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      Abstract

We employ the microscopic self-consistent cooperative hopping theory of penetrant activated 

dynamics in glass forming viscous liquids and colloidal suspensions to address new questions 

over a wide range of high matrix packing fractions and penetrant-to-matrix particle size ratios. 

The focus is on the mean activated relaxation time of smaller tracers in a hard sphere fluid of 

larger particle matrices. This quantity also determines the penetrant diffusion constant and 

connects directly with the structural relaxation time probed in an incoherent dynamic structure 

factor measurement. The timescale of the non-activated fast dissipative process is also studied 

and is predicted to follow power laws with the contact value of the penetrant-matrix pair 

correlation function and the penetrant-matrix size ratio. For long time penetrant relaxation, in the 
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relatively lower packing fraction metastable regime the local cage barriers are dominant and 

matrix collective elasticity effects unimportant. As packing fraction and/or penetrant size grows, 

much higher barriers emerge and the collective elasticity associated with the correlated matrix 

dynamic displacement that facilitates penetrant hopping becomes important. This results in a 

non-monotonic variation with packing fraction of the degree of decoupling between the matrix 

and penetrant alpha relaxation times. The conditions required for penetrant hopping to become 

slaved to the matrix alpha process are determined, which depend mainly on the penetrant to 

matrix particle size ratio. By analyzing the absolute and relative importance of the cage and 

elastic barriers we establish a mechanistic understanding of the origin of the predicted 

exponential growth of the penetrant hopping time with size ratio predicted at very high packing 

fractions. A dynamics-thermodynamics power law connection between the penetrant activation 

barrier and the matrix dimensionless compressibility is established as a prediction of theory, with 

different scaling exponents depending on whether matrix collective elasticity effects are 

important. Quantitative comparisons with simulations of the penetrant relaxation time, diffusion 

constant, and transient localization length of tracers in dense colloidal suspensions and cold 

viscous liquids reveal good agreements. Multiple new predictions are made that are testable via 

future experiments and simulations. Extension of the theoretical approach to more complex 

systems of high experimental interest (nonspherical molecules, semiflexible polymers, 

crosslinked networks) interacting via variable hard or soft repulsions and/or short range 

attractions is possible, including under external deformation.
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I.  Introduction

Understanding the dynamics and transport of dilute “penetrants” or “tracers” in atomic, 

molecular, and polymer liquids and glasses, and the nanoparticle or colloidal suspension 

analogues, is a fundamental scientific problem of broad interest1-8. Relevant applications for the 

former systems include gas and organic molecule separations in rubbery, supercooled melt and 

vitrified polymer membranes where large selectivity and rapid transport are desired5-8, barrier 

materials that suppress gas permeation in coatings9, 10, self-healing applications based on 

controlled release of reactive molecules from microcapsules9, 10, and ion and solvent transport in 

biological and polymeric materials7, 11. Existing models are almost entirely phenomenological, 

typically built around the difficult to quantify idea of “free volume”7, 8, 11-13. Even for simple 

sphere models, how penetrant transport depends on its size relative to that of the matrix particles, 

over a wide range of temperature and density where the matrix alpha relaxation  process can vary 

up to 14 decades, is not well established, with different models making qualitatively different 

predictions11, 14. For example, the logarithm of the long time penetrant diffusion constant has 

been argued to vary linearly, quadratically, and as the third power of penetrant size15, 16. A 

variety of simulations14,17-23 using different models have been performed. Most recently, a 

comprehensive study14 of atomic and molecular penetrants in dense polymeric media found that 

for spherical tracers the diffusion constant scales as the exponential of one power of the 

penetrant diameter.  However, more broadly, the study of penetrant transport is computationally 

challenging since it is often activated and hence quite slow, which can restrict such studies to 

situations where penetrant diffusivity is sufficiently high. This renders the construction of 

predictive theories of particularly high value. 
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 Tracer nanoparticle or colloid diffusion in a dense suspension or glass composed of larger 

particles is also of major interest24-30. Since colloids are typically 100-1000 times larger than 

molecules (e.g., 100 nm to 1 m vs 1 nm), equilibrium transport and relaxation is measurable 

over far fewer decades (6-9 less). The matrix kinetically vitrifies when a tracer activation barrier 

is far less than those of thermal liquids, a limitation that also applies to simulations. Since 

equilibrium states with very high activation barriers for transport are not probed, ideal mode 

coupling theory (MCT)31 can provide insight. However, its lack of activated processes can incur 

qualitative errors for the long time matrix alpha relaxation process in the colloidal domain, and 

even more so for viscous liquids. 

From a theoretical perspective, we believe the key to making progress for both colloidal 

and molecular systems is to have a predictive theory of pure matrix activated dynamics, and how 

it is coupled with, or facilitates, activated penetrant hopping. Recently, Zhang and Schweizer32 

formulated such an approach at a microscopic force level in the dilute penetrant limit: the self-

consistent cooperative hopping (SCCH) theory, which builds on the Elastically Collective 

Nonlinear Langevin Equation (ECNLE) theory33, 34 of the pure matrix alpha relaxation process. 

SCCH theory addresses in a mechanistic manner how matrix activated motion and emergent 

shear rigidity determine the penetrant hopping rate. The latter is a central issue in the separation 

membranes community7, 8 where permeability involves the product of the penetrant solubility 

and diffusion constant (scales as the hopping rate), with the latter typically more strongly varying 

with molecular size, shape, and thermodynamic state14. The physical ideas of SCCH theory bear 

some similarity with classic problems in solid state physics, e.g., small polaron transport35 and 

interstitial diffusion in crystals36, where local steric obstruction and correlated collective 

elasticity of the medium (phonons) play crucial roles. 
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Although formulated at the stochastic trajectory level37, 38 from which one can, in 

principle, determine time-dependent correlation functions39, 40, SCCH theory has focused on a 

subset of key average dynamical quantities, most importantly the penetrant structural or alpha 

relaxation time. Knowledge of the latter allows a direct estimate of the penetrant diffusion 

constant (inverse proportionality)32, 41, 42 and is connected to measurements of the mean time 

scale for the decay of the wavevector (q) dependent penetrant incoherent dynamic structure 

factor on the local cage (q*) scale, Fs(q=q*,t). 

Specific numerical applications of SCCH theory to date have been for the simplest model: 

a hard sphere penetrant dissolved in a dense hard sphere fluid or glass32. This model is directly 

relevant to atomic penetrants in atomic liquids (e.g., rare gases)43, 44 and spherical nanoparticles 

in colloidal suspensions3, 45. Based on a mapping of chemical complexity to an effective hard 

sphere mixture model, it can also be applied to molecular penetrants in molecular and polymeric 

matrices32, 41, 42. By varying the penetrant size and attractive interactions with the matrix, 

penetrant diffusion was studied at the level of model calculations and (via the mapping) 

confronted with experiments. For example, successful predictions were made based on one 

adjustable parameter for the diffusivity as a function of temperature of water, toluene, methanol, 

and oxygen in polyvinylacetate liquids and glasses32. At the underlying hard sphere model level, 

the logarithm of the penetrant diffusion constant was predicted to be linearly related to the size 

asymmetry ratio over a specific thermodynamic-state-dependent parameter range32, which 

appears to be qualitatively consistent with simulations14, 21, 22, 46, especially the very recent study 

of ref.14. Moreover, to leading order this size ratio dependence appears to be weakly dependent 

on penetrant-matrix attraction14, 32, emphasizing the importance of steric effects due to repulsive 

forces for this question. SCCH theory has also been tentatively extended to treat penetrant 
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dynamics in athermal (no attractions) two-component spherical particle mixtures42, with a 

successful application to understand the concentration dependence of toluene diffusivity in 

toluene-polystyrene mixtures.

However, the prior theoretical work in the dilute penetrant limit32 was highly limited with 

the following issues not addressed. (i) The nature and relevance of the short time/length scale 

dissipative penetrant relaxation process. (ii) The evolution of the activated penetrant relaxation 

(hopping) time or diffusivity over the entire metastable fluid range that can be probed in 

experiment and simulation. (iii) The detailed physical origin and range of validity of the nearly 

exponential connection between the penetrant relaxation time (inverse diffusion constant) and 

size ratio. (iv) Do connections exist for penetrant relaxation or diffusivity with easily measurable 

thermodynamic properties of the matrix? The primary goal of the present article is to address 

these scientific questions.  

In addition, a generic technical issue is that all prior SCCT work32, 41, 42 adopted integral 

equation theory (IET) with the Percus-Yevick (PY) closure47 to compute the structural 

correlations required to quantify dynamical constraints. Very recently we explored the 

consequences for dynamically-relevant thermodynamic properties and structure in glass forming 

liquids by using the modified-Verlet (MV) closure approximation. By quantitatively confronting 

the more thermodynamically-consistent MV based results and their PY closure analogues with 

simulations in the dense metastable fluid regime we demonstrated the former predicts much 

more accurate structural correlations and thermodynamics in one-component fluids48 and two-

component mixtures49 than its PY-based analogue. Since the foundational idea of the ECNLE 

and SCCH theories is a direct connection between activated dynamics and structure, the accuracy 

of structural input can significantly impact some dynamical predictions and conclusions drawn 

Page 6 of 45Soft Matter



7

from their confrontation with experiment and simulation. As a recent example of this issue we 

found that by using the improved MV closure structural information in ECNLE theory a novel 

linear correlation between a thermodynamic property and activated relaxation time in one-

component hard sphere fluids is predicted50. Hence, improved structural input to the dynamical 

theory is especially important for addressing issue (iv) above. 

In this article we study the above issues using SCCH theory and accurate IET input for 

the foundational model of a dilute hard sphere penetrant in a dense hard sphere matrix fluid. 

Section II reviews the theoretical background and model employed. Section III presents new 

results for activated penetrant relaxation and its decoupling from, or slaving to, the matrix alpha 

relaxation, the nature and role of the short time/distance non-activated penetrant relaxation 

process, and the mechanism of exponential size dependence of penetrant relaxation time. How 

the key results of section III are correlated with thermodynamics and a metric of short 

time/distance dynamics is studied in section IV. Section V summarizes our most important 

testable predictions and compares some of them against simulations of molecular and colloidal 

tracer diffusion. The article concludes in section VI with a summary and a discussion of 

opportunities for future generalizations of both the model and theory to treat more complex 

systems. A few additional technical results and figures are collected in the Supplementary 

Information (SI). 

II. Background and Theory 

All the required theoretical methods for this study have been described previously32. Thus, 

we only sketch below without derivation the results germane to our present work, beginning with 

ECNLE theory33 and SCCH theory32 in sub-sections IIA and IIB, respectively, and then the 
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equilibrium structural input in sub-section IIC. The reader interested only in our new results can 

proceed directly to section III. However, Figures 1 and 2 below contain important background 

results for all our subsequent dynamical analyses and physical discussions.

A. ECNLE theory for one-component fluids

The ECNLE theory33 for one-component fluids directly enters SCCH theory32 since in the 

dilute penetrant limit the matrix dynamics is taken to be unperturbed. The starting point is a NLE 

for the stochastic trajectory of a tagged (spherical) particle in the overdamped limit37, 38: 

s dyn
( ) ( ( )) ( ) 0dr t F r t t

dt r
 

   


 (1)

Here, r(t)  denotes the scalar particle displacement at time t from its initial position, the friction 

coefficient s  quantifies the short time/distance relaxation process, dyn ( )F r  is the displacement-

dependent “dynamic free energy” containing contributions from all slowly relaxing components 

of the forces exerted on a tagged particle by its surroundings, and   is the white noise random 

force that satisfies 1
s( ) (0) 2 ( )t t     , where β = 1/kBT is the inverse thermal energy with 

kB Boltzmann’s constant and T temperature. The dynamic free energy, dyn ( )F r , is37, 38:

 2 2 12
1 ( ) 6

dyn 3 1

( ) ( )( ) 3ln( )
(2 ) 1 ( )

q r S qd C q S qF r r e
S q

 


   
  


q

 (2)

The second term corresponds to a trapping potential that favors dynamic localization. It is 

quantified by ρ (fluid number density) and the pair structure in Fourier space ( ( )S q , the 

structure factor) which is related to the direct correlation function as 1 1( ) [1 ( )]C q S q    . In 

the absence of noise, or if the dynamic free energy is approximated by a harmonic form, eqn (1) 

reduces to the single particle naïve mode coupling theory (NMCT) self-consistent equation38 for 

the long-time limit of the particle mean square displacement or localization length which obeys:
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  2 2
loc 6 1 1 ( )2 2 2

loc 3

1 ( ) ( )
9 (2 )

q r S qdr q C q S q e


   
q (3)

For hard spheres, a kinetic transition is predicted at ϕ~0.43, beyond which a transiently localized 

state and barrier emerge in the dynamic free energy signaling a crossover to activated motion37. 

Whether the system is below or above the dynamic crossover, the elementary time scale 

is set by 2
s B s B sk T D k T    , where σ is the particle diameter, Ds the short time diffusion 

constant, and s  the fast process relaxation time. The non-activated short time relaxation process 

includes binary collisions and non-self-consistent caging effects37, 51-53. In the “normal fluid” 

regime before the NMCT crossover is reached, it corresponds to the structural alpha relaxation 

time. This regime is experimentally relevant for colloidal suspensions, but typically not for 

supercooled viscous liquids under isobaric conditions over the accessible range of temperatures. 

In the activated regime, this timescale controls short distance motion before many body caging 

and transient localization emerge; it also enters as an attempt time scale for barrier hopping. In 

either case, for a Newtonian hard sphere fluid one has33, 50:   

2 2

s E 2 0

E 0 0

( ) ( )1
6 1 ( ) ( )

( ), 16

q C q S qdq
n q S q

g M

 


      

 
   

 

  (4)

where M is particle mass, ( )g   the contact value of the pair correlation function, and 

0 21 ( ) 1 ( ) 2 ( )n q j q j q    with ( )j q  the Bessel function of order α. In practice, we find 

replacing 1 ( )n q  with unity has negligible influence on s .

All our computed relaxation times are expressed in terms of the elementary time scale, 

τ0  For atomic or molecular viscous liquids a characteristic value is τ0~1 ps. In contrast, for 

colloidal suspensions τ0  is determined by the dilute Stokes-Einstein problem, with τ0 scaling as 
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particle diameter cubed. Hence, in a colloidal suspension of spheres of diameter ~100 nm to 1 

m, τ0  is ~6-9 decades longer than that for a viscous liquid. This difference has large 

consequences on the magnitude of the activation barrier at the laboratory (or computer) glass 

transition.

An example dynamic free energy computed using the MV closure for structural input is 

shown in the inset of Fig. 1. The dynamic free energy has a minimum at rloc (transient dynamic 

localization length), a maximum at the barrier location, Br , and a local cage barrier, FB.  With 

increasing packing fraction, Br  and FB grow but locr  decreases, resulting in a microscopic jump 

distance B locr r r    that increases with packing fraction. Calculations37, 50 based on structural 

input using the PY or MV closure predict to a good approximation B locF r  , which also 

scales linearly with the inverse dimensionless compressibility 1/S(q=0)= S0
1 . The latter is a 

thermodynamic property that quantifies the amplitude of long wavelength density fluctuations. 
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4

8

12

16

lg
(


/

0)



g

 = 0.58

r/

rloc

rB

FB

local cage
activated
hopping

collective elastic
fluctuation+

Schematic of ECNLE theory

(i)

(iv)

(iii)

(ii)0.0 0.2 0.4 0.6

-6

-3

0

3

6

F
dy

n(
r)

r/

 

Fig. 1 Main: structural alpha relaxation time (in units of τ0) predicted by ECNLE theory for one-
component hard sphere fluids as a function of packing fraction ϕ based on OZ-MV structural 
input48. The kinetic glass transition (indicated as the blue cross at ϕ~0.605) is defined as when 
τα/τ0 =1014 which corresponds to 100 seconds in a viscous liquid with τ0~ps. Other specific 
packing fractions we study in detail for the penetrant problem are indicated as red squares. For 
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viscous liquids  (elementary object size ~ 1 nm) these correspond to: (i) a lower packing fraction 
state where cooperative elasticity just begins to be important (ϕ = 0.56, τα ~1.6 ns, Fel/FB ~ 0.27, 
βFel ~ 1.57), (ii) an intermediate packing fraction state (ϕ = 0.58 τα ~359 ns, Fel/FB ~ 0.53, βFel ~ 
4.45), (iii) a very high packing fraction state (ϕ = 0.60 τα ~0.25 s, Fel/FB ~ 1.11, βFel ~ 13.46), 
and (iv) slightly beyond the kinetic glass transition (ϕ = 0.61 τα ~105 s, Fel/FB ~ 1.68, βFel~24.25). 
For a suspension of 1 m (100 nm) colloids, τ0 is typically 9 (6) decades longer, and hence 
kinetic arrest is predicted to occur at roughly ϕg ~ 0.58 (0.59) corresponding to a significantly 
lower activation barrier. Inset: Dynamic free energy (units of thermal energy) versus scaled 
particle displacement computed using OZ-MV structural input at ϕ = 0.58; relevant length and 
energy scales are indicated. The right panel sketches the physical ideas of ECNLE theory33.

Since activated relaxation involves a relatively large amplitude displacement 

( 0.25 ~ 0.4r    ), it has been argued that a small amount of extra space (cage expansion) is 

required to allow such a barrier hopping motion, a physical picture motivated by the 

phenomenological elastic “shoving model” of Dyre54-56. Including this physics in the NLE theory 

framework defines ECNLE theory33, and introduces longer-range collective elastic fluctuation of 

particles outside the cage that becomes important at sufficiently low temperature/high density. 

The elastic displacement field outside the cage of radius cager  (defined from the first minimum of 

the pair correlation function, ( )g r ) is given by33, 55:

 2

eff cage cage( ) ,u r r r r r r   (5a)

where the cage expansion amplitude is of order, or smaller than, locr , and is:

cage

cage

cage

2
2 2 3 4 2cage4 cage cage

eff 32
cage cage

0

[ ( 4)] 3 3
32 192 3072 32

r

r r
r

dr r r r r r r r r r rr
r rdrr


       

      
  




       (5b)

The corresponding elastic dynamic free energy cost at a distance r  from the cage center is

2
0 ( ) 2K u r , where 0K  is the harmonic curvature of dyn ( )F r  at locr . Its total contribution to the 

activation barrier follows by summing the contributions from all particles outside the cage33:

cage

2 2 3 2
el 0 cage eff 04 ( ) ( ) 2 2

r
F drr g r u r K r r K   


   (6)
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The final result assumes ( ) 1g r  , a benign simplification for hard-spheres. Based on eqn (6), 

and given the limited change of   and cager  in the strongly metastable regime where collective 

elasticity is important, one finds the elastic barrier is determined mainly by two factors: the 4th 

power of the particle jump distance, 4r  , and the localized state spring constant, 0K  . The latter 

is related to the dynamic (relaxed) shear modulus as G' ~ ϕK0,33, 38, 57 which is quantitatively 

more important in a relative sense than the jump distance contribution33, 48 to the elastic barrier. 

The alpha relaxation event is then a coupled local-nonlocal process involving coordinated 

cage scale hopping and a longer range elastic fluctuation, with the total barrier equal to the sum 

of the local cage and collective elastic contributions. The alpha time follows as s hop    , 

where the mean first passage or barrier hopping time is computed using Kramers theory58, 59 as: 

locel
dyn dyn

loc loc

B el

( ) ( )s
hop 2

( )
s

0 B

2

2

r r rF
F r F r

r r

F F

e dre dr e

e
K K


 

















 
(7)

The second expression is accurate beyond a local cage barrier of order 1-2 thermal energy units. 

We note in passing that based on OZ-MV structural input we find the factor s 0 BK K

 

is 

essentially independent of packing fraction and equals ~ 0.13 0 (units of Kj are set to unity). 

Hence, the hopping time is controlled by the exponential of the total barrier in thermal energy 

units. This finding is relevant in our analysis below in that conclusions drawn from analyzing the 

logarithm of the alpha time or total activation barrier are effectively identical.

The main frame of Fig. 1 presents calculations of the alpha time as a function of packing 

fraction. Collective elastic physics is unimportant when ϕ = 0.44-0.56, followed by a crossover at 

ϕ = 0.56 where βFel ~ 1.5, beyond which elasticity effects increasingly dominate for ϕ = 0.56-
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0.60 leading to many decades of increase of the relaxation time, and ultimately kinetic 

vitrification at ϕ~0.605. The latter is deduced from the criterion that τα/τ0 =1014, corresponding to 

100 s for a thermal liquid with τ0 = 1 ps. In the very slow activated regime, we recently showed50 

that the logarithm of alpha time scales as the 3rd power of the inverse dimensionless 

compressibility, versus as the 1st power when the local cage barrier dominates.

B. SCCH theory in the dilute penetrant limit 

In the dilute penetrant (diameter d) limit, the analogue of eqn (1) for the instantaneous 

penetrant displacement (trajectory) from its initial position, pr , is32, 42

p
s,p dyn,p p 0

dr
F

dt r
 

   


(8)

where p  is the white noise random force corresponding to the short time friction constant 

2
s,p B s,pk T d  associated with penetrant-matrix interactions (here collisions). Repeating the 

NMCT analysis yields the self-consistent equation for the penetrant localization length32, 42

 2 2 2 2
loc,p loc,m mm6 6 ( )p2 2 2

loc,p mp p mm3 ( ) ( ) ( )
9 (2 )

q r q r S qN dr q C q q S q e e 


     
q

(9)

Information about the pure matrix static structure factor, penetrant-matrix pair correlation 

function, and the matrix dynamic localization length all enter eqn (9). 

Based on eqn (9), the penetrant dynamic free energy obeys32, 42: 

 2 2 2 2
p m mm6 6 ( )dyn,p p m p 2 2

mp mm3
p p

( , ) 3 ( ) ( )
3 (2 )

q r q r S qF r r r d q C q S q e e
r r





   


  

 
q

 (10)

which depends on both dynamic displacement variables, pr  and mr , reflecting the coupling of 

penetrant motion to matrix displacements at the trajectory level. This complicated aspect is 

approximately handled in SCCH theory (see Fig. 2) by introducing the idea of a cooperative 
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displacement variable via a single “coupling” parameter, γ. The latter quantifies the magnitude of 

slow (matrix) and fast (penetrant) displacements in the coupled motion as32, 42:

m loc,m p loc,p( ) ( )r r r r     (11)

Substituting eqn (11) into eqn (10), the penetrant dynamic free energy follows via numerical 

integration of eqn (10).

Fig. 2 Key ingredients of the two coupled dynamic free energies in SCCH theory of a single 
spherical penetrant in a bulk matrix of larger diameter spheres. Matrix facilitation of penetrant 
hopping is formulated based on the concept of a dimensionless dynamic coupling parameter,  , 
defined as the ratio of the penetrant particle jump distance p ( )r   to the matrix particle 
facilitating displacement, m,c ( )r  . Relevant length and energy scales are indicated. The middle 
schematic displays the physical ideas of SCCH theory for the penetrant problem.

The coupling parameter γ is predicted by enforcing a temporal self-consistency condition. 

The penetrant jump distance corresponding to dyn,p p( , )F r   is denoted as p B,p loc,p( ) ( )r r r    , 

and the corresponding correlated displacement of the matrix particles is m,c p( ) ( )r r     . 

The temporal self-consistency condition follows as32, 42:

hop,p p dis,m m,c[ ( )] [ ( )]r r      (12)

The mean penetrant hopping time is again computed using Kramers theory,
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el,p loc,p p p

dyn,p p dyn,p p

loc,p loc,p

( ) ( )
( , ) ( , )s,p

hop,p p p2

2
( )

F r r r
F r F r

r r

e
dr e dr e

d

  
   

 


   , (13)

where 2
s,p s,pd D   is the characteristic penetrant short-time scale, given as32, 42:

 
2 2

mp mm
s,p E,p 2 2 20

E,p E,m mm

1/22 2
mp2

E,p E,p 0 mp mp4

( ) ( )
1

6 1 ( ) ( )

2 ( )

q C q S q
dq

d n q S q

d d md D g d
M m

 
   

 


 
  

  

     


. (14)

Here, mp ( ) 2d d   , m is penetrant mass with 3 3 3( ) ( )m m M d d    , mp mp( )g d  is the 

contact value of gmp(r), and the penetrant alpha time is ,p s,p hop,p    . The mean time required 

for a matrix particle to self-consistently displace a distance m,c ( )r   is denoted as dis,m m,c[ ( )]r  . 

It is computed using the Kramers mean first passage time equation, 

loc,m m,cel,m,c m
dyn,m m dyn,m m

loc,m loc,m

B,m,c el,m,c

( )( )
( ) ( )s,m

dis,m m,c m m2

( )
s,m

0,m B,m

2
( ( ))

2

r rF r
F r F r

r r

F F

e
r dr e dr e

e
K K

 
 




 










 



 
. (15)

Equations (13) and (15) include the elastic barrier contribution in a way that acknowledges that 

the motion of the penetrant to its barrier and the facilitating matrix displacement is a single time 

correlated dynamical event, and hence the elastic cost obeys32, 42 el,p el,m,cF F .

The collective elastic barrier accompanying the penetrant hop is constructed following 

the same basic method discussed above. In the dilute limit a penetrant (matrix) hop is treated as 

on average requiring an outward radial motion of amplitude p ( ) 4r   ( m,c ( ) 4r  ). The 

angularly averaged effective cage dilation amplitude follows as32, 42:
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2 2 3 4 2
cage,p m,c cage,p m,c m,c m,c

eff,p 3
cage,p cage,p

( ) ( ) ( ) ( )3 3( )
32 192 3072 32

r r r r r r
r

r r
   


    

     
  

(16)

where cage,p min,mpr r  with min,mpr  the cage radius corresponding to the first minimum of mp ( )g r . 

The elasticity cost for any a particle at a distance r  from the cage center is then 2
0,m p ( ) 2K u r , 

with  2

p eff,p cage,p( )u r r r r   for cage,pr r . The total elastic barrier associated with the 

facilitating matrix motion follows by summing the contributions from all particles outside the 

penetrant cage region, and is given by32, 42:

cage,p

2 2 3 2
el,p mp p 0,m cage,p eff,p 0,m2 ( ) ( ) 2 2

r
F drr g r u r K r r K    


    (17)

where the final result again adopts mp ( ) 1g r   outside the cage. This elastic barrier is determined 

mainly by two contributions: the matrix dynamic fluctuation distance ( m,c pr r    ) and matrix 

rigidity as encoded in ρK0,m. Inserting eqn (17) into eqn (13) and (15), the SCCH theory32, 42 is 

then self-consistently constructed.

C. Structural Pair Correlations   

The required structural pair correlation functions are computed using the standard OZ 

integral equation which in Fourier space is given for the pure matrix by47:

( ) ( ) ( ) ( ) ( ) ( )h q C q C q h q C q S q   (18)

Here, h(q) is the Fourier transform of h(r) = g(r)–1, g(r) the radial distribution function, and c(r) 

the real space direct correlation function. Based on eqn (18) plus the PY or MV closure, g(r) can 

be numerically computed. The PY closure for hard spheres is47 c(r) = 0, r > σ. For pure hard 

sphere fluids and mixtures the more sophisticated and accurate MV closure is48, 49, 60-62:

2
1MV

2

( )
( )

1 | ( ) |
ij

ij
ij

a r
b r

a r






  

(19)
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where ( ) ( ) ( )ij ij ijr h r c r    with i and j labeling the particle type (m or p) and 1 0.5a   and 

2 0.8a  .  The matrix-penetrant OZ equation is32, 47:

mp mp mm( ) ( ) ( )h q C q S q (20)

where the MV closure is as stated in eqn (19) and the PY closure is cmp(r) = 0, at r > dmp. The 

integral equations are numerically solved using standard methods. 

Figures 3a and 3b present example calculations of the pair correlations functions for the 

pure matrix and penetrant-matrix analogues, respectively. The main feature of the former is the 

contact value grows with packing fraction, while for the latter the contact value decreases as the 

penetrant becomes smaller. The inset of Fig. 3a shows the matrix “cage order parameter” defined 

as the value of the first peak of Smm(q). It grows significantly with packing fraction reflecting the 

increasing coherence of local packing. The examples in these plots cover a wide range of matrix 

packing fractions of interest dynamically (all in the metastable regime of the hard sphere fluid), 

spanning the range from when the matrix barrier is nearly zero (ϕ=0.5) to beyond ~ 32 (ϕ=0.605) 

per the pure matrix kinetic glass transition discussed in section IIA. 
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Fig. 3 (a) Main: Matrix pair correlation function as a function of scaled separation using OZ-MV 
theory at several packing fractions. Inset: Maximum of the matrix structure factor at its cage 
peak as a function of packing fraction. (b) Main: Penetrant-matrix pair correlation function using 
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the OZ-MV theory for several penetrant sizes as a function of scaled r at a fixed packing fraction 
(ϕ = 0.58). Inset: same quantity for several packing fractions at a fixed penetrant size (d/σ = 0.7).

III. Penetrant Hopping Rate and Decoupling from the Matrix Alpha Process 

Before presenting our new results we provide some background concerning how the 

calculations relate to simulation and experiment. Our focus is on the penetrant relaxation time 

associated with the short time non-activated process, τs,p, and its long time alpha process 

analogue,  τα,p. Both relate to two types of observables: (i) short and long time penetrant tracer 

diffusion constants which scale inversely with these relaxation times32, 41, 42, and (ii) single 

particle structural relaxation times extracted, for example, from analyzing characteristic decay 

times of the penetrant incoherent dynamic structure factor of a “2-step” form63 for wavevectors 

of order of the penetrant cage scale. These two time scales are analyzed over a wide range of size 

ratios, d/σ, and matrix packing fractions, ϕ. The latter variable is directly relevant to colloidal 

suspensions, and indirectly to viscous liquids via its determination of the matrix alpha time. The 

quantitative relation between packing fraction and the matrix alpha time is given in Figure 1. 

Recall that viscous (colloidal) bulk systems can be analyzed experimentally in the activated 

dynamics regime over ~ 14 (5-6) orders of magnitude of alpha relaxation timescale.  

All the numerical results presented below employ the improved MV closure to determine 

structural input. They are all new with two exceptions: the main frame of Fig.6 and parts of Fig. 

7 which were previously analyzed32 using the PY closure. We find quantitative, but important, 

differences between dynamical predictions based on MV versus PY structural inputs. 

A. Short Time Non-Activated Relaxation

We first analyze the time scale of the non-activated short time process, τs,p, per eqn(14). 

Fig. 4 presents numerical calculations of this quantity as a function of the cross constant value,
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contact
mpg , which grows monotonically with matrix packing fraction in a size ratio dependent 

manner (Figure 3). Interestingly, a power law relationship is predicted,  contact
s,p 0 mpA g


    at 

each fixed d/σ, where the common exponent ν ~ 7/3 over the wide range of penetrant sizes from 

d = 0.3σ to d = σ (one-component fluid). Per eqn (14), one power is due to the penetrant-matrix 

binary collision rate (i.e., E,p ) which grows linearly with contact
mpg . The second term in the square 

bracket of eqn (14) is associated with weak many body caging effects and we can deduce that it 

contributes to τs,p via the contact value raised to the ~4/3 power. This behavior can be precisely 

understood, as explained in the SI. 
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Fig. 4 Penetrant short relaxation time (units of τ0) as a function of penetrant-matrix cross contact 
value over a wide range of matrix packing fractions (0.5-0.63) and size ratios, d/σ.  

Despite the universal power law behavior in Fig. 4, the short time scale does increase in 

absolute magnitude with penetrant size even at fixed contact
mpg . This trend arises from the prefactor 

A in the relation  s,p  0  A gmp
contact 7/3

. Based on numerical calculations (not shown), we find that 

to a very good approximation A is proportional to the 4th power of the penetrant diameter since 

from eqn (14) one has  1/22 2 4
s,p 0 mp~ 2 ( ) ~d d m M m d   . The final scaling follows from the 
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denominator in the integrand of eqn (14) having a contribution that scales as 

   2 1/2
mp 2 ( )d d m M m which partially cancels common factors in s,p 0  , leading to the d4 

scaling. 

Finally, we note in passing that for one-component hard spheres the contact value is 

directly related to pressure, a thermodynamic property47. Considering our recent discovery using 

ECNLE theory and the MV closure that the alpha time is directly related to a thermodynamic 

property50, our present results suggest a new direct relationship between the matrix alpha time 

and the short time scale in pure hard sphere fluids. 

B. Degree of Decoupling of the Penetrant Hopping Time from the Matrix Alpha 

Relaxation Time
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Fig.5 Degree of decoupling as quantified by the ratio of the penetrant to matrix alpha times 
plotted as a function of packing fraction scaled by its value at the matrix kinetic glass transition 
relevant to thermal liquids (ϕg ~ 0.605). For colloidal suspensions which kinetically vitrify at ϕg 
~0.58-0.59 the x-axis would not exceed ~ 0.96-0.975. Termination of the black curve for the 
smallest penetrant reflects dynamic localization is not predicted by NMCT at sufficiently low 
matrix packing fraction.

Beyond very small penetrant displacements, transient localization emerges in a dense 

matrix, resulting in long time penetrant motion becoming activated and coupled to a variable 
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degree with matrix displacements. Many new questions then arise. In this subsection we consider 

the degree to which penetrant hopping requires a correlated matrix displacement, which we refer 

to as the amount of coupling or decoupling. This question can be mechanistically studied using 

distinct physical metrics. 

As readily probed in experiment or simulation, one characterization of the degree of 

decoupling as the ratio of the penetrant to matrix alpha relaxation times. Results for this quantity 

are shown in Fig. 5 as a function of scaled effective packing fraction at variable penetrant sizes. 

As expected, the degree of decoupling increases (smaller time ratio) monotonically with 

penetrant size. However, its matrix packing fraction dependence is subtle, with the time ratio 

first increasing slowly with ϕ, and then sharply decreasing. Hence, an interesting (albeit weak) 

non-monotonic evolution of the time ratio in Fig. 5 with matrix packing fraction is predicted. 

With decreasing penetrant size (and hence a larger time scale separation between penetrant 

hopping and the matrix alpha process), this non-monotonic behavior eventually disappears. With 

the goal of developing a microscopic understanding of the origin of this behavior, we first 

analyze the key properties that determine the penetrant total barrier and alpha time. 

The absolute magnitudes of the penetrant jump distance and its correlated matrix 

displacement as a function of size ratio are shown in Fig.SI2, with the following salient features 

evident. The penetrant jump distance varies non-monotonically with size ratio, first increasing, 

and then going through a maximum at a size ratio that depends weakly on matrix packing 

fraction (d~0.35-0.45σ), followed by a decrease. In contrast, the correlated matrix displacement 

m,cr  grows monotonically at low and medium values of d/σ, gradually approaching a plateau 

(saturation) value which is almost identical to the jump distance of the pure matrix alpha 

relaxation event. These trends imply penetrant hopping becomes more strongly coupled with the 
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matrix alpha relaxation as it grows in size, approaching a “slaved” limit of full coupling for large 

enough penetrants, as further discussed in the SI. 

The above results imply that small enough penetrants can hop without requiring much 

matrix motion. If so, then their activated hopping event is largely noncooperative in the sense of 

being dominated by the local cage barrier. This physical picture is supported by the numerical 

calculations in the inset of Fig. 6 of the ratio of the local cage dynamic free energy cost for the 

correlated matrix displacement, B,m,cF , to it pure matrix analogue for its full alpha process, B,mF . 

Physically, the former is the dynamical cost for matrix particles to displace “uphill” via thermal 

fluctuation on their dynamic free energy in order to facilitate penetrant hopping. At low d/σ, this 

ratio is well below unity and increases linearly with size ratio. Hence, the correlated matrix 

displacement (rm,c) in this regime is not associated with matrix particles reaching their dynamic 

free energy barrier per a matrix structural relaxation event. However, as the size ratio becomes 

sufficiently large the barrier ratio approaches unity, and thus the matrix is required to undergo its 

own alpha relaxation event to allow the penetrant to hop corresponding to maximal penetrant-

matrix coupling or “slaving”. Interestingly, to leading order the d/σ-dependences of FB,m,c/FB,m 

collapse for different packing fractions, corresponding to the degree of decoupling being set 

mainly by the geometric size ratio d/σ.
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Fig. 6 Main: Self-consistently determined dynamic coupling parameter γ as a function of size 
ratio for various matrix packing fractions. Inset: Ratio of the dynamic free energy cost associated 
with correlated matrix displacement to the full cage barrier of the pure matrix fluid as a function 
of size ratio for various matrix packing fractions.

Further insight concerning decoupling follows from consideration of the magnitude of the 

penetrant hopping displacement relative to its correlated matrix analogue. By construction, this is 

the fundamental quantity of the SCCH theory -- the temporally self-consistent coupling 

parameter, γ. The main frame of Fig. 6 presents calculations as a function of penetrant size for 

various matrix packing fractions; the results exhibit the same qualitative trends found previously 

based on using OZ-PY structural input32. The parameter γ sensibly increases as penetrants 

become smaller (more decoupling, less matrix participation in penetrant hopping). On the other 

hand, a slaved limit (full coupling, γ 1) is approached in a matrix packing fraction insensitive 

manner when d ~ 0.6σ (which is where m,cr  enters the plateau regime, see Fig. SI2). This onset 

of slaving as deduced from γ will be shown in the next subsection to be tightly correlated with 

the breakdown of an exponential dependence of the penetrant alpha time on size ratio. 

Finally, we return to the weak non-monotonic dependence of decoupling in Fig. 5. The 

surprising result is that with increasing matrix packing fraction the degree of decoupling first 
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modestly decreases. The reason is that at lower ϕ the penetrant barrier to hopping is relatively 

low and dominated by its local cage component, and hence the penetrant relaxation time is more 

strongly affected by the non-activated short time process discussed in sub-section IIIA. The latter 

timescale (or short time friction) is predicted to grow faster with packing fraction than its pure 

matrix analogue, resulting in the net trend of weakly less decoupling. But at higher ϕ, penetrant 

and matrix barriers become larger, and the short time scale process becomes of minor importance. 

Most importantly then is that the elastic barrier associated with the matrix alpha process grows 

more rapidly with increasing ϕ than its analogue associated with facilitation of the penetrant 

hopping event which involves a relatively smaller matrix displacement. This results in the 

relaxation time ratio in Fig. 5 strongly decreasing, and more so as packing fraction further grows, 

thereby yielding the non-monotonic dependence in Fig. 5. 

C. Size Ratio Dependence of Penetrant Relaxation Time

The prior SCCH theory study32 based on using the PY closure for structure discovered a 

roughly exponential dependence of the penetrant diffusion constant (inverse relaxation time) on 

one power of d/σ that covered ~9 decades at the matrix glass transition for d/σ = 0.3-0.9 (see 

Fig.SI3). A qualitatively similar exponential dependence has been observed in simulations14, 21, 22, 

46 for the penetrant diffusion constant in polymer matrices covering ~4 decades variation. 

Figure 7 presents new calculations of the penetrant alpha time (scales as the inverse 

diffusion constant32) as a function of penetrant size ratio for various packing fractions 

(corresponding to a very wide range of matrix alpha times) using the MV closure for structural 

correlations. A linear exponential growth is again found, which applies over a specific size ratio 

regime that grows significantly with matrix packing fraction. However, it holds to an even better 

degree than the prior PY based computations, now covering more than 16 decades at ϕ = 0.61 
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(~laboratory matrix glass transition for a viscous liquid) for the entire penetrant size range (d/σ = 

0.25-1.0). This is a striking explicit example of how the range of applicability of a predicted 

qualitative dynamic behavior can be strongly changed by using more accurate structural input. 

Now, with decreasing packing fraction (maps to higher temperatures in viscous liquids), such an 

exponential dependence, τα,p ~ eb(d/σ),  holds over an increasingly narrower range of size ratios 

and with a significantly lower slope parameter (b ~ 25.55, 34.6, 41.7, and 54.0 for ϕ=0.56, 0.58, 

0.6, and 0.61, respectively). Thus, we conclude that the exponential size ratio dependence is a 

subtle effect that depends on matrix thermodynamic state and proximity to its glass transition. To 

incisively test our results in Fig. 7 requires new simulations performed over a wide range of size 

ratios and matrix packing fractions or temperatures. Further discussion of a very recent 

simulation study14 that is highly germane to these theoretical results is given in sub-section VB.
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Fig. 7 Penetrant alpha relaxation time (in units of τ0) as a function of size ratio for various matrix 
packing fractions. Arrows indicate the corresponding matrix alpha times, which map crudely to 
specific times in seconds for viscous liquids and colloidal suspensions as explained in Fig.1. 
Lines indicate an effectively linear behavior which applies over an increasing number of decades 
of relaxation time as matrix packing fraction (or alpha time) grows.  
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The question now is what is the mechanism underlying the rich behavior in Fig. 7 and the 

precise origin of an exponential growth law? Ultimately, the answer lies in the size ratio and 

matrix packing fraction dependences of the penetrant local cage, elastic, and total barriers, which 

are individually shown in Fig. 8a for ϕ = 0.61. One sees that elasticity effects are negligible at 

low size ratios, and the cage barrier increases linearly with size ratio, reaching a plateau starting 

at d ~ 0.6σ, as expected based on the results in Section IIIB. Moreover, the local cage 

components of the dynamic free energy cost for the penetrant and matrix, B,pF  and B,m,cF , are 

very close for all size ratios. This prediction emerges from the temporal self-consistency 

condition of SCCH theory. Given we also know there is a crossover at d ~ 0.6σ to slaved motion, 

one can conclude that the appearance of a plateau in B,pF  is due to this physical behavior. 

Curiously, Fig. 8a also shows that the slope of the penetrant cage barrier versus d/σ plot in the 

lower size ratio regime (where it dominates the total barrier) is nearly identical to that of the 

elastic barrier that dominates in the high d/σ regime. This behavior in the glass-like matrix at ϕ = 

0.61 is the origin of the nearly linear relationship between the total barrier and d/σ over all size 

ratio regimes. Hence, we deduce there is a subtle compensation effect for the physically relevant 

total barrier underlying the exponential growth of the penetrant relaxation time with d/σ.
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Fig. 8 (a) Penetrant cage (square), elastic (circle), and total (triangle) barriers as a function of 
size ratio at a very high packing fraction (ϕ = 0.61). The corresponding dynamic free energy cost 
of the correlated matrix displacement ( B,m,cF ) from loc,mr to m,cr  is shown as the solid black curve. 
(b) Penetrant cage (solid) and elastic (open) barriers as a function of size ratio for various matrix 
packing fractions. Arrows indicate the corresponding matrix local cage barriers.

  Figure 8b examines how the above compensation effect changes at lower matrix packing 

fractions relevant to glass forming viscous liquids above (and approaching) their Tg or dense 

equilibrated colloidal suspensions below (and approaching) ϕg. One sees that although it also 

holds at ϕ = 0.6, it is not accurate over the entire size ratio range. In the high d/σ regime, the 

slope corresponding to the elastic barrier slightly decreases. As the packing fraction further 

decreases, the elastic barrier eventually becomes smaller than its cage analogue beginning in the 

plateau regime of the cage barrier, resulting in a saturation of total barrier (i.e., the breakdown of 

the strict compensation effect that underlies the exponential behavior of the penetrant alpha time) 

for large enough size ratios. Thus, the compensation effect is a delicate balance of factors which 

accurately holds to a degree in d/σ space that depends on ϕ and hence matrix dynamics. Since the 

relaxation time is proportional to the exponential of the total barrier, as one sees in Fig. 7 the 

compensation effect (and hence exponential growth) is predicted to effectively disappear at the 

lowest packing fraction studied. Future experiments and simulations performed at relatively 

lower packing fractions or higher temperatures over a wide range of size ratios can test this 

scenario.

D. Dependence of Penetrant Hopping on Matrix Packing Fraction

Finally, we consider the evolution of the penetrant alpha time with matrix packing 

fraction at fixed size ratio, d/σ. Fig. 9 shows the results. In the lower packing fraction regime of ϕ 

< 0.56 (maps to higher temperature for viscous liquids, recall Figure 1), the matrix elastic barrier 

is negligible, and the penetrant alpha time increases only slightly for all penetrant size ratios. But 
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for higher packing fractions germane to deeply supercooled liquids or highly metastable colloidal 

suspensions (ϕ > 0.56), the penetrant alpha time grows significantly with ϕ, and increasingly so 

for larger penetrants, due to collective elasticity effects. Overall, the increase is rather 

remarkably weak for smaller penetrants (< 4 decades when d < 0.5), due to the strong 

“decoupling” between penetrant and matrix dynamics. Note that no linear behavior is found 

between the logarithm of the penetrant alpha time and packing fraction, and thus no “generalized 

Arrhenius” regime exists for penetrant activated relaxation.
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Fig. 9 Penetrant alpha relaxation time (in units of τ0) as a function of matrix packing fraction for 
several size ratios d/σ including the pure matrix result (d/σ  ). Termination of the black curve 
for the smallest penetrant reflects dynamic localization is not predicted by NMCT at sufficiently 
low matrix packing fraction.

To better understand the matrix packing fraction dependences in Fig.9, we consider in 

detail what factors determine the penetrant collective elastic barrier. Per eqn (17), the question is 

the relative importance of the self-consistently determined matrix displacement that sets the 

amplitude of the elastic field, versus the contribution from harmonic curvature of the pure matrix 

dynamic free energy (proportional to the matrix dynamic shear modulus, G'). Fig. SI4 shows the 

latter increases exponentially with packing fraction, and is always the primary factor that 
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determines the elastic barrier, regardless of size ratio, although the contribution of the matrix 

displacement that enters as 4
m,cr  in the elastic barrier is not negligible.
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Fig. 10 Penetrant cage (short-dash) and elastic (solid) barriers as a function of matrix packing 
fraction for a series of size ratios.

Of most direct relevance to the behavior in Fig.9 is the packing fraction dependence of 

the penetrant cage and elastic barriers for a range of size ratios which are shown in Fig. 10. In the 

lower d/σ regime, the elastic barrier is negligible, and the cage barrier determines the penetrant 

relaxation time. Because the cage barrier remains relatively small with increasing ϕ, the 

penetrant alpha time in the low d/σ regime increases only slightly with packing fraction. 

However, in the high d/σ regime the elastic barrier becomes very significant, and ultimately 

dominates the penetrant relaxation time at high packing fractions, resulting in a major increase of 

penetrant relaxation time with ϕ.

IV. Connections to Matrix Short Time Dynamics and Thermodynamics

There is a long history for the problem of structural relaxation in glass forming liquids of 

searching for a “correlation” between slow dynamics (alpha relaxation time) and a specific 

thermodynamic property or a simple metric of short time relaxation. Whether such connections 
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are unique, let alone causal, continues to be vigorously debated. In this section we consider this 

issue for the new problem of activated penetrant relaxation and transport. Shedding light on this 

question is not only of scientific interest, but also has the potential to influence experimental 

work and materials design if penetrant mobility can be reliably predicted from knowledge of 

equilibrium properties and/or short distance/time dynamics.

We begin by noting that for one-component HS fluids the present dynamical theory with 

PY-based structural input predicts a simple relation between the (transient) localization length 

and local cage barrier37, 57, B locF r  . Does the analogue of this connection between an 

activation barrier and a short time/length scale dynamical property exist for the penetrant 

problem? This new question is answered in the inset of Fig. 11 using MV structural input. Rather 

surprisingly, the penetrant cage barrier is an excellent linear function of the inverse penetrant 

localization length over a wide range of matrix packing fractions for all penetrant sizes, albeit 

with a slope that varies with size ratio and with some deviations at very high packing fraction for 

larger penetrants. Beyond the intrinsic interest of a connection of the local activation barrier with 

a short time dynamic localization property, recall that at low d/σ the cage barrier dominates the 

penetrant hopping time. As such, we can conclude that the NMCT transient penetrant 

localization length31, 37, 38 essentially fully determines penetrant activated relaxation and transport 

in the low d/σ regime. This striking prediction is potentially testable in experiment and 

simulation since the transient dynamic localization length can be extracted from measurements 

of the single particle mean square displacement or incoherent dynamic structure factor in an 

appropriate wavevector and temporal regime.  

An important thermodynamic property of the pure matrix (which is straightforwardly 

measurable in both simulation and experiment) is the inverse dimensionless compressibility47, 48. 
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It also quantifies the amplitude of long wavelength density fluctuations, and is intimately 

connected to an integrated measure of equilibrium packing correlations embedded in g(r)-1.  

Prior ECNLE theory studies of one-component hard sphere fluids50 found a linear correlation 

between the local cage barrier and inverse dimensionless compressibility, 1/S0. Fig. 11 presents 

calculations that test this connection for the penetrant local cage barrier. The latter changes a lot 

with penetrant size, though (of course) the matrix inverse dimensionless compressibility remains 

the same since the penetrant is at infinite dilution. Rather surprisingly, we find a good linear 

correlation between this penetrant local dynamic property and a thermodynamic property of the 

pure matrix, even when penetrants are sufficiently large (d/σ > 0.5-0.6) that their dynamics is 

strongly affected by elasticity effects. This linear correlation works even better than seen in the 

inset of Fig. 11 for larger penetrants (d/σ > 0.5-0.6). 

The experimental and simulation relevance of the results in Fig.11 lies in the theoretical 

prediction that when penetrants are sufficiently small the elastic barrier is negligible and the local 

cage barrier determines its alpha relaxation time and diffusion constant. Hence, Fig.11 implies an 

exponential connection between the penetrant alpha time and matrix inverse dimensionless 

compressibility, as shown in Fig. 12a. More generally, it is well established for one-component 

fluids48 that the inverse dimensionless compressibility is proportional to square of other 

structural length scales (or order parameters) directly determined by the pure matrix pair 

correlation function g(r) or static structure factor S(q). Hence, we conclude that strong 

connections also exist between penetrant dynamics and matrix structural correlation lengths, a 

nontrivial mechanistic insight.
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Fig. 11 Penetrant cage barrier as a function of scaled inverse matrix dimensionless 
compressibility (main) and inverse penetrant localization length scale (inset) for a wide range of 
matrix packing fractions (0.5-0.61) and several size ratios.

Now, with increasing penetrant size its motion is predicted to be increasingly coupled 

with matrix elasticity, and both the local cage and collective elastic barriers are crucial in 

determining the penetrant hopping rate. This is evident from the failure of the exponential 

relation in Fig. 12a for d/σ > 0.5-0.6, which becomes increasingly apparent at higher matrix 

packing fractions (smaller S0, higher bulk modulus). As known from our recent ECNLE theory 

analysis50 of one-component metastable hard sphere fluids, when the elastic barrier is important a 

distinctive compensation-like effect between changes of the local cage and elastic barrier 

contributions to the total barrier emerges, resulting in the prediction that the total barrier (or 

logarithm of the alpha time) scales as the inverse cube of the dimensionless compressibility. 

Figure 12b tests whether the above behavior applies to the problem of penetrant activated 

relaxation. Again, rather surprisingly and remarkably, one sees that it does hold quite well, albeit 

to a variable degree depending on the value of d/σ and range of matrix packing fractions 

considered. The higher the packing fraction, the more important collective elasticity is for matrix 

dynamics, although the degree to which penetrant motion couples to matrix elasticity decreases 

as penetrants become smaller. We also note that even when the cubic scaling applies, the slope 
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grows with penetrant size. This reflects the increased coupling of its motion to the matrix, and 

the growing extent to which the matrix alpha relaxation process is required to allow larger 

penetrants to hop. Defining a slope from the plot of the logarithm of the penetrant alpha time 

versus cubic inverse dimensionless compressibility as 3
0-S

k
  , we find (not plotted) an excellent 

power law relation holds,  3
0

3.24

-
24.76

S
k d


  . A simple interpretation of this result seems 

difficult given the coupled and self-consistent nature of the penetrant plus correlated matrix 

dynamic fluctuation event.
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Fig. 12 Penetrant alpha time (unit of τ0) as a function of inverse matrix (a) dimensionless 
compressibility, and (b) cubed dimensionless compressibility, for several size ratios. 

Thus, we conclude that the SCCH theory with accurate structural input does predict direct 

connections exist for penetrant mobility with specific equilibrium structural and thermodynamic 

quantities. Moreover, for relatively small penetrants, a causal connect also exists with the classic 

metric of small scale caging, the penetrant dynamic localization length.

V. Summary of Key Predictions and Comparisons with Simulation

A. Key Predictions for Viscous Liquids and Colloidal Suspensions  
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With the goal of stimulating new experimental and simulation tests of our theory, we 

briefly summarize key testable predictions based on our analysis of  a spherical tracer in a hard 

sphere matrix model. (1) Figure 4 predicts a size ratio invariant power law growth (decrease) of 

the non-activated process short relaxation time (short time diffusivity) with the penetrant-matrix 

contact value to the 7/3 power over a wide range of matrix packing fractions. (2) Figure 5 

predicts a weakly non-monotonic, size ratio dependent evolution of the degree of dynamic 

decoupling (defined as the ratio of the penetrant to matrix long time alpha times or inverse 

diffusion constants) with packing fraction. Non-dimensionalization of matrix packing fraction by 

its kinetic glass transition value is a practical route to mapping the theoretical results onto real 

world systems. (3) Figure 7 predicts how the penetrant alpha time or inverse diffusion constant 

grows with size ratio in a packing fraction dependent manner (from the weakly supercooled to 

glass regimes). This includes the range of exponential scaling and the associated pre-factor in the 

exponential which can be thought of as defining the relevant matrix length scale (see next 

section), and the tendency to bend over or saturate for “large enough” size ratio. (4) Figure 12 

predicts two distinct exponential regimes of growth (decay) of the penetrant relaxation time 

(inverse diffusivity) with the experimentally measurable inverse thermodynamic dimensionless 

compressibility of the pure matrix raised to the 1 or 3 power depending on size ratio and how 

slow the matrix alpha relaxation is. 

Given the previously demonstrated ability within ECNLE and SCCH theories to map 

molecular viscous liquids to effective hard sphere fluids, the above key predictions should also 

be qualitatively testable for spherical atoms or weakly non-spherical molecules in thermal liquids. 

We now turn to a specific example of this relevance. 

B. Penetrants in Viscous Liquids   
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Very recently, a comprehensive simulation study of atomic and molecular penetrants of

variable shape and size in a cold polymer liquid (T/Tg,matrix ~ 1.2) was performed14. For spherical 

atomic and nearly spherical molecular penetrants, their diffusivity was found to follow a simple 

exponential law in penetrant diameter, ; alternative free volume and other models15, 16 dD e 

predict an exponential dependence but with the penetrant diameter squared or cubed, which 

clearly fail. For the simulated high polymer matrix packing fraction of ϕ, the length 

parameter was very small, λ nm.

 This exponential behavior14 is in excellent agreement with our theoretical results, as was 

discussed in detail by the authors of the simulation study of ref.14.  Quantitatively, from sub-

section IIIC and Fig. 7, we expect that at ϕ the length parameter is 1/b ~ σ38. Based on the 

established mapping adopted in ECNLE theory for polymer liquids, the matrix spherical particle 

diameter corresponds to a volume equal to a Kuhn length of the polymer chain.64, 65 Its 

characteristic size for many polymers is ~1 nm, consistent with the simulation parameter14. 

Hence, the theory anticipates λ   nm ~ 0.026 nm. Given the theory employs an effective 

hard sphere mixture model, versus the atomistic description of atomic and molecular penetrants 

in a polymer liquid in the simulation14, we find this level of agreement very encouraging. 

Clearly more simulations are required. For example, even for the model of ref.14, if one 

changes T/Tg (effectively ϕ) then other predicted aspects in Fig. 7 can be tested. This includes the 

evolution of the strength of the exponential behavior, its range of validity in size ratio space, and 

the tendency to saturate. These issues are further discussed in the next sub-section for tracer hard 

sphere diffusion in dense hard sphere matrices, which connects with key prediction (3) in sub-

section VA. New simulations should also be able to test predictions (2) and (4), and even (1).
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C. Tracer Relaxation in Dense Colloidal Matrices  

Recently, simulations29 of the alpha relaxation time of tracer hard spheres in dense 

(glassy) hard sphere fluids (slightly polydisperse) of larger particles have been performed that 

are directly relevant to our theoretical work. The (mean) size ratios simulated that are relevant to 

our study is d/σ = 0.5-1, and the matrix packing fraction was fixed at ϕ =0.59. Although modest 

aging effects were evident, after very long waiting times the penetrant alpha times were found 

(see Fig. 13a) to be nearly equilibrated, and grow by ~2.5 decades29 over the range d/σ = 0.5-1. 

Figure 13a shows the simulation data (at the longest waiting time) follows a roughly exponential 

growth at lower size ratios, and then bends over to a weaker dependence. These behaviors are in 

excellent qualitative accord with our calculations in Fig. 7. We note that complementary 

dynamic x-ray experiments were also performed29.

Figure 13a also represents a quantitative comparison of our theory with the simulation 

study for the shape of how the tracer relaxation time grows with size ratio. A small ambiguity is 

the appropriate value of matrix packing fraction in the theory which employs a monodisperse 

hard sphere model. It is well known polydispersity speeds up dynamics, and hence the 

appropriate ϕ should presumably be slightly smaller than 0.59. Calculations for packing fractions 

of 0.58, 0.585 and 0.59 are shown in Fig. 13a. The perhaps most sensible choice of 0.58 results 

in quantitative agreement between theory and simulation. Given the simulation and theory 

models are almost identical, this agreement seems very significant. New simulations of the same 

model can be designed to critically test the predicted evolution of the behavior in Fig.7 for higher 

and low packing fractions.

The same simulation study29 extracted a penetrant transient dynamic localization length 

(rloc,p in our language) from the wavevector (found to be Gaussian, per the theory eqn (9)) 
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dependence of the penetrant incoherent dynamic structure factor. These simulation results did 

not show significant aging effects. The results in the range d/σ = 0.5-1 are shown in Fig. 13b, 

along with one experimental point29. The data roughly follow an inverse power law scaling, 

albeit with deviations as the penetrant size approaches that of the matrix particles. Also shown is 

our theoretical prediction, which follows an excellent power law, loc,p
yr    , with y~1.67-

1.75 over the range ϕ  0.56-0.61. Overall, one sees good agreement between theory and 

simulation for the size ratio dependence (no fitting is involved). A possible caveat is that we 

have only computed the localization length as analytically estimated via the minimum of the 

penetrant dynamic free energy in Fig.2, while simulations extract it from a full dynamic 

calculation of a time-dependent structure factor. This difference may account for the mismatch in 

absolute values of the theoretical and simulated localization lengths. 
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Fig. 13 (a) Penetrant mean alpha relaxation time (in units of τ0 for our theory and ts=σ(m/kBT)1/2 
for simulation29) as a function of size ratio. Curves are the same theoretical results as in Fig. 7 
but plotted for packing fractions of 0.58, 0.585, and 0.59. Points are the simulation data at ϕ=0.59. 
(b) Theoretical localization length (blue triangles) as a function of size ratio at ϕ=0.58 (shifted up 
by a factor of 7), and corresponding simulation results (black squares) and a single experimental 
data point29. 
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VI. Summary and Future Directions 

We have employed the self-consistent cooperative hopping (SCCH) theory32 for dilute 

penetrant motion in very dense hard sphere fluid matrices to address multiple new questions and 

make testable predictions over a wide range of packing fractions (in the metastable regime) and 

penetrant-to-matrix size ratios. Our results are relevant to both dense colloidal suspensions and 

supercooled viscous liquids. A technically new aspect is the use of a much improved description 

of packing correlations (MV closure) which plays a central role in constructing the coupled 

penetrant and matrix dynamic free energies from which correlated activated dynamics is 

predicted. Four main topics were studied: (i) the short time/distance penetrant relaxation time 

associated with non-activated dynamics; (ii) decoupling and slaving between the penetrant 

activated hopping rate and the matrix alpha relaxation; (iii) the physical mechanism that 

underlies the extent and precise form of the matrix packing fraction dependent exponential 

relationship between penetrant mobility and size ratio; (iv) discovery of a new relationship 

between the equilibrium thermodynamic dimensionless compressibility with the penetrant 

relaxation time and diffusion constant. We also compared some of our results with recent 

simulations on tracer diffusion and transient localization in dense colloidal suspensions and 

viscous liquids, which appear to provide significant support for the theoretical ideas. Below we 

recap the highlights from each of these areas.

The non-activated short time/distance penetrant relaxation time, s,p , quantifies the initial 

fast dissipative process, and also sets the timescale for the slower penetrant hopping process. A 

generic power law scaling of this time scale with the contact value of the penetrant-matrix pair 

correlation function, contact
mpg , with an exponent of 7/3 was predicted, and its origin understood. In 
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the lower matrix packing fraction regime where cage barriers are modest and collective elasticity 

effects unimportant, the penetrant dynamics can be dominated by s,p . 

As matrix packing fraction or penetrant size grows, high barriers emerge, and ultimately 

the collective elasticity cost associated with the correlated matrix fluctuation that facilitates 

penetrant hopping becomes dominant. The amplitude of the required matrix dynamic fluctuation 

increases as penetrants become larger. These features conspire to result in a rich dynamic 

decoupling behavior. Their interplay underlies our discovery of a weakly non-monotonic 

variation with matrix packing fraction of the decoupling ratio ,p ,m   , which is causally related 

to the self-consistently determined relative displacement parameter γ. Beyond d~0.6σ, a strong 

coupling or slaving of penetrant hopping and the facilitating matrix dynamic fluctuation emerges. 

It can be understood as when the ratio of the cage dynamic free energy cost of the correlated 

matrix fluctuation to its value for a full matrix alpha relaxation event, B,m,c B,mF F , approaches 

unity. This limiting behavior is essentially independent of matrix packing fraction, thereby 

emphasizing the crucial role of the geometric factor d/σ in determining the degree of decoupling 

and ultimately slaving between matrix and penetrant.

How matrix collective elasticity affects penetrant hopping depends strongly on penetrant 

size via the magnitude of the facilitating matrix displacement ( m,c pr r    ) and the matrix 

shear rigidity. The latter always grows with packing fraction, while the former is nearly 

independent of ϕ in the lower d/σ regime, but increases with packing fraction in the larger d/σ 

regime. We predict that matrix elasticity is unimportant for small enough penetrants (d < 0.6σ), 

but increasingly dominant for larger ones, in a manner that quantitatively depends on matrix 

packing fraction. Based on a detailed analysis of the absolute and relative contributions of local 

cage to collective elastic barriers that resist penetrant motion, we established a mechanistic 
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understanding of the exponential growth of the penetrant relaxation time with size ratio that 

emerges at very high packing fractions. We conclude it is a subtle compensation effect, which 

also explains its continuous breakdown as penetrants become larger and/or the matrix packing 

fraction becomes low enough.  

We explored possible connections between the penetrant hopping time and a key 

thermodynamic property that quantifies long wavelength thermal density fluctuations of the 

matrix – the inverse dimensionless compressibility, 1/S0. When collective elasticity is 

unimportant (small penetrants and/or lower matrix packing fraction), the penetrant total barrier 

scales linearly with 1/S0. However, when collective elasticity plays an important role in the 

dynamic free energy cost of a facilitating matrix displacement, the penetrant total barrier is 

predicted to scale as the 3rd power of 1/S0. These intriguing findings, though only deduced for 

systems that interact via hard core repulsions, have major implications. For example, a surprising 

causal connection is suggested between penetrant relaxation time or diffusivity with a pure 

matrix thermodynamic property that can be determined experimentally from equation-of-state 

measurements. We urge new simulation and experimental studies be performed to test this result, 

which could also be of major value in functional soft materials applications and design. 

Finally, we comment on the many possible future directions. The combination of integral 

equation theory, ECNLE theory, and SCCH theory can be extended to address the rich 

complexity of activated penetrant dynamics in real systems and materials over an enormous 

range of timescales based on much prior work by Schweizer and coworkers. For spherical 

particle models, one can easily take into account non-hard core repulsions (e.g., a soft repulsive 

Hertzian potential relevant to microgels66, 67), strong short range attractions (physical bonds) 

between matrix particles resulting in dense gel or attractive glass matrices68, 69, and penetrant-
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matrix attractions relevant to specific physical bonding or association forces32, 65. The theoretical 

tools also exist to address non-dilute mixtures of spherical particles, as recently done under 

purely hard core repulsion conditions42. This advance allows questions such as single versus 

double glass formation, and plastization versus anti-plastization, to be studied42. From a 

theoretical methods perspective, the dynamic free energy approach can be potentially 

implemented at the stochastic trajectory level per prior work39, 40. This would allow the 

calculation of the time-dependent mean square displacement, non-Gaussian parameters, and all 

other single particle time correlation functions, including aspects of dynamic heterogeneity. 

Building on prior advances, extension of the theory penetrant dynamics at the quasi-analytic 

level employed in this article is also possible in order to address the impact of nonspherical 

penetrant shape70, 71, connected semiflexible polymer chain matrices72, 73, polymeric 

crosslinking74, and quenched (pinning) disorder in colloidal systems75. The influence of applied 

stress or strain on penetrant dynamics can be treated based on the well-developed nonequilibrium 

version of the dynamic free energy concept76, 77.

The above generalizations will further broaden the relevance of the theoretical approach 

to experimental and simulation studies, and also help guide soft materials development. The 

latter potentially includes membrane separation science where the permeability is the product of 

penetrant solubility and diffusion constant5, 8, 11. Penetrant solubility can be determined using 

equilibrium integral equation theory methods, and combined with the present approach for the 

penetrant relaxation time and diffusivity. One can also employ the developed mapping from hard 

sphere models to viscous liquids34, 64, 65 to explicitly address experiments on specific molecular 

and polymer systems where temperature is the control variable. Work in many of these directions 

is underway. 
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