated, in addition to several configurations that were close in energy to the hull 
structures. These structures are given in Table SI. 1-5 and depicted in Figure 2. In all cases, the 
structures obtained from the hull were fully optimised using the PBE0 functional within the 
CRYSTAL14 code before calculation of the NMR parameters. . A density of states plot for 
each of the lowest energy LixVOPO4 structures (x =1, 1.5 and 2) calculated with PBE0 is 
shown in SI. 1.

Figure 2. Crystal structure of (a) β-LiVOPO4, (b) β-Li1.5VOPO4 (before optimization), (c) β-Li1.5VOPO4 (after 
optimization), (d) β-Li2VOPO4 (Str 1) (lowest energy structure) and (e) β-Li2VOPO4 (Str 2).  The structure of β-
LiVOPO4 is shown to allow for comparison with the other more highly lithiated phases.  

Page 6 of 22Journal of Materials Chemistry A



In the three lowest energy structures of Li1.5VOPO4 reported in the previous study,31 the excess 
Li ions occupied tetrahedral sites (Li 2) on either side of the octahedral sites present in the 
LiVOPO4 structure as shown in Fig 2(b). During the full structural optimisation of the lowest 
energy Li1.5VOPO4 structure on the hull, significant relaxation of the initial octahedral Li 
positions (Li 1) occurred resulting in the migration of 50% of the octahedral sites to adjacent 
tetrahedral sites (Li3) and the other 50% to neighbouring distorted octahedral sites (Li 4) 
(Figure 2(b)). The Li ions in tetrahedral sites in the initial unoptimised structure (Li 2) remained 
on the same site after optimisation, although there was a small distortion of the Li position 
from the centre of the LiO4 tetrahedra. For the other two structures near the hull, the final 
structures after relaxation contained Li ions in the undistorted octahedral and tetrahedral sites 
that were present in the initial structures. The two near hull structures were 136 and 202 meV 
per f.u. higher in energy than the ground state structure.  It can be concluded therefore that 
lithiation beyond x = 1 results in a significant displacement of the initial octahedral Li sites, as 
well as occupation of new environments.

The lowest energy structure of Li2VOPO4 (Str 1) has full occupation of the tetrahedral sites 
adjacent to the octahedral sites in LiVOPO4 structure (Figure 2(c)). A slightly higher energy 
(56 meV per f.u.) Li2VOPO4 structure (Str 2) was also investigated, which contained Li in 
additional tetrahedral and distorted octahedral sites (Li 5 and Li 6) that were not present in the 
lowest energy structure to explore potential Li disorder. The 7Li and 31P NMR hyperfine shifts 
of all of the phases are shown in Figure 3. Of note, the tetrahedrally coordinated Li sites all 
exhibit zero or positive shifts, while the octahedrally coordinated shifts show either negative 
or very small positive shifts; these hyperfine shifts are analysed in more detail after the 
experimental NMR results are presented. 

Figure 3. DFT-calculated (a) 7Li and (b) 31P Fermi contact NMR shifts for low energy LixVOPO4 (x = 1, 1.5 and 
2) structures. The DFT energies of the structures relative to the lowest energy structure at each composition (EDiff) 
is given in meV per f.u. The 7Li shift ranges of tetrahedral (Litet) and octahedral (Lioct) sites from x = 1-2 is 
indicated. All shifts were scaled to 340 K assuming a spin-only magnetic moment. 

Experimental NMR spectra of pristine β-LiVOPO4: The 7Li NMR spectrum of pristine β-
LiVOPO4 exhibits a single isotropic shift at 3 ppm (Figure 4(a)) consistent with the one 
crystallographic site for lithium in the structure (Figure 1b and Figure 3).  In general, the 6/7Li 
chemical shift range of diamagnetic compounds lies from 0 to ±5 ppm, whereas paramagnetic 
materials generally exhibit much larger shifts due to the Fermi contact interaction that arises 
due to the transfer of spin density from the paramagnetic center (in this case, V4+ in the t2g

1eg
0 

electronic configuration) to the NMR active nucleus through the intervening oxygen atoms. 
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Thus, the observation of a shift near 0 ppm in paramagnetic β-LiVOPO4 is surprising and 
warrants further exploration.  
A better understanding of the ~0 ppm shift can be gained by decomposition of the overall Fermi 
contact shift calculated above (Figure 3) into its constituent Li-O-V4+ bond pathway 
contributions through a DFT-based bond pathway contribution analysis using the spin flipping 
approach (for more details see Table 1 and Figure 1(b) and (c)). The lithium ions are connected 
to two V4+ ions through 122.7° Li-O-V4+ bond pathways ( ) (see Figure 1(b)), leading to a 𝜌1
positive shift contribution of 36 ppm. The LiO6 octahedra also share a common face with two 
VO6 octahedra through three Li-O-V4+ bond overlaps, with angles from 80.1 to 91.4°. The sum 
of the individual Li-O-V4+ bond overlaps ( ), in addition to the direct transfer of spin density 𝜌2
from V4+ to Li+, leads to a negative shift contribution of -36 ppm per  pathway. The sum of 𝜌2
the positive and negative pathways contributions for  leads to a net calculated 7Li 𝜌1 and  𝜌2
Fermi contact shift for β-LiVOPO4 of 2 36+2 -36 = 0 ppm.× ×

Table 1: DFT calculations of X-O-V4+ (X=7Li or 31P) NMR bond pathway contributions ( ) 𝜌𝑖
in the β-LiVOPO4 structure at 340 K. The total shift is calculated as the sum of the individual 

  The bond pathways are depicted in Figures 1 (b) and (c).𝜌𝑖.

Pathway No. of 
Pathways

X-O-V4+ 
Angles (°)

X-V4+ 
Distance 

(Å)

Fermi Contact 
Shift (ppm)

Total Shift 
(ppm)

𝜌1 2 122.7 3.288 367Li 𝜌2 2 80.11, 85.15, 91.44 2.828 -36 0

𝜌𝑎 2 134.23 3.228 1429
𝜌𝑏 1 130.93 3.260 031P
𝜌𝑐 1 152.32 3.325 -335

2503

A single resonance is seen in the 31P NMR spectrum (Figure 4(b)) with a much larger shift of 
1926 ppm, consistent with the paramagnetic nature of this compound.  The P site is connected 
to four V4+ sites through three different P-O-V4+ bond pathways, , , and𝜌𝑎  𝜌𝑏  𝜌𝑐(see Figure 1

The large, positive shift contribution  predicted from first principles from the two  (c). 𝜌𝑎
pathways (2  compared to the negligible and weakly negative shifts, × 1429 𝑝𝑝𝑚)
respectively, of the  and  pathways, leads to an overall positive 31P NMR shift (2503 ppm) 𝜌𝑏 𝜌𝑐
in reasonable agreement with the experimental value. The overestimation of the 31P shift may 
be related to the neglect of antiferromagnetic (AF) ordering through the use of a Weiss constant 
of  = 0 K for LiVOPO4 in the calculation of Φ (the magnetic scaling factor), which implicitly 𝜃
assumes that AF correlations do not persist near room temperature.  
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Figure 4. (a) 7Li and (b) 31P NMR spectrum of β-LiVOPO4. All the spectra presented in this work were acquired 
at a magic angle spinning (MAS) frequency of 60 kHz at 4.7 T unless otherwise noted. Asterisks denote spinning 
sidebands.
Electrochemistry and NMR characterization of cycling: The galvanostatic charge-discharge 
curve of β-LiVOPO4 cycled between 1.5 and 4.5 V exhibits an initial sloping region as the 
material is discharged (lithium insertion) between 3.25 and 2.1 V, before reaching a flat plateau 
at ~2 V (Figure 5).  The GITT (SI. 2) shows that there is a clear plateau at 2.15 V between x = 
1.15 and 1.6.   At the end of the plateau there is a shallower sloping region between 2.0 V and 
1.8 V, which is followed by a steeper sloping region upon discharge to 1.5 V. Discharge to 1.5 
V leads to a capacity of ~165 mAh g-1 corresponding to intercalation of 1 Li into β-LiVOPO4. 
On charging, the sloping region is more prominent and is followed by a shorter plateau region 
at ~2.1 V. The upper voltage region exhibits a single plateau at ~4.0 V which is seen both on 
charge and discharge. 
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Figure 5. Galvanostatic charge-discharge curve of β-LiVOPO4 cycled between 1.5 V and 4.5 V at a rate of C/50. 
The points at which ex-situ NMR data were acquired are marked. The relative capacity is defined with respect to 
the pristine β-LixVOPO4 material (x = 1).

7Li NMR spectra of β-LiVOPO4 electrodes disassembled at various states of charge (SOC) are 
shown in Figure 6, and SI. 3. On discharging to 2.1 V (corresponding to a capacity of 89 mAh 
g-1, or intercalation of 0.5 Li into LiVOPO4), new resonances at 46 ppm as well as a broad 
environment at 264 ppm are observed. By comparison to the DFT calculations, the appearance 
of these higher-frequency shifts indicates the onset of Li occupation of distorted “tetrahedral” 
sites (e.g., Li2 and Li5 sites in Fig 2b, c, and d)) that are not present in the original β-LiVOPO4 
structure (Fig 2a). 

Using the DFT calculations to aid the assignments, the 7Li shifts close to ~50 ppm arise from 
local environments in β-Li1.5VOPO4, while the negative shifts and those > 200 ppm are due to 
octahedral and (highly) distorted “tetrahedral” environments, respectively, in β-Li2VOPO4.
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Figure 6. Deconvolution of the 7Li NMR spectra of β-LiVOPO4 cycled to different states of charge (SOC) in the 
lower voltage region between 3.4 V and 1.5 V. The points in the galvanostatic discharge curve (Li contents) at 
which the NMR spectra were acquired are as marked in Figure 5. The spectra are scaled arbitrarily.

On charging to 2.1 V (Li 1.67), the relative intensities of the ~3 ppm and ~46 ppm peaks seen 
in the Li 1.67 spectrum, are similar to those observed on discharge to 2 V (Li 1.5), but the 
resonances at higher shifts (255 ppm and 310 ppm) remain indicating that Li has not yet been 
extracted from these distorted “tetrahedral” sites at 2.1 V on charge. 7Li NMR spectra of the 
electrode obtained on further charging to 3.2 V (Li 1.15) exhibit a single resonance at ~5 ppm 
due to octahedral Li environments, consistent with reversible formation of the LiVOPO4 phase.
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Figure 7. 31P NMR spectra of β-LiVOPO4 cycled to different states of charge (SOC) in the lower voltage region 
between 3.4 and 1.5 V. The points in the galvanostatic discharge curve that the NMR were acquired at are as 
marked in Figure 5. 

31P NMR spectra of β-LiVOPO4 electrodes disassembled at identical states of charge (SOC) 
are shown in Figure 7; the electrode samples were the same as those studied by 7Li NMR. On 
discharging to Li 1.5, in addition to the resonance at ~1915 ppm assigned to LiVOPO4, an 
additional broad resonance is observed at ~2800 ppm that overlaps with the spinning sideband 
of the LiVOPO4 phase. Further discharge to 1.5 V (Li 2.0) gives rise to a sharp, well-resolved 
resonance at 3020 ppm. This is also accompanied by the appearance of a new resonance at 
1656 ppm.   Therefore, while only one P local environment is predicted for the x = 2 ground 
state structure, at least two are seen experimentally.  However, the calculations also show that 
there are a variety of lithium orderings in the x = 1.5 and 2.0 compositions that lie close in 
energy, which appear to be populated under electrochemical cycling.
Upon charging to Li 1.67, the peak at 1656 ppm remains approximately constant in shift, while 
the resonance originally at ~3100 ppm shifts to ~2850 ppm. In addition, the peak at ~1950 ppm 
corresponding to the LiVOPO4 phase reappears, confirming that the 1656 and ~1950 ppm 
peaks originate from different sites.  In accordance with the DFT calculations (Fig. 3), the 
resonances close to 3000 ppm are assigned to the lowest energy structure of β-Li1.5VOPO4. 
Further charging back to ~3.2 V results in disappearance of the peaks at ~2850 and 1656 ppm 
and growth of the ~1950 ppm peak, confirming delithiation back to the LiVOPO4 phase. 

The effect of starting material on lithium ordering:

The experimental 7Li and 31P NMR spectra are not readily explained by one single composition 
or Li ordering at each state of charge.  We now explore whether the method and nature of the 
starting material play a significant role in the nature of the phase formed.   To explore this, and 
for comparison to prior results,29,30 a β-VOPO4 sample synthesised by heating tetragonal 
H2VOPO4 was also discharged to 1.6 V (specific capacity of ~300 mAh g-1; the 
electrochemistry is shown in SI. 4). The 7Li NMR spectrum of this sample exhibits more 
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intense and sharper peaks at 306 ppm and 258 ppm (Fig. 8(b)) compared to that seen in the 
sample obtained by discharge of the β-LiVOPO4 precursor (Fig 8(a)).

Figure 8.  A comparison of the 7Li NMR spectra of (a) β-LiVOPO4 discharged to 1.6 V, (b) β-VOPO4 discharged 
to 1.6 V, and (c) chemically-lithiated β-Li2VOPO4. The minor peaks at ~181 ppm, 71 ppm and −93 ppm in the 
chemically-lithiated β-Li2VOPO4 sample (marked as ε) are assigned to an ε-Li2VOPO4 impurity,47 while that at 
~2 ppm is assigned to pristine β-LiVOPO4.  

More noteworthy are the more intense and well-resolved peaks observed at −18 and −44 ppm; 
on the basis of the DFT calculations, these are assigned to Li ions in the environments which 
are more highly coordinated by O (i.e. Li1 and Li6). Similar to the sample obtained from β-
LiVOPO4, this spectrum also exhibits a sharp resonance at ~60 ppm, a feature arising from the 
β-Li1.5VOPO4 phase. 31P NMR measurements indicate peaks at 4870 ppm, ~3000 ppm and a 
sharp peak at ~1700 ppm (Fig. 9). Based on DFT (Fig. 3, lowest energy structures), the peak 
at 4870 ppm is assigned to β-Li2VOPO4 while the one at ~3000 ppm is assigned to a β-
Li1.5VOPO4 phase. For the sample discharged from VOPO4, the ratio of the integrated 
intensities of the 4870 ppm peak and the ~1700 ppm peak to the ~3000 ppm peak is 1:0.48, 
which is in good agreement with the β-Li2VOPO4 : β-Li1.5VOPO4 ratio obtained for the same 
sample from the 7Li NMR (i.e., the 306 ppm + 258 ppm + −18 ppm + −44 ppm : 60 ppm peak 
ratio is 1:0.41, after normalizing for the expected amount of Li in the phases).
Chemical lithiation with n-butyllithium is a well-known method of obtaining 
stoichiometrically lithiated battery materials.48 In order to confirm that the shifts obtained at 
the end of discharge are due to β-Li2VOPO4, the NMR spectra of the two electrochemically-
lithiated samples are compared with that of chemically-lithiated β-LiVOPO4. The 7Li NMR 
spectrum of this chemically lithiated sample (Fig. 8(c)) exhibits impurity peaks at 178 ppm, 71 
ppm and −93 ppm assigned to ε-Li2VOPO4.47 The peak at ~2 ppm is assigned to the residual 
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β-LiVOPO4 precursor. This leaves the peaks at 306 ppm, 255 ppm, −18 ppm and −47 ppm, 
which are assigned to Li sites in β-Li2VOPO4. The peaks at 306 ppm and 255 ppm are in good 
agreement with DFT-calculated shifts expected for Li distorted “tetrahedral” environments in 
the structure of β-Li2VOPO4 (Li5 and Li2 sites), while the negative shifts (at −18 ppm and −47 
ppm) are in good agreement with DFT calculated shifts expected for Li highly-coordinated 
environments in the structure of β-Li2VOPO4 (the Li1 and Li6 sites). Unlike the 
electrochemically-lithiated samples, however, the chemically-lithiated sample does not exhibit 
a peak at ~60 ppm. The corresponding 31P NMR spectrum of the chemically-lithiated sample 
(Fig.9(c)) also exhibits impurity peaks due to ε-Li2VOPO4 at 4352 ppm and 3160 ppm, in 
addition to the peak due to the precursor β-LiVOPO4 at 1954 ppm. The peak at 4870 ppm is 
assigned to β-Li2VOPO4, in agreement with DFT calculations. This sample also exhibits a 
sharp resonance at 1678 ppm which is also observed in the electrochemically-lithiated samples 
discharged to 1.6 V, and which we will assign later after exploring the effect of metastability 
in the system.

Figure 9. 31P NMR spectra of (a) β-LiVOPO4 discharged to 1.6 V, (b) β-VOPO4 discharged to 1.6 V, and (c) 
chemically-lithiated β-Li2VOPO4. In (c), the peaks at ~4352 ppm and ~3160 ppm (marked as ε) are assigned to 
an ε-Li2VOPO4 impurity, while that at 1954 ppm is assigned to residual β-LiVOPO4. Asterisks denote spinning 
sidebands.

2D NMR studies of Li ordering in Li2VOPO4

7Li correlation experiments were carried out in order to narrow down the structure of the 
chemically-lithiated Li2VOPO4 from amongst all the structures generated from the convex hull 
for β-LiVOPO4, which differ in their local lithium ordering. The 2D 7Li POST-C7 spectrum of 
chemically lithiated β-Li2VOPO4 (Figure 10) shows the cross peaks between dipolar-coupled 
lithium environments in close spatial proximity to each other.
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Figure 10. 2D 7Li POST-C7 spectrum of chemically lithiated β-Li2VOPO4
 

 
acquired at 4.7 T with a MAS spinning 

frequency of 63 kHz, using excitation and reconversion periods of 286 µs each (9 basic POST-C7 elements). Red 
lines show the cross peaks between dipolar-coupled lithium environments in close spatial proximity. Skyline 
projections are shown on the top and left sides.

The POST-C7 spectrum (Figure 10) shows that the feature at −18 ppm (assigned to the more 
highly-coordinated Li1 site) is correlated to both of the distorted “tetrahedral” Li sites 
resonating at 255 ppm (Li2) and 306 ppm (Li5).  (The site labels referred to here are as shown 
in Figure 2(d)). However, the other low-frequency resonance at −47 ppm (Li6) is correlated 
only to the Li at 255 ppm (Li2) and not to that at 306 ppm (Li5).  In other words, considering 
all four possible correlations between the two distorted “tetrahedral” sites (Li5, Li2) and the 
more highly-coordinated sites (Li6, Li1), only the Li5–Li6 correlation is not observed; thus, 
we can conclude that the distance between these sites should be longer than the other Li–Li 
distances.  
In agreement with the POST-C7 measurement, the 2D 7Li EXSY spectrum (Figure 11) also 
indicates correlation of both of the lower-frequency features at −18 ppm (Li1) and −47 ppm 
(Li6) with the environment at 255 ppm (Li2). However, correlation of the more highly-
coordinated environments to the distorted “tetrahedral” site at 306 ppm (Li5) is not observed 
in the EXSY, suggesting that this site is more disordered or further from these sites than is Li2. 
Based on the above assignments and comparing the Li–Li distances in the calculated structures, 
the experimental NMR spectrum for β-Li2VOPO4
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Figure 11. 2D 7Li EXSY spectrum of chemically-lithiated β-LiVOPO4, with a mixing period of 8 ms. The 
spectrum was acquired at a MAS frequency of 63 kHz at 4.7 T, using 720 t1 increments of 8 µs. Off-diagonal 
cross peaks showing correlations between tetrahedral and octahedral Li sites are shown as dashed lines. Skyline 
projections are shown on the top and left sides. 

best agrees with the calculated structure 2 given in Figure 2(d), which has a slightly higher 
energy than the lowest energy structure for β-Li2VOPO4. In particular, the Li5–Li6 distance 
(~3.5 Å) is considerably longer in calculated structure 2, in very good agreement with the result 
of the POST-C7 measurement where no correlation between the resonances from these sites is 
not observed.  Key Li-Li distances are given in Table SI. 6 in the SI.  

Metastability in this system:
Indication of the metastability of the intermediate phase β-Li1.5VOPO4 was assessed by 
recording the NMR spectrum of the electrochemically-lithiated sample discharged to 1.6 V 
after 3 months. This shows that the peak at ~60 ppm disappears and is accompanied by the 
growth of the peak at ~0 ppm indicating that over time the β-Li1.5VOPO4 phase transforms to 
β-LiVOPO4 (Figure 12).  Correspondingly, the 31P shift at ~3000 ppm also disappears on aging 
the sample (SI.5) and this is consistent with this peak being assigned to the metastable β-
Li1.5VOPO4 phase. On the other hand, the 31P resonance at ~1600 ppm remains even after 3 
months, consistent with this shift originating from the β-Li2VOPO4 phase rather than the 
metastable β-Li1.5VOPO4 phase. 
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Figure 12. 7Li NMR spectrum of (a) the chemically-lithiated β-Li2VOPO4 sample, compared with (b) β-LiVOPO4 
discharged to 1.6 V (electrochemically-lithiated β-Li2VOPO4), and (c) the spectrum of the sample shown in (b) 
after aging for 3 months. The minor peaks at ~178 ppm, 71 ppm and −93 ppm in the spectrum of chemically-
lithiated β-Li2VOPO4 (labelled as ε) are assigned to a minor ε-Li2VOPO4 impurity.47 Li1 and Li1.5 indicate NMR 
signatures characteristic of  β-LiVOPO4 and β-Li1.5VOPO4 phases respectively.

Discussion

The mechanism of electrochemical (de)lithiation in lithium-ion batteries is generally indicated 
by the nature of the galvanostatic charge-discharge curve, with a flat voltage profile indicating 
a two-phase reaction whereas a sloping curve indicates a solid solution mechanism. While the 
flat plateau in the discharge curve at 2.1 V suggests a two-phase reaction between β-LiVOPO4 
and β-Li2VOPO4, the presence of an intermediate phase of composition Li1.5VOPO4 was 
suggested by Lin et al who showed through DFT calculations that in addition to the LiVOPO4 
and Li2VOPO4 phases, both of which lie on the convex hull obtained for the phase diagram for 
LiVOPO4, an additional phase, Li1.5VOPO4, also lies only slightly above the hull, indicative of 
a metastable phase (SI. 1. of Ref 31).  Although no prior experimental evidence supports the 
formation of this intermediate phase, our NMR studies here show in the plateau region the 
formation of this intermediate, which is characterised by the 7Li NMR resonance at ~60 ppm 
and the 31P NMR resonance at ~3000 ppm of the samples cycled to a state of discharge 
corresponding to intercalation of ~0.5 Li. These NMR signatures are present even after 
discharging to 1.6 V indicating the persistence of this phase until the end of discharge and 
incomplete lithiation on electrochemical cycling. DFT calculations as given in Table 1 and 
Figure 3 support the assignment of these NMR features to the Li1.5 phase. 
In contrast, the chemically-lithiated β-Li2VOPO4 sample does not show NMR signatures 
indicative of the metastable β-Li1.5VOPO4 suggesting complete 2 Li intercalation on chemical 
lithiation. This difference in end products formed indicates that electrochemical intercalation 
is under kinetic control as a result of which the metastable Li1.5VOPO4 phase is formed in 
addition to the Li2VOPO4 phase when both the LiVOPO4 as well as the VOPO4 phase are 
discharged to 1.6 V. Chemical intercalation on the other hand is under thermodynamic control 
leading to the formation of only the stable Li2VOPO4 phase upon lithiation.  
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As the Li1.5VOPO4 phase and the Li2VOPO4 phases differ primarily in the nature of Li ordering 
while maintaining the same VOPO4 connectivities, the expected XRD patterns of these phases 
are very similar (SI. 6 shows a simulation of the XRD patterns of these phases). Compounded 
by the often poor crystallinity of the intermediate phases obtained on cycling10, 49, this would 
make the intermediate phases very difficult to distinguish from the end-member β-Li2VOPO4 
phase by XRD. 

The question still remains as to why there is no clear step in the voltage profile indicative of 
the β-Li1.5VOPO4 phase. This may be because the intermediate β-Li1.5VOPO4 phase lies very 
close to the hull in the β-LiVOPO4- β-Li2VOPO4 phase diagram and therefore gives rise to a 
step in the voltage plateau that would be difficult to detect and likely masked by the huge 
overpotential observed on discharge between ~3.0 V and 2.0 V. However, the presence of a 
second small plateau at ~2.25 V on the charging curve supports the formation of this 
intermediate phase.

Conclusions

This paper demonstrates that electrochemically discharged β-LiVOPO4 gives rise to metastable 
β-Li1.5VOPO4 intermediates in addition to the fully lithiated β-Li2VOPO4 phase. The formation 
of the metastable β-Li1.5VOPO4 phase, which lies close in energy to the convex hull between 
LiVOPO4 and Li2VOPO4, does not lead to a clear step in the voltage plateau. However, solid 
state NMR experiments, supported by ab-initio DFT calculations, provide clear support for the 
formation and structure of this metastable phase as it gives rise to characteristic signatures in 
the 7Li and 31P NMR spectra. The metastable phases would be difficult to identify from other 
methods such as X-ray diffraction due to their poor crystallinity.

The 2D NMR 7Li correlation experiments presented here were used to help deduce the complex 
Li ordering in chemically lithiated β-Li2VOPO4, the correlation experiments being used to 
select the most likely Li ordering candidate amongst several DFT-optimised structures. The 
methodology developed and the understanding gained therefrom will aid in the determination 
of complex Li orderings in other LixVOPO4 polymorphs as well.
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